# Prediction of soil permeability coefficient using the GEP approach

Document Type : Research

Authors

1 Ph.D. Candidate, Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran.

2 Associate Professor, Department of Civil Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran.

3 Assistant Professor, Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran.

Abstract

Hydraulic permeability of soil (k) is a critical parameter for mathematical modeling of groundwater and soil water flow. Due to the complexity of k  it is hard to gain a general empirical model which provides a reliable prediction of it. Therefore, this study used the Gene Expression Programming (GEP) model as a powerful data-driven technique for the estimation of k. The available published data for estimation of k  are culled from the literature. Six effective parameters including clay content (CC), water content (ω), liquid limit (LL), plastic limit (PL), specific density (γ), void ratio (e) were used to establish a predictive formula for estimation of k. Statistical parameters such as BIAS, Root Mean Square Error (RMSE), Scatter Index (SI), correlation coefficient (R), and Mean Absolute Error (MAE) were used for evaluating the accuracy of the developed GEP model. In addition, GEP findings were compared to Artificial Neural Network (ANN) to assess the performance of the GEP. The GEP with BIAS = -0.0005, RMSE = 0.0079, SI = 57.33%, R = 0.8109 and MAE = 0.0047 outperformed than ANN with BIAS = 0.001, RMSE = 0.0090, SI = 65.12%, R = 0.7490 and MAE = 0.0053 in predicting k in testing stage. GEP provided explicit mathematical equation can be utilized to determine k. Comparing the observed data and ANN results demonstrated that the GEP approach has suitable performance for prediction of k.

Keywords

#### References

1. Sihag, P., Tiwari, N. K., & Ranjan, S. (2017). Modelling of Infiltration of Sandy Soil Using Gaussian Process Regression. Modeling Earth Systems and Environment, 3(3), 1091-1100. [DOI:10.1007/s40808-017-0357-1]
2. Sinha, S. K., & Wang, M. C. (2008). Artificial Neural Network Prediction Models for Soil Compaction and Permeability. Geotechnical and Geological Engineering, 26(1), 47-64. [DOI:10.1007/s10706-007-9146-3]
3. Chapuis, R. P. (2004). Predicting the Saturated Hydraulic Conductivity of Sand and Gravel Using Effective Diameter and Void Ratio. Canadian Geotechnical Journal, 41(5), 787-795. [DOI:10.1139/t04-022]
4. Boadu, F. K. (2000). Hydraulic Conductivity of Soils From Grain-size Distribution: New Models. Journal of Geotechnical and Geoenvironmental Engineering, 126(8), 739-746. [DOI:10.1061/(ASCE)1090-0241(2000)126:8(739)]
5. Elbisy, M. S. (2015). Support Vector Machine and Regression Analysis to Predict the Field Hydraulic Conductivity of Sandy Soil. KSCE Journal of Civil Engineering, 19(7), 2307-2316. [DOI:10.1007/s12205-015-0210-x]
6. Zhu, P., Zhang, G., & Zhang, B. (2022). Soil Saturated Hydraulic Conductivity of Typical Revegetated Plants on Steep Gully Slopes of Chinese Loess Plateau. Geoderma, 412, Article e115717. [DOI:10.1016/j.geoderma.2022.115717]
7. Samadi, M., Afshar, M. H., Jabbari, E., & Sarkardeh, H. (2021). Prediction of Current-induced Scour Depth Around Pile Groups Using MARS, CART, and ANN Approaches. Marine Georesources & Geotechnology, 39(5), 577-588. [DOI:10.1080/1064119X.2020.1731025]
8. Samadi, M., Jabbari, E., Azamathulla, H. M., & Mojallal, M. (2015). Estimation of Scour Depth Below Free Overfall Spillways Using Multivariate Adaptive Regression Splines and Artificial Neural Networks. Engineering Applications of Computational Fluid Mechanics, 9(1), 291-300. [DOI:10.1080/19942060.2015.1011826]
9. Alizadeh, M. J., Shabani, A., & Kavianpour, M. R. (2017). Predicting Longitudinal Dispersion Coefficient Using ANN with Metaheuristic Training Algorithms. International Journal of Environmental Science and Technology, 14(11), 2399-2410. [DOI:10.1007/s13762-017-1307-1]
10. Mojaradi, B., ALIZADEH, S. F., & Samadi, M. (2018). Estimation of Water Quality Index in Talar River Using Gene Expression Programming and Artificial Neural Networks. Iranian Journal of Watershed Management Science and Engineering, 12(41), 61- 72.
11. Samadi, M., Sarkardeh, H., & Jabbari, E. (2021). Prediction of the Dynamic Pressure Distribution in Hydraulic Structures Using Soft Computing Methods. Soft Computing, 25(5), 3873-3888. [DOI:10.1007/s00500-020-05413-6]
12. Samadi, M., Sarkardeh, H., & Jabbari, E. (2020). Explicit Data-driven Models for Prediction of Pressure Fluctuations Occur During Turbulent Flows on Sloping Channels. Stochastic Environmental Research and Risk Assessment, 34(5), 691-707. [DOI:10.1007/s00477-020-01794-0]
13. Taban, M. H., Hajiazizi, M., & Ghobadian, R. (2019). Predicting the Value of the Rock Quality Index in the Q-system Using Gene Expression Programming. Journal of Numerical Methods in Civil Engineering, 4(2), 44-54. [DOI:10.52547/nmce.4.2.44]
14. Samadi, M., Afshar, M. H., Jabbari, E., & Sarkardeh, H. (2020). Application of Multivariate Adaptive Regression Splines and Classification and Regression Trees to Estimate Wave-induced Scour Depth Around Pile Groups. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44(1), 447-459. [DOI:10.1007/s40996-020-00364-2]
15. Pham, B.T., Ly, H.B., Al-Ansari, N. and Ho, L.S., 2021. A Comparison of Gaussian Process and M5P for Prediction of Soil Permeability Coefficient. Scientific Programming, 2021, Article e3625289. [DOI:10.1155/2021/3625289]
16. Ferreira, C. (2006). Gene Expression Programming. Berlin: Springer.
17. Terzi, Ö., & Ergin, G. (2014). Forecasting of Monthly River Flow with Autoregressive Modeling and Data-driven Techniques. Neural Computing and Applications, 25(1), 179-188. [DOI:10.1007/s00521-013-1469-9]
18. Karbasi, M., & Azamathulla, H. M. (2017). Prediction of Scour Caused by 2D Horizontal Jets Using Soft Computing Techniques. Ain Shams Engineering Journal, 8(4), 559-570. [DOI:10.1016/j.asej.2016.04.001]
19. Terzi, Ö. (2013). Daily Pan Evaporation Estimation Using Gene Expression Programming and Adaptive Neural-based Fuzzy Inference System. Neural Computing and Applications, 23(3), 1035-1044. [DOI:10.1007/s00521-012-1027-x]
20. Haykin, S. (1994). Neural networks, 2nd Edition. New York: Prentice Hall.
21. Hornik, K., Stinchombe, M., & White, H. (1989). Multilayer Feed-forward Network and Universal Approximator. Neural Network. 2(5), 359-366. [DOI:10.1016/0893-6080(89)90020-8]
22. Swingler, K. (1996). Applying Neural Networks: A Practical Guide. New York: Academic Press.
23. Ayoubloo, M. K., Azamathulla, H. M., Jabbari, E., & Zanganeh, M. (2011). Predictive Model-based for the Critical Submergence of Horizontal Intakes in Open Channel Flows with Different Clearance Bottoms Using CART, ANN and Linear Regression Approaches. Expert Systems with Applications, 38(8), 10114-10123. [DOI:10.1016/j.eswa.2011.02.073]
24. Kamranzad, B., & Samadi, M. (2013). Assessment of Soft Computing Models to Estimate Wave Heights in Anzali Port. Journal Of Marine Engineering, 9(17), 27-36.
25. Samadi, M., Jabbari, E., & Azamathulla, H. M. (2014). Assessment of M5′ Model Tree and Classification and Regression Trees for Prediction of Scour Depth Below Free Overfall Spillways. Neural Computing and Applications, 24(2), 357-366. [DOI:10.1007/s00521-012-1230-9]
26. Samadi, M., & Jabbar, E. (2012). Assessment of Regression Trees and Multivariate Adaptive Regression Splines for Prediction of Scour Depth Below the Ski-Jump Bucket Spillway. Journal of Hydraulics, 7(3), 73-79.

### History

• Receive Date: 05 February 2022
• Revise Date: 27 April 2022
• Accept Date: 28 April 2022