Seismic Reliability-Based Design Versus Safety-Factor Based Design of Shallow Foundations Near a slope

Document Type : Research

Authors

1 Ph.D. Student, School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, USA.

2 Associate Professor, Geotechnical Engineering Research Center, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, IRAN.

3 Postdoctoral Fellow, School of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran.

Abstract

In this study, the stability of the foundation near a slope is investigated through a typical example of designing a shallow foundation. Foundation stability is typically evaluated through the bearing capacity’s factor of safety and the reliability of the design, which depicts a more realistic perspective of design safety. Although an increase in the bearing capacity of the foundation leads to a subsequent increase in the safety factor and reliability index, a monotonically increasing functional relationship between the safety factor and reliability does not exist. This study investigates the effects of the foundation and slope properties on the Reliability-based Design (RBD) and Safety-Factor Based Design (SBD). Also, some valuable hints for practical engineers” who are not familiar with reliability concepts” are presented to achieve a more reliable SBD. The results show that it is vital to consider how to increase the bearing capacity in the SBD methods. For example, in cohesive-frictional soils, by changing the embedment depth of the foundation (df), and the distance between the foundation and slope crest (x) to reach the target safety factor, we can obtain a more reliable SBD.

Keywords


1. Li, Y., Fan, W., Chen, X., Liu, Y., & Chen, B. (2017). Safety Criteria and Standards for Bearing Capacity of Foundation. Mathematical Problems in Engineering. [DOI:10.1155/2017/3043571]
2. Shojaeian, A., & Askari, F. Variables Characteristics Effects on Static and Pseudo-Static Reliability-Based Design of near Slope Shallow Foundations. Journal of Numerical Methods in Civil Engineering, 3(3), 1-12. [DOI:10.29252/nmce.3.3.1]
3. Shojaeian, A., & Askari, F. (2019, November 11-13). The Reliability of the Foundation Seismic Design Using Iranian National Building Code, Tehran, Iran.
4. Ching, J. (2009). Equivalence between reliability and factor of safety. Probabilistic engineering mechanics, 24(2), 159-171. [DOI:10.1016/j.probengmech.2008.04.004]
5. Shojaeian, A., & Askari, F. (2020). Reliability of Static and Seismic Design of Near Slope Shallow Foundations Following Iranian Code and Eurocode 7. International Journal of Civil Engineering, 18(4), 405-417. [DOI:10.1007/s40999-019-00484-5]
6. Shojaeian, A., & Askari, F. (2020). Seismic Reliability Investigation of Bearing Capacity of Foundations Based on Limit Analysis and Limit Equilibrium Methods. Geotechnical and Geological Engineering, 38(6), 6329-6342. [DOI:10.1007/s10706-020-01438-8]
7. Youssef Abdel Massih, D. S., Soubra, A. H., & Low, B. K. (2008). Reliability-based Analysis and Design of Strip Footings Against Bearing Capacity Failure. Journal of Geotechnical and Geoenvironmental Engineering, 134(7), 917-928. [DOI:10.1061/(ASCE)1090-0241(2008)134:7(917)]
8. Rezaie Soufi, G., Jamshidi Chenari, R., & Karimpour Fard, M. (2020). Influence of Random Heterogeneity of the Friction Angle on Bearing Capacity Factor Nγ. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 14(1), 69-89. [DOI:10.1080/17499518.2019.1566554]
9. Agarwal, E., & Pain, A. (2022). Reliability Assessment of Reinforced Slopes with Unknown Probability Distribution. Géotechnique, 1-36. [DOI:10.1680/jgein.21.00106]
10. Chenari, R. J., Roshandeh, S. P., & Payan, M. (2019). Stochastic Analysis of Foundation Immediate Settlement on Heterogeneous Spatially Random Soil Considering Mechanical Anisotropy. SN Applied Sciences, 1(7), Article e660. [DOI:10.1007/s42452-019-0684-0]
11. Agarwal, E., & Pain, A. (2021). Efficient Probabilistic Stability Analysis of Geosynthetic Reinforced Slopes Using Collocation-Based Stochastic Response Surface. International Journal of Geomechanics, 21(10), Article e04021189. [DOI:10.1061/(ASCE)GM.1943-5622.0002157]
12. Falae, P. O., Agarwal, E., Pain, A., Dash, R. K., & Kanungo, D. P. (2021). A Data Driven Efficient Framework for the Probabilistic Slope Stability Analysis of Pakhi landslide, Garhwal Himalaya. Journal of Earth System Science, 130(3), 1-15. [DOI:10.1007/s12040-021-01641-y]
13. Agarwal, E., & Pain, A. (2021). Probabilistic Stability Analysis of Geosynthetic-reinforced Slopes Under Pseudo-static and Modified Pseudo-dynamic Conditions. Geotextiles and Geomembranes, 49(6), 1565-1584. [DOI:10.1016/j.geotexmem.2021.07.005]
14. Agarwal, E., Pain, A., & Sarkar, S. (2021). Stochastic Stability Analysis of Geosynthetic Reinforced Slopes Subjected to Harmonic Base Shaking. Transportation Geotechnics, 29, Article e100562. [DOI:10.1016/j.trgeo.2021.100562]
15. Elishakoff, I., & Chamis, C. C. (2001). Interrelation Between Safety Factors and Reliability (No. NASA/CR-2001-211309).NASA.
16. Chen, Z., Chen, L., Xu, J., Sun, P., Wu, C., & Wang, Y. (2014). Quantitative Deterministic Versus Probability Analyses Based on a Safety Margin Criterion. Science China Technological Sciences, 57(10), 1988-2000. [DOI:10.1007/s11431-014-5638-6]
17. Griffiths, D. V. (2015). Observations on Load and Strength Factors in Bearing Capacity Analysis. Journal of Geotechnical and Geoenvironmental Engineering, 141(7), Article e06015004. [DOI:10.1061/(ASCE)GT.1943-5606.0001316]
18. Mosallanezhad, M., & Moayedi, H. (2017). Comparison Analysis of Bearing Capacity Approaches for the Strip Footing on Layered Soils. Arabian Journal for Science and Engineering, 42(9), 3711-3722. [DOI:10.1007/s13369-017-2490-6]
19. Fathipour, H., Payan, M., Chenari, R. J., & Fatahi, B. (2022). General Failure Envelope of Eccentrically and Obliquely Loaded Strip Footings Resting on an Inherently Anisotropic Granular Medium. Computers and Geotechnics, 146, Article e104734 [DOI:10.1016/j.compgeo.2022.104734]
20. Safardoost, A., Fathipour, H., Chenari, R. J., Veiskarami, M., & Payan, M.(2021). Evaluation of the Pseudo-dynamic Bearing Capacity of Surface Footings on Cohesionless Soils Using Finite Element Lower Bound Limit Analysis. Geomechanics and Geoengineering, 1-13
21. Firouzeh, S. H., Payan, M., Chenari, R. J., Shafiee, A., & Senetakis, K. (2022). Efficiency of Various Mitigation Schemes in the Alleviation of the Destructive Effect of Reverse Dip-slip Fault Rupture on Surface and Embedded Shallow Foundations Using Upper Bound Finite Element Limit Analysis. Computers and Geotechnics, 142, Article e104548. [DOI:10.1016/j.compgeo.2021.104548]
22. Nouzari, M. A., Jamshidi Chenari, R., Payan, M., & Pishgar, F. (2021). Pseudo-static Seismic Bearing Capacity of Shallow Foundations in Unsaturated Soils Employing Limit Equilibrium Method. Geotechnical and Geological Engineering, 39(2), 943-956. [DOI:10.1007/s10706-020-01535-8]
23. Robert, M. A. Y. (2015, July 9-10). The Seismic Design of Shallow Foundations: a State of the Art Exploration. SECED 2015 Conference: Earthquake Risk and Engineering towards a Resilient World, Cambridge, Uk.
24. Sloan, S. (2005). Geotechnical Stability Analysis: New Methods for an Old Problem. Australian Geomechanics, 40(30), 1-28.
25. Fathipour, H., Payan, M., Chenari, R. J., & Senetakis, K. (2021). Lower Bound Analysis of Modified Pseudo‐dynamic Lateral Earth Pressures for Retaining Wall‐backfill System with Depth‐varying Damping Using FEM‐Second Order Cone Programming. International Journal for Numerical and Analytical Methods in Geomechanics, 45(16), 2371-2387. [DOI:10.1002/nag.3269]
26. Fathipour, H., Siahmazgi, A. S., Payan, M., Veiskarami, M., & Jamshidi Chenari, R. (2021). Limit Analysis of Modified Pseudodynamic Lateral Earth Pressure in Anisotropic Frictional Medium Using Finite-Element and Second-Order Cone Programming. International Journal of Geomechanics, 21(2), Article e04020258. [DOI:10.1061/(ASCE)GM.1943-5622.0001924]
27. Soubra, A. H. (1999). Upper-bound Solutions for Bearing Capacity of Foundations. Journal of Geotechnical and Geoenvironmental Engineering, 125(1), 59-68. [DOI:10.1061/(ASCE)1090-0241(1999)125:1(59)]
28. Low, B. K. (1996). Practical Probabilistic Approach Using Spreadsheet. Uncertainty in the geologic environment: From theory to practice. 1284-1302.
29. Hasofer, A. M., & Lind, N. C. (1974). Exact and Invariant Second-moment Code Format. Journal of the Engineering Mechanics Division, 100(1), 111-121. [DOI:10.1061/JMCEA3.0001848]
30. Low, B. K., & Tang, W. H. (2004). Reliability Analysis Using Object-oriented Constrained Optimization. Structural Safety, 26(1), 69-89. [DOI:10.1016/S0167-4730(03)00023-7]
31. Eurocode 7: Geotechnical design-Part 1: General rules.
32. Phoon, K. K., & Kulhawy, F. H. (1999). Characterization of Geotechnical Variability. Canadian Geotechnical journal, 36(4), 612-624. [DOI:10.1139/t99-038]
33. Cherubini, C. (2000). Reliability Evaluation of Shallow Foundation Bearing Capacity on c' φ'soils. Canadian Geotechnical Journal, 37(1), 264-269. [DOI:10.1139/cgj-37-1-264]