Assessment of Scaled Boundary FEM-based model for solving wave interaction with π-shape Floating Breakwaters

Document Type : Research


1 School of civil engineering, college of engineering, University of Tehran, Tehran, Iran.

2 Assistant Prof, Civil Engineering Department, Sahand University of Technology, Tabriz, Iran, Po Box: 1996-51335.

3 Assistant Professor at K.N.Toosi University of Technology, Tehran, Iran.

4 Department of Architecture and Civil Engineering, University of Bath, Bath BA2 7AY, United Kingdom

5 School of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, United Kingdom.


The principal aim of the current study is to examine a Scaled Boundary Finite Element Method (SBFEM)-based model to analyze the interaction problem between the water waves and moored floating breakwaters with sharp edges. Regarding the increasing employment of rectangular cross-section floating breakwaters with vertical side plates to their down-wave and up-wave sides (π-shaped floating breakwaters), it can be stated that they are used as a practical basis to examine how the model works. By comparing the present solutions to those from existing literature, without changing the mesh density compared to previous simulations used in simple configurations, the accuracy and generality of the present model in the complex configurations are evaluated. It is demonstrated that as the proposed model is a semi-analytical method, unlike conventional numerical methods, there is no need to refine the mesh around sharp corners, which can considerably save the computational time, effort, and cost in large solution domains. 


1. Sannasiraj, S. A., Sundaravadivelu, R., & Sundar, V. (2001). Diffraction-radiation of multiple floating structures in directional waves. Ocean Engineering, 28(2), 201-234. [DOI:10.1016/S0029-8018(99)00066-9]
2. Yamamoto, T., Yoshida, A., & Ijima, T. (1982). Dynamics of elastically moored floating objects. Dynamic analysis of offshore structures, 1.
3. Koutandos, E. V., Karambas, T. V., & Koutitas, C. G. (2004). Floating breakwater response to waves action using a Boussinesq model coupled with a 2DV elliptic solver. Journal of waterway, port, coastal, and ocean engineering, 130(5), 243-255. [DOI:10.1061/(ASCE)0733-950X(2004)130:5(243)]
4. Gesraha, M. R. (2006). Analysis of Π shaped floating breakwater in oblique waves: I. Impervious rigid wave boards. Applied Ocean Research, 28(5), 327-338. [DOI:10.1016/j.apor.2007.01.002]
5. Abul-Azm, A. G., & Gesraha, M. R. (2000). Approximation to the hydrodynamics of floating pontoons under oblique waves. Ocean Engineering, 27(4), 365-384. [DOI:10.1016/S0029-8018(98)00057-2]
6. Zheng, Y. H., Shen, Y. M., You, Y. G., Wu, B. J., & Jie, D. S. (2004). On the radiation and diffraction of water waves by a rectangular structure with a sidewall. Ocean Engineering, 31(17-18), 2087-2104. [DOI:10.1016/j.oceaneng.2004.06.002]
7. Zheng, Y. H., Shen, Y. M., You, Y. G., Wu, B. J., & Jie, D. S. (2006). Wave radiation by a floating rectangular structure in oblique seas. Ocean Engineering, 33(1), 59-81. [DOI:10.1016/j.oceaneng.2005.04.005]
8. Bhattacharjee, J., & Soares, C. G. (2011). Oblique wave interaction with a floating structure near a wall with stepped bottom. Ocean Engineering, 38(13), 1528-1544. [DOI:10.1016/j.oceaneng.2011.07.011]
9. Cho, I. H. (2016). Transmission coefficients of a floating rectangular breakwater with porous side plates. International Journal of Naval Architecture and Ocean Engineering, 8(1), 53-65. [DOI:10.1016/j.ijnaoe.2015.10.002]
10. Sannasiraj, S. A., Sundar, V., & Sundaravadivelu, R. (1998). Mooring forces and motion responses of pontoon-type floating breakwaters. Ocean Engineering, 25(1), 27-48. [DOI:10.1016/S0029-8018(96)00044-3]
11. Hanif, M. (1983). Analysis of heaving and swaying motion of a floating breakwater by finite element method. Ocean Engineering, 10(3), 181-190. [DOI:10.1016/0029-8018(83)90026-4]
12. Elchahal, G., Younes, R., & Lafon, P. (2006, January). Wave Interaction With Fixed and Floating Vertical Breakwater Based on Analytical Modelling. In Fluids Engineering Division Summer Meeting (Vol. 47500, pp. 463-472). [DOI:10.1115/FEDSM2006-98348]
13. Au, M. C., & Brebbia, C. A. (1983). Diffraction of water waves for vertical cylinders using boundary elements. Applied Mathematical Modelling, 7(2), 106-114. [DOI:10.1016/0307-904X(83)90120-8]
14. Koo, W. (2009). Nonlinear time-domain analysis of motion-restrained pneumatic floating breakwater. Ocean Engineering, 36(9-10), 723-731. [DOI:10.1016/j.oceaneng.2009.04.001]
15. Chen, Z. J., Wang, Y. X., Dong, H. Y., & Zheng, B. X. (2012). Time-domain hydrodynamic analysis of pontoon-plate floating breakwater. Water Science and Engineering, 5(3), 291-303.
16. K.H. Chang, D.H. Tsaur, L.H. Huang, Accurate solution to diffraction around a modified V-shaped breakwater, Coast. Eng. 68 (2012) 56-66. [DOI:10.1016/j.coastaleng.2012.05.002]
17. A.N. Williams, H.S. Lee, Z. Huang, Floating pontoon breakwaters, Ocean Eng. 27 (2000) 221-240. [DOI:10.1016/S0029-8018(98)00056-0]
18. Czygan, O. V. E. O., & Von Estorff, O. (2002). Fluid-structure interaction by coupling BEM and nonlinear FEM. Engineering Analysis with Boundary Elements, 26(9), 773-779. [DOI:10.1016/S0955-7997(02)00048-6]
19. Rahman, M. A., & Womera, S. A. (2013). Experimental and numerical investigation on wave interaction with submerged breakwater. Journal of Water Resources and Ocean Science, 2(6), 155-164. [DOI:10.11648/j.wros.20130206.11]
20. Fouladi, M. Q., Badiei, P., & Vahdani, S. (2020). Extracting the Solution of Three-Dimensional Wave Diffraction Problem from Two-Dimensional Analysis by Introducing an Artificial Neural Network for Floating Objects. Latin American Journal of Solids and Structures, 17. [DOI:10.1590/1679-78256096]
21. Fouladi, M. Q., Badiei, P., & Vahdani, S. (2021). A study on full interaction of water waves with moored rectangular floating breakwater by applying 2DV scaled boundary finite element method. Ocean Engineering, 220, 108450. [DOI:10.1016/j.oceaneng.2020.108450]
22. Qorbani Fouladi, M., Heidary-Torkamani, H., Tao, L., & Ghiasi, B. (2021). Solving Wave Interaction with a Floating Breakwater in Finite Water Depth Using Scaled Boundary FEM. Journal of Numerical Methods in Civil Engineering, 6(1), 42-49. [DOI:10.52547/nmce.6.1.42]
23. Tao, L., Song, H., & Chakrabarti, S. (2009). Scaled boundary FEM model for interaction of short-crested waves with a concentric porous cylindrical structure. Journal of waterway, port, coastal, and ocean engineering, 135(5), 200-212. [DOI:10.1061/(ASCE)0733-950X(2009)135:5(200)]
24. Song, H., Tao, L., & Chakrabarti, S. (2010). Modelling of water wave interaction with multiple cylinders of arbitrary shape. Journal of Computational Physics, 229(5), 1498-1513. [DOI:10.1016/]
25. Natarajan, S., Ooi, E. T., Saputra, A., & Song, C. (2017). A scaled boundary finite element formulation over arbitrary faceted star convex polyhedra. Engineering Analysis with Boundary Elements, 80, 218-229. [DOI:10.1016/j.enganabound.2017.03.007]
26. Li, B., Cheng, L., Deeks, A. J., & Teng, B. (2005). A modified scaled boundary finite-element method for problems with parallel side-faces. Part II. Application and evaluation. Applied Ocean Research, 27(4-5), 224-234. [DOI:10.1016/j.apor.2005.11.007]
27. Li, B., Cheng, L., Deeks, A. J., & Teng, B. (2005). A modified scaled boundary finite-element method for problems with parallel side-faces. Part I. Theoretical developments. Applied Ocean Research, 27(4-5), 216-223. [DOI:10.1016/j.apor.2005.11.008]
28. Meng, X. N., & Zou, Z. J. (2013). Radiation and diffraction of water waves by an infinite horizontal structure with a sidewall using SBFEM. Ocean engineering, 60, 193-199. [DOI:10.1016/j.oceaneng.2012.12.017]