1. Yang FA, Chong AC, Lam DC, Tong P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures. 2002; 39(10):2731-43. [
DOI:10.1016/S0020-7683(02)00152-X]
2. Gurtin ME, Weissmüller J, Larche F. A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A. 1998; 78(5):1093-109. [
DOI:10.1080/01418619808239977]
4. Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 1983; 54: 4703-4710. [
DOI:10.1063/1.332803]
5. Elishakoff I, Guede Z. Analytical polynomial solutions for vibrating axially graded beams. Mechanics of Advanced Materials and Structures. 2004; 11(6):517-33. [
DOI:10.1080/15376490490452669]
6. Reddy JN. Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science. 2007; 45(2-8):288-307. [
DOI:10.1016/j.ijengsci.2007.04.004]
8. Aydogdu M. A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Physica E: Low-dimensional Systems and Nanostructures. 2009; 41(9):1651-5. [
DOI:10.1016/j.physe.2009.05.014]
9. Civalek Ö., Akgöz B. Free vibration analysis of microtubules as cytoskeleton components: nonlocal Euler-Bernoulli beam modeling. Scientia Iranica-Transaction B: Mechanical Engineering, 2010; 17(5): 367-375.
10. Danesh, M., Farajpour, A., Mohammadi, M., Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mechanics Research Communications, 2012; 39(1): 23-27. [
DOI:10.1016/j.mechrescom.2011.09.004]
11. Wang, B.L., Hoffman, M. and Yu, A.B., 2012. Buckling analysis of embedded nanotubes using gradient continuum theory. Mechanics of Materials, 45, pp.52-60. [
DOI:10.1016/j.mechmat.2011.10.003]
12. Eltaher MA, Alshorbagy AE, Mahmoud FF. Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams. Composite Structures. 2013; 99:193-201. [
DOI:10.1016/j.compstruct.2012.11.039]
13. Eltaher MA, Emam SA, Mahmoud FF. Static and stability analysis of nonlocal functionally graded nanobeams. Composite Structures. 2013; 96:82-8. [
DOI:10.1016/j.compstruct.2012.09.030]
14. Akgöz B, Civalek Ö. Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory. Composite Structures, 2013; 98: 314-322. [
DOI:10.1016/j.compstruct.2012.11.020]
15. Ke LL, Wang YS. Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory. Physica E: Low-Dimensional Systems and Nanostructures. 2014; 63:52-61. [
DOI:10.1016/j.physe.2014.05.002]
16. Pandeya A, Singhb J. A variational principle approach for vibration of non-uniform nanocantilever using nonlocal elasticity theory. Proced. Mater. Sci. 2015; 10: 497-506. [
DOI:10.1016/j.mspro.2015.06.087]
17. Shafiei N, Kazemi M, Safi M, Ghadiri M. Nonlinear vibration of axially functionally graded non-uniform nanobeams. International Journal of Engineering Science, 2016; 106: 77-94. [
DOI:10.1016/j.ijengsci.2016.05.009]
18. Akgöz, B. and Civalek, Ö. 2016. Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory. Acta Astronautica, 119, pp.1-12. [
DOI:10.1016/j.actaastro.2015.10.021]
19. Ghasemi, A.R. and Mohandes, M., 2016. The effect of finite strain on the nonlinear free vibration of a unidirectional composite Timoshenko beam using GDQM. Advances in aircraft and spacecraft science, 3(4), p.379. [
DOI:10.12989/aas.2016.3.4.379]
20. Mohandes, M. and Ghasemi, A.R., 2016. Finite strain analysis of nonlinear vibrations of symmetric laminated composite Timoshenko beams using generalized differential quadrature method. Journal of Vibration and Control, 22(4), pp.940-954. [
DOI:10.1177/1077546314538301]
21. Ebrahimi F, Salari E. Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment, Acta Astronautica, 2015; 113: 29-50. [
DOI:10.1016/j.actaastro.2015.03.031]
22. Ebrahimi F, Barati M R. Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium, J. Brazil. Soc. Mech. Sci. Eng. 2016; 39(3); 937-952. [
DOI:10.1007/s40430-016-0551-5]
23. Ebrahimi F, Barati M R. A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams, Compos. Struct. 2017; 159: 174-182. [
DOI:10.1016/j.compstruct.2016.09.058]
24. Mercan, K. and Civalek, Ö, 2016. DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix. Composite Structures, 143, pp.300-309. [
DOI:10.1016/j.compstruct.2016.02.040]
25. Calim, F.F., 2016. Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Composites Part B: Engineering, 103, pp.98-112. [
DOI:10.1016/j.compositesb.2016.08.008]
26. Lezgy-Nazargah, M., Vidal, P. and Polit, O., 2013. An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams. Composite Structures, 104, pp.71-84. [
DOI:10.1016/j.compstruct.2013.04.010]
27. Lezgy-Nazargah, M. and Farahbakhsh, M., 2013. Optimum material gradient composition for the functionally graded piezoelectric beams. International Journal of Engineering, Science and Technology, 5(4), pp.80-99. [
DOI:10.4314/ijest.v5i4.8]
28. Lezgy-Nazargah, M., 2015. A three-dimensional exact state-space solution for cylindrical bending of continuously non-homogenous piezoelectric laminated plates with arbitrary gradient composition. Archives of Mechanics, 67(1), pp.25-51.
29. Lezgy-Nazargah, M., 2016. A three-dimensional Peano series solution for the vibration of functionally graded piezoelectric laminates in cylindrical bending. Scientia Iranica. Transaction A, Civil Engineering, 23(3), p.788. [
DOI:10.24200/sci.2016.2159]
30. Lezgy-Nazargah, M., 2015. Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach. Aerospace Science and Technology, 45, pp.154-164. [
DOI:10.1016/j.ast.2015.05.006]
31. Lezgy-Nazargah, M. and Meshkani, Z., 2018. An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations. Struct Eng Mech, 66, pp.665-676.
32. Demir C, Mercan K, Numanoglu H M, Civalek Ö. Bending response of nanobeams resting on elastic foundation. J. Appl. Comput. Mech. 2018; 4(2): 105-11.
33. Soltani, M. and Mohammadi, M., 2018. Stability Analysis of Non-Local Euler-Bernoulli Beam with Exponentially Varying Cross-Section Resting on Winkler-Pasternak Foundation. Journal of Numerical Methods in Civil Engineering, 2(3), pp.67-77.
34. Ghannadiasl, A., 2019. Natural frequencies of the elastically end restrained non-uniform Timoshenko beam using the power series method. Mechanics Based Design of Structures and Machines, 47(2), pp.201-214. [
DOI:10.1080/15397734.2018.1526691]
35. Soltani, M. and Asgarian, B., 2019. New hybrid approach for free vibration and stability analyses of axially functionally graded Euler-Bernoulli beams with variable cross-section resting on uniform Winkler-Pasternak foundation. Latin American Journal of Solids and Structures, 16(3). [
DOI:10.1590/1679-78254665]
36. Ghasemi, A.R. and Mohandes, M., 2019. A new approach for determination of interlaminar normal/shear stresses in micro and nano laminated composite beams. Advances in Structural Engineering, 22(10), pp.2334-2344. [
DOI:10.1177/1369433219839294]
37. Arefi, M. and Civalek, O., 2020. Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory. Archives of Civil and Mechanical Engineering, 20(1), pp.1-17. [
DOI:10.1007/s43452-020-00032-2]
38. Soltani, M. and Asgarian, B., 2020. Lateral-Torsional Stability Analysis of a Simply Supported Axially Functionally Graded Beam with a Tapered I-Section. Mechanics of Composite Materials, pp.1-16. [
DOI:10.1007/s11029-020-09859-5]
39. Bellman R. E, Casti J., "Differential quadrature and long-term integration." Journal of Mathematical Analysis and Applications; 34, 235-238 (1971). [
DOI:10.1016/0022-247X(71)90110-7]
40. Soltani M. Finite element modelling for buckling analysis of tapered axially functionally graded Timoshenko beam on elastic foundation. Mechanics of Advanced Composite Structures, DOI: 10.22075/MACS.2020.18591.1223.