Investigation of flexural behavior of reinforced concrete beams using 3D finite element analysis

Document Type : Research


1 University of North Dakota (UND), Grand Forks, ND 58203 USA.

2 Department of Civil Engineering, University of Engineering and Technology Taxila, 47050, Pakistan.

3 Case Western Reserve University, Cleveland, Ohio, 44106, USA.

4 Department of Transportation Engineering and Management, University of Engineering and Technology Lahore, 54890, Pakistan.


Many experimental works available in the literature explore the structural behavior of flexural members, but a limited number of studies examined the structural behavior of flexural members using nonlinear finite element modeling (FEM). The purpose of the present study is to investigate the effect of reinforcement ratio as well as shear span on the flexural and shear behavior of reinforced concrete beams using three-dimensional FEM in ANSYS. Experimental data and results of fifty-five reinforced concrete beams were compared. Concrete was modeled using a three-dimensional SOLID65 solid element, capable of representing the actual behavior of nonlinear brittle materials such as concrete. Discrete reinforcement was modeled using a three-dimensional LINK180 spar element. The outcomes of the finite element model for loading and cracking of flexural members with a discrete modeling approach were in good agreement with theoretical and experimentally obtained results at all stages of loading. Furthermore, it was observed that at the early stage, the finite element model shows a nearly close result to experimental data compared to the result obtained at the ultimate stage. The outcomes of this study are of utmost importance for structural engineers in designing reinforced flexural members. 


1. Demir, A., Ozturk, H., & Dok, G. (2016). 3D numerical modeling of RC deep beam behavior by nonlinear finite element analysis. Disaster Science and Engineering, 2(1), 13-18.
2. Ahmad, A., & Raza, A. (2020). Reliability analysis of strength models for CFRP-confined concrete cylinders. Composite Structures, 244, Article e112312. [DOI:10.1016/j.compstruct.2020.112312]
3. Aslam, H. M. U., Sami, A., & Raza, A. (2021). Axial compressive behavior of damaged steel and GFRP bars reinforced concrete columns retrofitted with CFRP laminates. Composite Structures, 258, Article e113206. [DOI:10.1016/j.compstruct.2020.113206]
4. Raza, A., & Ahmad, A. (2021). Investigation of HFRC columns reinforced with GFRP bars and spirals under concentric and eccentric loadings. Engineering Structures, 227, Article e111461. [DOI:10.1016/j.engstruct.2020.111461]
5. Raza, A., Nawaz, M. A., & Ahmed, I. (2020). Structural performance of FRP-RC compression members wrapped with FRP composites. Structures, 27, 1693-1709. [DOI:10.1016/j.istruc.2020.07.071]
6. Raza, A., & Rafique, U. (2021). Efficiency of GFRP bars and hoops in recycled aggregate concrete columns: Experimental and numerical study. Composite Structures, 255, Article 112986. [DOI:10.1016/j.compstruct.2020.112986]
7. Aghabozorgi, P., Khaloo, A., & Hassanpour, S. (2021). Numerical investigation of GFRP bars contribution on performance of concrete structural elements. Numerical Methods in Civil Engineering, 5(4), 1-12. [DOI:10.52547/nmce.5.4.1]
8. Danesh, F., & Faridalam, M. (2016), Numerical study on the behavior of link-to-column connections in eccentrically braced frames. Numerical Methods in Civil Engineering, 1(1), 1-6. [DOI:10.29252/nmce.1.1.1]
9. Soltani, M., & Sistani, A. (2017). Elastic stability of columns with variable flexural rigidity under arbitrary axial load using the finite difference method. Numerical Methods in Civil Engineering, 1(4), 23-31. [DOI:10.29252/nmce.1.4.23]
10. Joshuva, N. R., Saibabu, S., Eapen Sakaria, P., Lakshmikandhan, K. N., & Sivakumar, P. (2014). Finite element analysis of reinforced and pre-tensioned concrete beams. Emerging Technology and Advanced Engineering, 4(10), 449-457.
11. Uddin, M. A., Alzara, M. A., Mohammad, N., & Yosri, A. (2020). Convergence studies of finite element model for analysis of steel-concrete composite beam using a higher-order beam theory. Structures, 27, 2025-2033. [DOI:10.1016/j.istruc.2020.07.073]
12. Kim, S. K., Kim, J. M., & Hong, W. K. (2020). Material nonlinear finite element analysis of hybrid hollow concrete beams encasing steel sections. Structures, 25, 500-519. [DOI:10.1016/j.istruc.2020.03.029]
13. Li, C., Li, Q., Li, X., Zhang, X., & Zhao, S. (2020). Elasto-plastic bending behaviors of steel fiber reinforced expanded-shale lightweight concrete beams analyzed by nonlinear finite-element method. Case Studies in Construction Materials, 13, Article e00372. [DOI:10.1016/j.cscm.2020.e00372]
14. Dawari, V. B., & Vesmawala, G. R. (2014). Application of nonlinear concrete model for finite element analysis of reinforced concrete beams. Scientific & Engineering Research, 5(9), 776-782.
15. Srinivasan, R., & Sathiya, K. (2010). Flexural behavior of reinforced concrete Beams using finite element analysis (Elastic Analysis). Buletinul Institutului Politehnic Din Iasi, 56(4), 31.
16. Raza, A. (2020). Experimental and numerical behavior of hybrid-fiber-reinforced concrete compression members under concentric loading. SN Applied Sciences, 2(4), 1-19. [DOI:10.1007/s42452-020-2461-5]
17. Elsanadedy, H. M., Al-Salloum, Y. A., Alrubaidi, M. A., Almusallam, T. H., & Abbas, H. (2021). Finite element analysis for progressive collapse potential of precast concrete beam-to-column connections strengthened with steel plates. Building Engineering, 34, Article e101875. [DOI:10.1016/j.jobe.2020.101875]
18. Yu, F., Song, Z., Mansouri, I., Liu, J., & Fang, Y. (2020). Experimental study and finite element analysis of PVC-CFRP confined concrete column-Ring beam joint subjected to eccentric compression. Construction and Building Materials, 254, Article e119081. [DOI:10.1016/j.conbuildmat.2020.119081]
19. Ul Haq, I., Tahir, M. F., Khan, Q. U. Z., Raza, A., & Rizwan, M. (2021). Seismic behaviour of concrete bridge piers with various types of transverse reinforcement. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 1-12. [DOI:10.1680/jstbu.20.00282]
20. Wolanski, A. J. (2004). Flexural behavior of reinforced and prestressed concrete beams using finite element analysis. Doctoral dissertation. Marquette University.
21. Buckhouse, E. R. (1997). External flexural reinforcement of existing reinforced concrete beams using bolted steel channels.
22. Dahmani, L., Khennane, A., & Kaci, S. (2010). Crack identification in reinforced concrete beams using ANSYS software. Strength of materials, 42(2), 232-240. [DOI:10.1007/s11223-010-9212-6]
23. Khan, H. U., Rafique, M. N., Karam, S., Ahmad, K., & Bashir, A. (2014). Identification of shear cracks in reinforced beams using finite element method (ANSYS). Pakistan Journal of Science, 66(1), 50.
24. Tahenni, T., Bouziadi, F., Boulekbache, B., & Amziane, S. (2021). Experimental and nonlinear finite element analysis of shear behaviour of reinforced concrete beams. Structures, 29, 1582-1596. [DOI:10.1016/j.istruc.2020.12.043]
25. Carpinteri, A., Carmona, J. R., & Ventura, G. (2011). Failure Mode Transitions in Reinforced Concrete Beams Part 2: Experimental Tests. ACI Structural, 108(3). [DOI:10.14359/51682344]
26. Badiger, N. S., & Malipatil, K. M. (2014). Parametric study on reinforced concrete beam using ANSYS. Civil and Environmental Research, 6(8), 88-94.
27. Patil, S. S., Shaikh, A. N., & Niranjan, B. R. (2013). Experimental and analytical study on reinforced concrete deep beam. Mordern Engineering Research, 3(1), 45-52.
28. Reddy, G., & Rao, T. M. (2017). Flexural Behaviour of Reinforced Concrete Beams using ANSYS. CVR Journal of Science and Technology, 12, 1-12.
29. Bahij, S., Adekunle, S. K., Al‐Osta, M., Ahmad, S., Al‐Dulaijan, S. U., & Rahman, M. K. (2018). Numerical investigation of the shear behavior of reinforced ultra‐high‐performance concrete beams. Structural Concrete, 19(1), 305-317. [DOI:10.1002/suco.201700062]
30. Blomfors, M., Berrocal, C. G., Lundgren, K., & Zandi, K. (2021). Incorporation of pre-existing cracks in finite element analyses of reinforced concrete beams without transverse reinforcement. Engineering Structures, 229, Article e111601. [DOI:10.1016/j.engstruct.2020.111601]
31. Alachek, I., Reboul, N., & Jurkiewiez, B. (2019). Experimental and finite element analysis of the long-term behaviour of GFRP-concrete hybrid beams fabricated using adhesive bonding. Composite Structures, 207, 148-165. [DOI:10.1016/j.compstruct.2018.09.013]
32. Elahi, A. (2003). Effect of reinforcement ratio and shear span on shear strength of high-strength concrete beams. Doctoral dissertation. Taxila University.
33. William, K. J., & Warnke, E. D. (1975). Constitutive model for the triaxial behaviour of concrete. Association for Bridge and Structural Engineering, 19, 174.
34. Ibrahim, A. M., & Mahmood, M. S. (2009). Finite element modeling of reinforced concrete beams strengthened with FRP laminates. European Journal of Scientific Research, 30(4), 526-541.
35. Fanning, P. (2001). Nonlinear models of reinforced and post-tensioned concrete beams. Electronic Journal of Structural Engineering, 1(2), 111-119.
36. Kachlakev, D. I., Miller, T. H., Potisuk, T., Yim, S. C., & Chansawat, K. (2001). Finite element modeling of reinforced concrete structures strengthened with FRP laminates. Transportation Research Group.
37. Saifullah, M., Nasir, U., & Udin, S. (2011). Experimental and analytical investigation of flexural behavior of reinforced concrete beam.
38. Vasudevan, G., & Kothandaraman, S. (2011). Parametric study on nonlinear finite element analysis on flexural behaviour of RC beams using ANSYS. civil & structural engineering, 2(1), 98-111.