Numerical Investigation of Hydraulic Characteristics Effective on Vertical Drop

Document Type : Research


1 Professor, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh, East Azerbaijan, Iran.

2 M.Sc. Student, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh, East Azerbaijan, Iran.

3 Ph.D., Department of water engineering, Faculty of Agriculture, University of Tabriz, Tabriz, East Azerbaijan, Iran.


The drops are used to control the descents,  stabilize the bed level, and control the upstream water level in sloping channels with less slope than the ground slope. The current study presents a numerical analysis of hydraulic characteristics in the vertical drop using computational fluid dynamics. At first, the laboratory models were used for verification and choosing the best model of turbulence; three types of turbulence models, k-ε, k-ε RNG, and k-ωwere used. The results revealed that the RNG k-ε turbulence model has less RE% and RMSE than other models and more efficiency in simulating hydraulic characteristics on drops. Also, it was observed that the highest rate of RE% and RMSE for this turbulence model was 6.18 and 0.109 for the relative length of the drop, whereas the lowest relative downstream depth was 5.27 and 0.003, respectively. Furthermore, by increasing the relative critical depth, the characteristics of relative downstream depth, the relative depth of the pool, and the relative length of the drop increased, whereas the relative energy dissipation decreased. For the parameter of the relative length of the drop in the range of 0.08 to 0.5, this increase was obtained to be 2.6 times. In addition, using numerical data, a series of equations have been presented to predict hydraulic parameters of the vertical drop with a high correlation coefficient.


1. Daneshfaraz, R., MajediAsl, M.,Bazyar, A., Abraham, J., & Norouzi, R. (2021). The laboratory study of energy dissipation in inclined drops equipped with a screen. Journal of Applied Water Engineering and Research, 9(3), 184-193. [DOI:10.1080/23249676.2020.1799877]
2. Daneshfaraz, R., Sadeghfam, S., Hasannia, V., Abraham, J., & Norouzi, R.(2022). Experimental investigation on hydraulic efficiency of vertical drop equipped with vertical screens. Journal of Teknik Dergi, 33(5), 1-21. [DOI:10.18400/tekderg.755938]
3. Nayebzadeh, B., Lotfollahi-yaghin, M., & Daneshfaraz, R.(2020). Numerical Investigation of Hydraulic Characteristics of Vertical Drops with Screens and Gradually Wall Expanding. AUT Journal of Civil Engineering, 53(8), 1-19.
4. Bakhmeteff, B.A.(1932). Hydraulics of open channels. New York:McGraw-hill.
5. White, M.P.(1943). Discussion of Moore , Tran.ASCE,108, 1361-1364. [DOI:10.1061/TACEAT.0005672]
6. Blaisdell, F.W.(1980). Hydraulics of rectangular vertical drop structure, Journal of Hydraulic Research, 17(4), 1979, pp. 289-302. [DOI:10.1080/00221687909499573]
7. Hong, Y.M., Huang, H.S., & Wan, S.(2010). Drop characteristics of free-falling nappe for aerated straight-drop spillway, Journal of Hydraulic Research, 48(1), 125-129. [DOI:10.1080/00221680903568683]
8. Daneshfaraz, R., Majedi Asl, M., & Bazyar, A. (2020). Experimental Investigation of Performance of Horizontal and Vertical Screen on Energy Dissipation of Inclined Drop. Journal of Water and Soil Science, 24(2), 123-135. [DOI:10.47176/jwss.24.2.37952]
9. Norouzi, R., Daneshfaraz, R., & Bazyar, A. (2019). The study of energy dissipation due to the use of vertical screen in the downstream of inclined drops by adaptive neuro-fuzzy inference system (ANFIS). AUT Journal of Civil Engineering, 53(3), 1-17.
10. Sadeghfam, S., Daneshfaraz, R., Khatibi, R., & Minaei, O. (2019). Experimental studies on scour of supercritical flow jets in upstream of screens and modelling scouring dimensions using artificial intelligence to combine multiple models (AIMM). Journal of Hydroinformatics, 21(5), 893-907. [DOI:10.2166/hydro.2019.076]
11. Norouzi, R., Sihag, P., Daneshfaraz, R., Abraham, J., & Hasannia, V. (2021). Predicting relative energy dissipation for vertical drops equipped with a horizontal screen using soft computing techniques. Journal of Water supply, 21(8), 4493-4513. [DOI:10.2166/ws.2021.193]
12. Daneshfaraz, R., Hasannia, V., Norouzi, R., Sihag, P., Sadeghfam, S., & Abraham, J. (2021). Investigating the effect of horizontal screen on hydraulic parameters of vertical drop. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45(3), 1909-1917. [DOI:10.1007/s40996-020-00572-w]
13. Esen, I. I., Alhumoud, J. M., & Hannan, K. A. (2004). Energy Loss at a Drop Structure with a Step at the Base. Journal of Water international, 29(4), 523-529. [DOI:10.1080/02508060408691816]
14. Kabiri-Samani, A. R., Bakhshian, E., & Chamani, M. R. (2017). Flow characteristics of grid drop-type dissipators. Journal of Flow Measurement and Instrumentation, 54, 298-306. [DOI:10.1016/j.flowmeasinst.2016.11.002]
15. Ferrari, A. (2010). SPH simulation of free surface flow over a sharp-crested weir. Journal of Advances in Water Resources, 33(3), 270-276. [DOI:10.1016/j.advwatres.2009.12.005]
16. Mahdavi, A., & Shahkarami, N. (2020). SPH analysis of free surface flow over pivot weirs. KSCE Journal of Civil Engineering, 24(4), 1183-1194. [DOI:10.1007/s12205-020-0095-1]
17. Muhsin, K. A., & Noori, B. M. A. (2021). Hydraulics of free overfall in smooth triangular channels. Journal of Ain Shams Engineering , 12(3), 2471-2484. [DOI:10.1016/j.asej.2020.11.022]
18. Rajaratnam, N., & Chamani, M. R. (1995). Energy loss at drops. Journal of Hydraulic Research, 33(3), 373-384. [DOI:10.1080/00221689509498578]
19. Chamani, M. R., Rajaratnam, N., & Beirami, M. K. (2008). Turbulent jet energy dissipation at vertical drops. Journal of hydraulic engineering, 134(10), 1532-1535. [DOI:10.1061/(ASCE)0733-9429(2008)134:10(1532)]
20. Nassiraei, H., Heidarzadeh, M., & Shafieefar, M. (2016). Numerical Simulation of Long Waves (Tsunami) Forces on Caisson Breakwaters. Sharif Journal of Civil Engineering, 32(3.2), 3-12.
21. Moore, W. L. (1943). Energy loss at the base of a free overfall. Transactions of the American Society of Civil Engineers, 108(1), 1343-1360. [DOI:10.1061/TACEAT.0005636]
22. Chanson, H. (1995). Hydraulic design of stepped cascades, channels, weirs and spillways.
23. Rouse, H. (1936). Discharge characteristics of the free overfall: Use of crest section as a control provides easy means of measuring discharge. Journal of Civil Engineering, 6(4), 257-260.
24. Dey, S. (2005). End depth in U-shaped channels: a simplified approach. Journal of Hydraulic Engineering, 131(6), 513-516. [DOI:10.1061/(ASCE)0733-9429(2005)131:6(513)]
25. Nabavi, V., Bairami, M., Sterling, M.(2009). Flow Metering By End-Depth Method in Inverted Semicircular Channels. 4th IASME/WSEAS International Conference on Water Resources, Hydraulics and Hydrology (WHH '09).
26. Chen, J. Y., Yao, C. Y., Liao, Y. Y., & Huang, H. S. (2008). Impact force on downstream bed of weir by free overfall flow. Journal of the Chinese institute of engineers, 31(6), 1047-1055. [DOI:10.1080/02533839.2008.9671457]
27. Gill, M.A.,(1979). Hydraulics of rectangular vertical drop structures. Journal of Hydraulic Research, 17(4), (1979), 289-302. [DOI:10.1080/00221687909499573]
28. Rand, W. (1955, September). Flow geometry at straight drop spillways. In Proceedings of the American Society of Civil Engineers (Vol. 81, No. 9, pp. 1-13). ASCE.
29. Moghaddam, M. A. A. (1999). Modified theory for rectangular vertical drop structures.
30. Chen, J. Y., Huang, H. S., Hong, Y. M., & Liu, S. I. (2011). The impact characteristics analysis of free over-fall flow on downstream channel bed. Journal of the Chinese Institute of Engineers, 34(3), 403-413. [DOI:10.1080/02533839.2011.565616]