Speeding up the Stress Analysis of Hollow Circular FGM Cylinders by Parallel Finite Element Method

Document Type : Research

Authors

1 Assistant Professor, Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran.

2 PhD Candidate, Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran.

Abstract

In this article, a parallel computer program is implemented, based on Finite Element Method, to speed up the analysis of hollow circular cylinders, made from Functionally Graded Materials (FGMs). FGMs are inhomogeneous materials, which their composition gradually varies over volume. In parallel processing, an algorithm is first divided to independent tasks, which may use individual or shared data. Such tasks could be simultaneously executed. In this paper, a parallel Finite Element software is developed to perform the analysis on a multiprocessor system. The software parallelizes every time-consuming task of the algorithm, if possible. As an application, the analysis of a thick hollow cylinder, made from FGM, is performed to evaluate the capability of the software. The results show not only the software is authoritative of analyzing large-scale problems, but also it is 2.4 times faster than the serial version. Although such speedup is achieved using eight processors, the number of processors could be increased utilizing computer networks. According to the results, it could be concluded that the speedup increases when the number of processors increases. However, because of some technical limits and overheads such as data traffic among the processors, the speedup approaches its maximum for a certain number of processors.

Keywords


1. Koizumi M. ,1993, "The concept of FGM", Ceramic Trans., Functionally Gradient Materials, 34: 3-10.
2. Yamanouchi M., Koizumi M., Hirai T., Shiota I., 1990, "Proceeding of the first international symposium on functionally gradient materials", Japan.
3. Horgan, C.O., Chan, A.M., 1999, "The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials", J. Elasticity, 55(1): 43-59. [DOI:10.1023/A:1007625401963]
4. Ching H.K., Yen, S.C. ,2005, "Meshless local Petrov-Galerkin analysis for 2d functionally graded elastic solids under mechanical and thermal loads", J. Compos., 36(3): 223-240. [DOI:10.1016/j.compositesb.2004.09.007]
5. Jabbari, M., Bahtui, A. and Eslami, M.R. 2006, "Axisymmetric mechanical and thermal stresses in thick long FGM cylinders", J. Therm. Stresses., 29(7): 643-663. [DOI:10.1080/01495730500499118]
6. Arshad S. H., Naeem M. N., Sultana N., 2007, "Frequency analysis of functionally graded material cylindrical shells with various volume fraction laws", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 221: 1483-1495. [DOI:10.1243/09544062JMES738]
7. Gilhooley, D.F., Xiao, J.R., Batra, R.C., McCarthy, M.A. and Gillespie, Jr.J.W., 2008, "Two-dimensional stress analysis of functionally graded solids using the MLPG method with radial basis functions" J. compu. mater. sci., 41(4): 467-481. [DOI:10.1016/j.commatsci.2007.05.003]
8. Li X. F., Peng, X. L., 2009, "A pressurized functionally graded hollow cylinder with arbitrarily varying material properties", J. Elas., 96(1), 81-95. [DOI:10.1007/s10659-009-9199-z]
9. Tutuncu N., Temel B., 2009, "A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres", Composite structures 91: 385-390. [DOI:10.1016/j.compstruct.2009.06.009]
10. Shah A.G., Mahmood T., Naeem M.N., 2009, "Vibrations of FGM thin cylindrical shells with exponential volume fraction law", Appl. Math. Mech. -Engl. Ed. 30(5), 607-615. [DOI:10.1007/s10483-009-0507-x]
11. Foroutan M., Moradi-Dastjerdi R., Sotoodeh-Bahreini R., 2011, "Static analysis of FGM cylinders by a mesh-free method", Steel and Composite Structures 12(1): 1-11. [DOI:10.12989/scs.2012.12.1.001]
12. Arshad S. H., Naeem M. N., Sultana N., Iqbal Z., Shah A.G, 2011, "Effects of exponential volume fraction law on the natural frequencies of FGM cylindrical shells under various boundary conditions", Archive of Applied Mechanics 81: 999-1016. [DOI:10.1007/s00419-010-0460-5]
13. Asemi K., Akhlaghi M., Salehi M., 2012, "Dynamic analysis of thick short length FGM cylinders", Meccanica 47(6): 1441-1453. [DOI:10.1007/s11012-011-9527-9]
14. Bahri, A., Salehi, M. and Akhlaghi, M., 2016. "Three-dimensional static and dynamic analyses of the functionally graded cylinder bonded to the laminated plate under general loading. Mechanics of Advanced Materials and Structures, 23(12): 1437-1453. [DOI:10.1080/15376494.2015.1091530]
15. Najibi A., shojaeefard M. H., 2016" Elastic mechanical stress analysis in a 2D-FGM thick finite length hollow cylinder with newly developed material model", Acta Mechanica Solida Sinica, 29(2). [DOI:10.1016/S0894-9166(16)30106-9]
16. Celibi K., Yarimpabuc D., Keles I., 2017, "A novel approach to thermal and mechanical stresses in a FGM cylinder with exponentially varying properties", Journal of theorical and applied mechanics, 55(1):343-351. [DOI:10.15632/jtam-pl.55.1.343]
17. Qian X., Chengguo W., Ge G., 2010, "The research of parallel computing for large-scale finite element model of wheel/rail rolling contact", IEEE.
18. Paszyńskia M., Pardob D., Torres-Verdínc C., Demkowiczd L., Caloe V. ,2010, "A parallel direct solver for the self-adaptive hp Finite Element Method", Journal of Parallel and Distributed Computing 70(3): 270-281. [DOI:10.1016/j.jpdc.2009.09.007]
19. Graeme J. Kennedya, Joaquim R.R.A.Martinsb, 2014, "A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures", Finite Elements in Analysis and Design 87:56-73. [DOI:10.1016/j.finel.2014.04.011]
20. Koric S., Qiyue L., Guleryuz E., 2014, "Evaluation of massively parallel linear sparse solvers on unstructured finite element meshes", Computers & Structures, V. 141: 19-25. [DOI:10.1016/j.compstruc.2014.05.009]
21. Townsend J. T., 1990, "Serial vs. Parallel Processing: Sometimes They Look like Tweedledum and Tweedledee but They Can (And Should) be Distinguished", Psychological Science, 1(1): 46-54. [DOI:10.1111/j.1467-9280.1990.tb00067.x]
22. Ruede U., Gmeiner B., 2012, "Parallel Iterative Algorithms and Performance- Analysis and Tuning of Parallel Programs", Vatsal Sharan, Indian Institute Of Technology Kanpur.
23. Gropp W., Lusk E., Doss N., Skjellum A., 1996, "MPICH: A high-performance, portable implementation of the MPI message passing interface standard". Parallel Computer 22(6):789-828. [DOI:10.1016/0167-8191(96)00024-5]
24. Parhami B. ,2002, "Introduction to Parallel Processing Algorithms and Architectures", Kluwer Academic Publisher.
25. Asil Gharebaghi S., Zanganevar M.,2012, "Application of Parallel Processing in Civil Engineering", Master of Science Seminar, K. N. Toosi University of Technology, Tehran, Iran.
26. "MPI: A Message-Passing Interface Standard", Version 2.2 (2009), Message Passing Interface Forum, University of Tennessee.
27. Li C., Zou Z. and Duan Z, 2000, "Multiple iso-parametric finite element method for non-homogeneous media", Mechanics Research Communications, 27(2): 137-142. [DOI:10.1016/S0093-6413(00)00073-2]
28. Hutton David H., 2004, "Fundamentals of Finite Element Analysis", McGrow-Hill.
29. Yıldırım V., Boğa C., 2016, "Closed-Form elasticity solutions to uniform rotating discs made of a radially functionally graded material", IJIRSET 5(12).