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Abstract: 

In this article, the buckling behavior of tapered Timoshenko nanobeams made of axially 

functionally graded (AFG) materials resting on Winkler type elastic foundation is perused. It is 

supposed that material properties of the AFG nanobeam vary continuously along the beam’s 

length according to the power-law distribution. The nonlocal elasticity theory of Eringen is 

employed to contemplate the small size effects. Based on the first-order shear deformation 

theory, the system of nonlocal equilibrium equations in terms of vertical and rotation 

displacements are derived using the principle of total potential energy. To acquire the nonlocal 

buckling loads, the differential quadrature method is used in the solution of the resulting 

coupled differential equations. Eventually, an exhaustive numerical example is carried out for 

simply supported end conditions to investigate the influences of significant parameters such as 

power-law index, tapering ratio, Winkler parameter, aspect ratio, and nonlocal parameter on 

the buckling capacity of AFG Timoshenko nanobeams with varying cross-section supported by 

uniform elastic foundation. 

 

1. Introduction 

Due to advancements in manufacturing processes, smart 

and innovative materials such as Functionally Graded 

Materials (FGMs) and laminated composites are usually 

adopted by engineers to enhance the mechanical responses 

of different structural elements. FGMs are advanced multi-

phase composites with the volume fraction of particles 

varying continuously and gradually through the thickness 

or longitudinal direction of the member. FGM is first 

applied in aerospace structures and fusion reactors as 

thermal barrier materials. In recent years, the use of FGMs 

has been increasing in automotive, civil, electronic, 

optical, and mechanical industries due to their conspicuous 

characteristics such as elimination or minimization of 

interfacial stress concentration, thermal resistance, and 

optimal distribution of weight. Buckling analysis and 

accurate estimation of stability limit state are the crucial 

parameters in the design of different structural elements 

made from homogenous and/or composite materials. 
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Until now, several investigations are thus performed on 

stability analysis of components through different types of 

beam theories. Among them, the Euler-Bernoulli and 

Timoshenko beam theories are extensively used by 

scholars to precisely peruse the stability problem of beam 

members under different circumstances. To analyze the 

mechanical behavior of long and slender members, the 

Euler–Bernoulli beam model is frequently used by 

researchers. Within the frame of the Euler-Bernoulli 

Theory (EBT), the influence of flexural deformation is 

only taken into account and the impact of transverse shear 

deformation is not contemplated. Researchers 

typically adopt the assumptions of the Timoshenko beam 

model to resolve the EBT drawbacks and deficiencies, 

particularly when the beams having a small length-to-

depth ratio and is moderately deep. In the context of this 

theory, the effects of rotatory inertia, transverse shear, and 

bending deformations are taken into consideration. It 

should be pointed out that these structures can be applied 

in small size by following the various higher-order size-

dependent continuum theories such as the modified couple 

stress theory [1], surface energy theory [2], and nonlocal 
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elasticity theory [3-4]. In the following, a brief literature 

review is presented to introduce some related studies to 

these subjects. 

The semi-inverse approach has been employed by 

Elishakoff et al. [5] for the vibration analysis of beams 

made of axially inhomogeneous materials. In the field of 

nonlocal differential elasticity methodology, Reddy [6] 

proposed the analytical solutions for the analysis of 

deformation, buckling, and vibration of beams by 

considering different shear deformation theories. Wang et 

al. [7] perused in detail the flexural vibration problem of 

nano- and micro beams following the assumptions of the 

nonlocal elasticity theory of Eringen in conjugate with 

Timoshenko beam model. Aydogdu [8] took into 

consideration Eringen’s elasticity model and different 

beam theories to derive a generalized nonlocal beam 

theory for mechanical analysis of nano-size beams. . A 

numerical formulation based on the method of differential 

quadrature was proposed by Civalek and Akgöz [9] to 

study free vibration characteristics of microtubules based 

on the Eringen's nonlocal elasticity theory and Euler-

Bernoulli beam hypothesis. Using Eringen’s nonlocal 

theory, Danesh et al. [10] deduced the motion equations 

for the longitudinal vibration of nanorods with tapered 

cross-section and solved them via the differential 

quadrature method. According to the nonlocal 

Timoshenko beam theory, stability analysis of nanotubes 

embedded in an elastic matrix was also performed by 

Wang et al. [11]. Also, a finite element formulation was 

suggested by Eltaher et al. [12, 13] to assess the size effects 

on mechanical responses of nanobeams made from FG 

materials following the assumptions of the nonlocal 

continuum theory. Adopting modified couple stress 

theory, Akgoz and Civalek [14] surveyed the free 

vibrational problem of axially functionally graded non-

uniform microbeams in the context of Euler-Bernoulli 

beam model. Through the nonlocal theory along with 

Timoshenko beam model, the free vibrational analysis of 

magneto-electro-elastic (MEE) nanobeams was assessed 

by Ke and Wang [15]. A finite element solution was 

proposed by Pandeya and Singhb [16] to survey the free 

vibration behavior of fixed-free nanobeam with varying 

cross-section. According to Eringen’s nonlocal theory and 

Euler–Bernoulli beam model, nonlinear vibration of AFG 

nanobeam with tapered section was investigated by Shafiei 

et al. [17]. Akgoz and Civalek [18] applied higher-order 

shear deformation microbeams and a modified strain 

gradient theory to analyze the static bending response of 

single-walled carbon nanotubes embedded in an elastic 

medium. Based on the finite strain assumption and first-

order shear deformation theory, Ghasemi and Mohandes 

[19, 20] assessed the nonlinear free vibrational response of 

laminated composite beams subjected to different sets of 

boundary conditions using the generalized differential 

quadrature method. Ebrahim et al. [21-23] performed 

comprehensive investigations on vibration and buckling 

analyses of nano-scale FG beams under different 

circumstances through different beam’s theories. Mercan 

and Civalak [24] analyzed the stability of boron nitride 

nanotube on the elastic matrix by utilizing a discrete 

singular convolution technique. By considering the impact 

of the viscoelastic foundation, Calim [25] studied free and 

forced vibration of AFG Timoshenko beams. The free 

vibration and static analyses of different types of structural 

elements made of FGMs under various circumstances 

including thermal environment and elastic foundation were 

comprehensively perused by Lezgy-Nazargah et al. [26-

31]. In another work, a finite element formulation for static 

analysis of nanobeams loaded by a distributed force and 

supported with the Winkler foundation was established by 

Demir et al. [32]. Soltani and Mohammadi [33] employed 

the differential quadrature method to survey the buckling 

behavior of Euler-Bernoulli nanobeams with exponentially 

varying cross-section rested on a continuum Winkler-

Pasternak foundation. With the help of the power series 

method, Ghanadiasl [34] inspected the vibrational problem 

of non-uniform Timoshenko beams having elastically end 

restrained. Soltani and Asgarian [35] combined the power 

series approximation and the Rayleigh-Ritz method to 

assess the free vibration and stability of AFG tapered beam 

resting on Winkler-Pasternak foundation. Employing 

modified couple stress theory, Ghasemi and Mohandes 

[36] formulated an innovative methodology to calculate 

interlaminar normal and shear stresses of transversely 

loaded micro and nano composite laminated Timoshenko 

beam subjected to different end conditions. By taking into 

account the assumptions of third-order shear deformation 

theory, Arefi and Civalek [37] inspected the static 

deformation of cylindrical nanoshells made from 

functionally graded piezoelectric materials supported by 

Pasternak’s elastic foundation. More recently, Soltani and 

Asgarian [38] assessed the lateral buckling behavior of 

web and/or flanges tapered thin-walled beams with axially 

varying materials subjected to simply-supported end 

conditions via the differential quadrature method. 

The main goal of the current paper is to peruse the impact 

of Winkler parameter on the nonlocal stability strength of 

AFG nano-size beam with varying cross-section based on 

the Timoshenko beam model. To this, the coupled 

governing differential equations for the vertical and 

rotation deformations are derived using the Eringen’s 

nonlocal elasticity theory and the energy method. To 

estimate the buckling characteristics, the methodology of 

differential quadrature is employed. A comparative 

example is conducted to validate the present formulations 

and mathematical solutions. Finally, an exhaustive 
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illustrative example is performed to assess the influence of 

significant parameters such as axial gradation of material 

characteristics, aspect ratio, Eringen’s parameter, 

dimensionless Winkler modulus, and tapering ratio on the 

normalized buckling load of AFG tapered Timoshenko 

nano-beams rested on elastic foundation subjected to 

simply supported end conditions. 

 

2. Theoretical formulation 

2.1. Kinematics 

Consider a straight beam element of length L with linear 

varying cross-section subjected to a constant axial 

compressive force P applied at both ends and supported by 

a continuum elastic foundation (Fig. 1). To model the 

interaction between an elastic foundation and beam 

member, the Winkler-type foundation is used in the current 

study. This model consists of infinitely closed spaced 

linear translational springs. Also, the interaction between 

the vertical springs is not considered. It is also assumed 

that the beam with rectangular cross-section is made from 

non-homogeneous material with variable properties along 

the beam’s length. The right-hand Cartesian coordinate 

system, with Ox the initial longitudinal axis measured from 

the left end of the beam and Oy-axis and Oz are the strong 

and weak bending axes in the lateral and vertical 

directions, respectively. Based on the assumptions of first-

order shear deformation theory, the axial and the vertical 

displacement components can be expressed as 

0( , , ) ( ) ( )U x y z u x z x   (1a) 

( , , ) ( )W x y z w x  (1b) 

In these equations, U denotes the axial displacement, W 

signifies the vertical displacement (in z-direction), and  

represents the angle of rotation of the cross-section due to 

bending.  

 
Fig. 1. AFG tapered Timoshenko nanobeam on Winkler’s 

foundation and subjected to an axial load, Coordinate system 

and notation of displacement parameters 

The Green’s strain tensor components which incorporate 

the large displacements and including linear and nonlinear 

strain parts are given by: 
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the quadratic nonlinear 

parts. Using the displacement field given in Eq. (1), the 

non-zero constituents of linear parts of strain-displacement 

are derived as 
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According to the Timoshenko beam hypotheses for small 

displacements, the non-zero component of nonlinear strain 

is thus achieved as 

* 2 21 1
( ) ( )

2 2
xx
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                                               (4) 

 

2. 2. Nonlocal elasticity theory 

According to the Eringen nonlocal elasticity model [4], the 

stress at a point inside a body depends not only on the 

strain state at that point but also on strain states at all other 

points throughout the body. For homogenous and isotropic 

elastic solids, the nonlocal stress tensor   at point x can 

be thus defined as 

( ) ( , ) ( ) ( )ij ijkl kl
V

x x x C x dV x                         (5) 

where 
kl  and 

ijklC  denote the components of linear strain 

and elastic stiffness coefficients, respectively.  

Additionally, ( , )x x   is the nonlocal kernel 

function and x x  is the Euclidean distance. τ stands for 

material parameter which is defined as τ=e0a/l where a is 

an internal characteristic length (e.g., lattice parameter, C–

C bond length, and granular distance) and l is an external 

characteristic length of the nanostructures (e.g., crack 

length, wavelength). e0 is a material constant that is 

determined experimentally or approximated by matching 

the dispersion curves of plane waves with those of atomic 

lattice dynamics. 

It is possible to express the integral constitutive equation 

presented in Eq. (5) in the form of the following 

differential constitutive equation: 

2

ij ij ijkl klC                                              (6)  

where 
2  is the Laplacian operator and μ=(e0a)2 denoting 

the nonlocal parameter. For nanobeam based on the first-
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order shear deformation theory, the nonlocal constitutive 

relations can be written as 

2

2

lxx
xx xxE

x


  


 


 (7a) 
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2 lxz
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where E and G are elastic and shear moduli of the beam, 

respectively. 
xx and 

xz denote the Piola–Kirchhoff 

stress tensor components. 

 

2. 3. Equilibrium Equations 

The principle of minimum total potential energy is adopted 

herein to obtain equilibrium equations and boundary 

conditions. 

 0 0l f eU U U W                         (8)  

 illustrates a virtual variation in the last formulation. 
lU  

represents the elastic strain energy, 
0U  expresses the strain 

energy due to the effects of the initial stresses. Uf   is the 

energy corresponding to a uniform elastic foundation and 

We denotes the work of applied loads. For the particular 

case of linear stability context, where the beam is not under 

any external force, one considers that the external load 

work equals to zero.  
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                        (9) 

in which L and A express the element length and the cross-

sectional area, respectively. ( l

xx , l

xz ) and *

xx are the 

variation of the linear and the nonlinear parts of the strain 

tensor, respectively. kw denotes Winkler’s foundation 

constant per unit length of the beam. 0

xx
 is the  initial 

normal stress in the cross-section, associated with constant 

axial force (P): 

0

xx

P

A
                                          (10) 

Substituting equations (3-4) and (10) into relation (9), the 

expression of the virtual potential energy can be carried out 

as: 
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The variation of strain energy can be formulated in terms 

of section forces acting on the cross-sectional contour of 

the elastic member in the buckled configuration. The 

section stress resultants are presented by the following 

expressions: 

xx
A

N dA   (12a) 

xx
A

M zdA   (12b) 

xz
A

Q dA   (12c) 

where N is the axial force applied at the end member. M 

denotes the bending moments about the major axis. Q is 

the shear force at any point in the beam. In this stage, by 

integrating Eq. (11) over the cross-sectional area of the 

beam and using relations (12a)–(12c), the final form of the 

variation of total potential energy () is acquired as:  
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         (13)                      

According to the equation presented above, the first 

variation of total potential energy contains the virtual 

displacements ( 0 , ,u w   ) and their derivatives. After 

some calculations and needed simplifications, the 

following equilibrium equations in the stationary state are 

obtained: 

0N    (14a) 

( ) 0
w

Pw Q k w      (14b) 

0M Q    (14c) 

Under the following boundary conditions: 

0N   Or 0
0u   (15a) 

0Pw Q    Or 0w   (15b) 

  0M   Or 0   (15c) 

By substituting Eq. (4a-c) into Eq. (9) and the subsequent 

results into Eq. (14), the stress resultants are obtained as 

2

02
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N Au

x



  


 (16a) 

2

2

M
M I

x
 


  


 (16b) 

2

2
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Q
Q kGA w

x
 


  


 (16c) 

In previous expressions, k is the shear correction factor and 

I denotes the moment of inertia. This study is established 

in the context of small displacements and deformations. 

According to linear stability, nonlinear terms are also 

disregarded in the equilibrium equations. Based on these 

assumptions, the system of stability equations for tapered 

AFG Timoshenko nanobeam via nonlocal theory is finally 

derived by replacing Eq. (16) into Eq. (14). 

w :  ( )
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iv

w w

kGA w Pw Pw

k w k w
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 :   ( ) 0EI kGA w      (17b) 

It is necessary to note that the equilibrium equations of 

local Timoshenko beam resting on elastic foundation are 

acquired by setting =0. The related boundary conditions 

at the ends of Timoshenko nanobeam can be expressed as 

0N   Or 0
0u   (18a) 

( )

( ) 0w

kGA w Pw

Pw k w





  

   
 Or 0w   (18b) 

( ) 0wEI Pw k w      Or 0   (18c) 

In the following section, a numerical solution procedure of 

the governing equations for flexural-torsional buckling of 

AFG nanobeam having variable cross-section supported 

by Winkler foundation is presented based on the 

differential quadrature method (DQM). 

 

3. Solution Methodology 

In the present paper, to solve these differential equations 

and estimate the axial buckling loads, the differential 

quadrature method (DQM) is employed. Based on this 

mathematical method, the displacement components and 

their relative derivatives are expressed using Lagrange 

interpolation shape functions [39]. According to DQM, the 

mth-order derivative of a function f(x) is described as 

( )

1

( )         1,2,...,

p

Nm
m

jijm
jx x

d f
A f x for i N

dx 

       (19)     

where N is the number of grid points along the x-direction. 

xj signifies the position of each sample point and  ( )jf x  

is function values at grid points xj (i = 1,2,…,N). In this 

study, Chebyshev–Gauss–Lobatto approach is used to 

define the position of each sample point 

1
1 cos ,    1,2,...,

2 1
i

L i
x i N

N

  
     

  

         (20) 

Moreover, 
( )m
ijA  denotes the weighting coefficient for the 

mth-order derivative. The first-order derivative weighting 

coefficient (
(1)
ijA ) is computed by the following algebraic 

formulations which are based on Lagrange interpolation 

polynomials: 

(1)

(1)

1,

( )
     i j

( ) ( )
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where  

1,

( ) ( )          1,2,...,

N

i i j

j j i

M for i N

 

             (22)  

The higher-order DQM weighting coefficients can be 

acquired from the first-order weighting coefficient as  

( ) (1) ( 1)
           2 1

m m
ij ij ijA A A m N


                          (23) 

To facilitate the solution of the stability equations utilizing 

the differential quadrature approach, a non-dimensional 

variable ( /x L ) is introduced. By the expansion of 

Eqs. (17a) - (17b), and then applying the differential 

quadrature discretization to the non-dimensional form of 

the resultant equations, the following expressions are 

obtained: 
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It is possible to express the quadrature analog of the 

mentioned above formulations in the following matrix 

form: 

2 2

2 1 2 12 2

2 2
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[ ] [ ]
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      (25) 

where 

(2) (1) 2[ ] [ ][ ] [ ][ ] [ ]K a A b A L k c     (26a) 

(1)[ ] [ ][ ]wK Lk c A    (26b) 

2 (2) (1)[ ] ([ ][ ] [ ][ ] )wwK L k c A d A   (26c) 

3 (1)[ ] ([ ][ ] [ ])wK L k c A d    (26d) 
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2 (2) (4)[ ] ( [ ] [ ] )
wwGK L A A   (26e) 

4 2 (2)[ ] [ ] [ ][ ]
wwSK L k L k A    (26f) 

in which  

( )  
j

jk jka I
 




   (27a) 

b (( ) )
j

jk jkI I
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( )
j

jk jkc GA
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k ( )  
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Here, jk is Kronecker delta and defined as 
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 .

0   

1   
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if j k

if j k







 


                                                     (28) 

In Eq. (30), the displacement vectors and the torsion angle 

vector are expressed as: 

   1 21
...

T

NN
w w w w


  (29a) 

   1 21
...

T

NN
   


  (29b) 

The simple form of the final equation (Eq. (25)) can be 

stated as 

     2 12 12 2
{0}G S NNN N

K K K d 
               (30)  

in which  

{ }
{ }

{ }
d

w

 
  
 

                                                               (31) 

K, KG, and KS
 are 2 2N N matrices. As mentioned 

previously, N denotes the number of grid points along with 

the computation domain ( 0 1   ).  s are the 

eigenvalues and { }d s are the related eigenvectors. After 

implementation of the boundary conditions at two ends, 

not only the buckling loads are computed from the 

eigenvalue solutions of Eq. (30), but also the vertical 

deflection and the rotation angle of the AFG Timoshenko 

nanobeam with varying sections can be determined. 

 

4. Numerical Example 

In the current section, an exhaustive example is presented 

to peruse the influence of axial variation of material 

properties, tapering ratio, nonlocal parameter, aspect ratio, 

and elastic foundation modulus on nonlocal stability 

strength of the simply supported AFG Timoshenko 

nanobeam with variable cross-section rested on the 

Winkler foundation. We use the subscripts of ()0 and ()1 to 

express the mechanical specifications including the 

material and geometrical ones of the beam element at the 

left support (x=0, =0) and the right one (x=L,=1), 

respectively. 

Through this numerical example, the linear buckling 

analysis is performed for a double tapered beam with 

rectangular cross-section subjected to simply supported 

end conditions. In this regard, it is supposed that the 

breadth (b0) and the height (d0) of the cross-section at the 

left end are respectively made to decrease linearly to 

1 0(1 )b b   and 1 0(1 )d d  at the right one with the 

same tapering ratio. The tapering ratio is thus defined as 

1 0 1 01 / 1 /b b d d     . Note that the tapering 

parameter () is a non-negative variable and can change in 

the range of 0.0 to 0.9. Moreover, by equating this 

parameter () to zero, a uniform beam is achieved.         

Under these assumptions, the cross-sectional area A(x) and 

the area moment of inertia I(x) vary along the beam as 

       
2 4

0 0
1- / ; 1- /A x A x L I x I x L         (32) 

where A0 and I0 are respectively cross-sectional area and 

moment of inertia at the left support (x=0). They are defined 

as: 
3

0 0
0 12

b h
I   and 

0 0 0A b h . 

It is also contemplated that the beam is made of axially 

varying materials. The material features vary along the 

beam’s length from pure ceramic at the left end to pure metal 

at the right one using the simple power-law function, 

hence, modulus of elasticity can be expressed as: 

0 1 0( ) ( )( / )mE x E E E x L                                     (33) 

It should be stated that the power-law index (m) is a 

positive parameter and by setting it equals zero, the tapered 

beam becomes a fully metal member. It is necessary to note 

that Poisson’s ratio of the material remains constant in the 

longitudinal direction. 

In the numerical computation, the non-dimensional forms 

of buckling load and elastic foundation parameter are 

introduced as 

2

0 0

cr
nor

P L
P

E I
    

4

0 0

w w

L
k k

E I
  (34) 

4.1. Verification  

The aim of the first part of the current section is to define 

the needed number of points along the longitudinal 

direction while using DQM to obtain an acceptable 

accuracy on critical elastic buckling loads. Regarding this, 

Table 1 gives the first non-dimensional buckling load 

parameters (Pnor) of the simply supported prismatic 

Timoshenko beams (L/b0=20) with non-local theory. The 

convergence study is carried out for various values of the 

nonlocal parameter. The effects of the number of sampling 
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points used in DQM on convergence are also displayed in 

Table 1. The obtained results by the proposed numerical 

technique have been compared with the closed-form 

solution introduced by Reddy [6]. It is seen from Table 1 

that twenty number of grid points (N=20) are sufficient to 

obtain the lowest buckling load parameters for different 

nonlocal parameters with the desired accuracy. 

Table 1: Convergence of the differential quadrature technique 

in the determination of the lowest non-dimensional critical 

buckling load parameters (Pnor) for uniform Timoshenko beam 

with different non-local parameters 

( 

DQM 
Reddy 

[6] 
Number of points along the x-direction  

5 10 15 20 30 

0.0 9.7617 9.8067 9.8067 9.8067 9.8067 9.8067 

0.5 9.2463 9.3455 9.3455 9.3455 9.3455 9.3455 

1 8.7888 8.9257 8.9258 8.9258 8.9258 8.9258 

1.5 8.3790 8.5421 8.5421 8.5421 8.5421 8.5421 

2.0 8.0093 8.1900 8.1900 8.1900 8.1900 8.1900 

2.5 7.6736 7.8658 7.8659 7.8659 7.8659 7.8659 

3.0 7.3671 7.5663 7.5664 7.5664 7.5664 7.5664 

3.5 7.0859 7.2888 7.2889 7.2889 7.2889 7.2889 

4.0 6.8267 7.0309 7.0310 7.0310 7.0310 7.0310 

4.5 6.5870 6.7907 6.7907 6.7907 6.7907 6.7907 

5.0 6.3646 6.5663 6.5663 6.5663 6.5663 6.5663 

In the next step, the validation of the present formulation 

for buckling analysis of AFG tapered Timoshenko beam 

supported by elastic foundation within the frame of classic 

elasticity theory is checked by comparing the archived 

results with those obtained using finite element 

formulation developed by Soltani [40]. In this regard, the 

lowest dimensionless critical loads estimated via DQM 

with 20 sampling points are arranged in Table 2 for 

different values of the slenderness ratio (L/b0) and Winkler 

parameter (
wk ) at =0.2. These results are also carried out 

for two cases: axially non-homogeneous and 

homogeneous beams. In the case of axially FG members, 

the distribution of modulus of elasticity is contemplated to 

vary in the longitudinal direction with a power-law 

formulation as expressed in Eq. (33). In this case, the 

material non-homogeneity parameter (m) is assumed to be 

equal to 1. In order to make comparisons possible with 

Soltani [40], it is assumed that the functionally graded 

beam is composed of Zirconium dioxide (ZrO2) and 

Aluminum (Al) with the following properties (ZrO2: 

E0=200GPa; Al: E1=70GPa). Also, Table 2 includes the 

percentage of relative errors () which are obtained 

using: 

Re

Re 100

DQM f

nor nor

f

nor

P P

P


                                                (35) 

 

Table 2: Comparison of non-dimensional critical load (Pnor) for the local tapered Timoshenko beams for different values of non-

homogeneity index (m) and Winkler parameter ( wk ) with the results presented in [40] 

Material L/b0 

0wk   40wk   80wk   

Present 

solution 

Soltani 

[40] 


Present 

solution 

Soltani 

[40] 
 

Present 

solution 

Soltani 

[40] 
 

Pure 

Ceramic 

5 5.8715 5.8342 0.639 9.8746 9.8243 0.512 13.8425 13.7806 0.449 

10 6.2097 6.1894 0.328 10.2207 10.1952 0.250 14.2106 14.1805 0.212 

50 6.3177 6.3120 0.090 10.3301 10.3228 0.071 14.3242 14.3151 0.064 

100 6.3177 6.3159 0.028 10.3296 10.3269 0.026 14.3228 14.3194 0.024 

m=1 

5 3.5461 3.5125 0.956 7.2867 7.2245 0.861 10.4373 10.3464 0.878 

10 3.8132 3.7852 0.740 7.6416 7.5997 0.551 11.2431 11.1608 0.737 

50 3.8863 3.8804 0.152 7.7316 7.7214 0.132 11.3933 11.3714 0.193 

100 3.8880 3.8834 0.118 7.7338 7.7252 0.111 11.3969 11.3777 0.169 

The efficiency and performance of the adopted 

mathematical methodology are then confirmed by 

contrasting the obtained results with those presented in 

Table 2. For both cases, the values of relative error 

continually make smaller as the aspect ratio increases.  

 

4.2. Parametric Study 

After the validation process of the present formulation for 

local Timoshenko beam with axially varying material and 

geometrical properties resting on Winkler foundation 

subjected to simply supported end conditions, the impacts 

of different parameters such as material gradient, 

Winkler’s parameter, tapering ratio, aspect ratio, and 

nonlocality parameter on the critical buckling load of AFG 

tapered Timoshenko nanobeam are studied. Note that in 

this section, the AFG beam is made of Alumina (Al2O3) 

and Aluminum (Al) with the following properties (Al2O3: 

E0=380GPa; Al: E1=70GPa). 

The influence of Eringen’s nonlocal parameters (ranging 

from 0 to 4) on the variations of the non-dimensional 

normalized buckling loads (
nor

P ) of Timoshenko 

nanobeam with tapered section made of homogenous 

materials and axially functionally ones with different 
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gradient indexes (m=0.6, 1.3 and 2) with respect to 

tapering ratios (varying from 0 to 0.9) is plotted in Figs. 2-

3 for the two different aspect ratios: L/b0=20 and L/b0=100. 

 

 

 

 
Fig. 2: Variation of the non-dimensional buckling load (Pnor) of 

Timoshenko nanobeam with tapering parameter and nonlocality 

parameters for different material indexes (L/b0=20). 

 

 

 

 
Fig. 3: Variation of the non-dimensional buckling load (Pnor) of 

Timoshenko nanobeam with tapering parameter and nonlocality 

parameters for different material indexes (L/b0=100). 

 

Subsequently, the lowest non-dimensional buckling load 

(Pnor) variations versus the tapering ratio for different 

values of gradient indexes (m) and nonlocality parameters 

(=0, 1, 2, and 3) for L/b0=10, are presented in Fig. 4. Each 

of the depictions of this figure illustrates five different 

plots relating to m=0.5, 1, 1.5, 2, and 2.5. 
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Fig. 4: Variation of the non-dimensional buckling load of 

tapered nanobeam with tapering ratios and power-law exponents 

for different nonlocality parameters (L/b0=10). 

Afterward, assuming that the aspect ratio is equal to 20, 

Fig. 5 illustrates the contour plots of the non-dimensional 

buckling load for homogenous member resting on Winkler 

foundation with respect to the tapering ratio () and 

Winkler parameter (
wk ) for local beam (0) and 

nanobeam (2). Corresponding outcomes for AFG beam 

with m=2 are presented in Fig. 6. 

 
 

 
 

Fig. 5: Contour plot of buckling load with respect to tapering 

ratio () and Winkler parameter (
wk ) for homogenous beam 

made from Alumina (a)0 (b)2



 
 

 
 

Fig. 6: Contour plot of buckling load with respect to tapering 

ratio () and Winkler parameter (
wk ) for AFG beam with m=2 

(a)0 (b)2 

Next, the magnitude of the normalized buckling parameter 

(
nor

P ) for various tapering ratios, Winkler’s parameters, 

nonlocal parameters (= 0, 0.5 and 0.75) with three 

different values of in-homogenous index (m=0.6, 1.2 and 

1.8) at L/b0=10 is listed in Table 3.  
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Table 3: Power-law exponent, Winkler parameter and tapering ratio effects on the normalized buckling load (Pnor) of simply supported 

Timoshenko nanobeam with different nonlocal parameters (L/b0=10). 

Nonlocal 

Parameter 

Winkler 

Parameter 

Normalized buckling load (Pnor) 

m=0.6 m=1.2 m=1.8 

0 03 0 0 03 0 0 03 0 

0 

0wk   4.215 1.882 0.549 5.599 2.475 0.704 6.629 2.948 0.839 

10wk   5.202 2.800 1.273 6.584 3.385 1.426 7.618 3.863 1.568 

30wk   7.163 4.543 2.190 8.542 5.132 2.456 9.589 5.635 2.674 

0 

0wk   4.002 1.762 0.486 5.312 2.307 0.617 6.292 2.748 0.733 

10wk   4.983 2.650 1.064 6.288 3.181 1.196 7.275 3.628 1.323 

30wk   6.924 4.244 1.559 8.224 4.784 1.776 9.227 5.265 1.973 

0 

0wk   3.903 1.706 0.458 5.177 2.229 0.577 6.135 2.654 0.685 

10wk   4.880 2.576 0.961 6.150 3.081 1.084 7.114 3.511 1.204 

30wk   6.809 4.064 1.336 8.072 4.580 1.524 9.055 5.051 1.700 

Firstly, it is important to mention that the classical 

isotropic beam theory is obtained by setting the nonlocal 

parameter and AFG power-index to zero (=m=0). 

It is observable from these illustrations that for both local 

and nonlocal beams and all values of non-uniformity ratio, 

as AFG power index (m) increases the stability strength 

enhances. In other words, a higher buckling capacity is 

obtained with the increment of the power index. The 

reason is the higher portion of the ceramic phase as the 

value of the gradient index rises. It can also be interpreted 

from Fig. 4 that for 0.5 1.5m  , the non-dimensional 

critical loads increase significantly whereas, for m>1.5, the 

buckling capacity increases slightly and approaches 

maximum magnitude.  

The tables and figures indicate that the non-uniformity 

parameter () has a noticeable impact on the non-

dimensional buckling loads. According to the illustrations, 

it is found out that the buckling capacity decrease with an 

increase in the tapering ratio. Additionally, it is revealed 

that the normalized buckling load enhances with the 

increase in aspect ratio due to decreasing the influence of 

shear deformation. For more information please see [40]. 

As seen in Figs. 5 and 6 as well as Table 3, the buckling 

load increases as Winkler parameter increases. It is also 

deduced that the influence of Winkler foundation on the 

buckling capacity of local beams and nonlocal ones is 

different. For example, in the case of AFG nanobeams 

(Fig. 6b), the normalized buckling load does not increase 

with the increment of Winkler parameter for >0.5. 

However, this behavior is seen for >0.7 in the case of the 

conventional Timoshenko beam made of FGMs (Fig. 6a). 

Eventually, it can be stated the impact of elastic foundation 

on the stability of Timoshenko beam based on the classical 

continuum model and the nonlocal theory is more 

pronounced for a smaller rate of cross-section change. By 

comparing Fig. 6a and Fig. 6b, it is also observed the 

dimensionless buckling load reduces sharply for local 

Timoshenko beam as the tapering ratio () increases 

contrasting to Timoshenko nanobeam and the reduction is 

more noticeable for higher values of Winkler parameter.  

 

As expected, for all analyzed cases, the nonlocal parameter 

shows a stiffness–softening effect and reduces the 

buckling strength. The display results in Figs. 2-6 and 

Table 3 also reveal that the descendent effect of Eringen’s 

nonlocal parameter on non-dimensional buckling loads is 

more observable for larger values of tapering ratio and 

gradient indexes, especially uniform beams made of pure 

ceramic. This statement can be explained by the fact that 

the flexural stiffness of simply supported tapered beam 

with the nonlocal theory is inversely proportional to the 

Eringen’s parameter. In general, the inclusion of the 

nonlocal effect increases the deflection, which in turn leads 

to a noticeable decrease in the value of the stiffness and 

rigidity of the member and consequently a weaker member 

is obtained. Since the linear buckling resistance of the 

beam is directly proportional to the stiffness of the 

member, a significant decrease in the critical load of the 

beam is thus observed. 

 

5. Conclusions 

In this paper, the nonlocal stability analysis of tapered 

Timoshenko nanobeams with axially varying material 

properties supported by the continuum Winkler foundation 

was assessed within the framework of first-order shear 

deformation theory and nonlocal elasticity theory. In this 

regard, the two couple equilibrium equations in terms of 
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vertical and rotation displacement and related boundary 

conditions are established using the energy method.  

The buckling capacity of Timoshenko nanobeam under 

simply supported end conditions was assessed, regarding 

this, the impacts of various parameters such as nonlocal 

parameter, tapering ratio, gradient index, Winkler 

foundation modulus, and length to thickness ratio were 

exhaustively discussed. According to the obtained 

numerical outcomes, it is concluded that the mentioned 

above parameters play significant roles in stability strength 

of AFG nanobeams. It is illustrated that the non-

dimensional buckling load increases with the increase in 

the percentage of the ceramic phase. Additionally, it is 

revealed that the increase in Eringen’s parameter leads to 

decrease the buckling strength.  It is also deduced that the 

increment of Winker parameter and aspect ratio enhances 

the normalized buckling load. It can be stated the impact 

of elastic foundation on stability of Timoshenko beam 

based on the classical continuum model and the nonlocal 

theory is more pronounced for a smaller rate of cross-

section change.  
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