Experimental and Numerical Evaluation of the Effect of Implementing Wall Posts on Seismic Behavior of Short-Period Structures

Document Type : Research


1 Ph.D. candidate, Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Assistant Professor, Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

3 ssistant Professor, Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran


The investigation of damage to buildings in terms of non-structural walls collapse in the past earthquakes have caused researchers to study the seismic behavior of walls more extensively. Furthermore, seismic design codes have considered using wall posts to prevent wall damage, however, not many studies were done on seismic behavior change in structures due to the addition of wall posts. Therefore, in this study, a two-story structure was simulated in laboratory conditions on a shaking table with a scale of 1:3. This structure was subjected to Kobe scaled ground motion in two cases including with and without the wall and wall post on the second floor. According to the experimental results, the maximum first and second floors҆ displacement and the first-floor acceleration of the structure with wall and wall post compared to the structure without wall and wall post showed a decrease by 6.52, 10.75, and 60.23%, respectively. Comparison of experimental and numerical results showed a difference of 2-10%. Moreover, 10 two- and three-story structures with different wall arrangements in height were numerically modeled and studied by time-history dynamic analysis under 7 simulated records. The results showed that by adding a wall post to the wall to restrain it, and ignoring the effects of wall stiffness in design techniques, can cause a significant error in the seismic design procedure.


1. Furtado A., Rodrigues H., Arêde A., "Modelling of masonry infill walls participation in the seismic behaviour of RC buildings using OpenSees", Int J Adv Struct. Eng., 2015;7(2):117-27. https://doi.org/10.1007/s40091-015-0086-5 [DOI:10.1007/s40091-015-0086-5.]
2. Han S.W., Lee C.S., "Cyclic behavior of lightly reinforced concrete moment frames with partial-and full-height masonry walls.", Earthquake Spectra, 2020;36(2):599-628. https://doi.org/10.1177/8755293019899960 [DOI:10.1177/8755293019899960.]
3. Miranda E., Mosqueda G., Retamales R., Pekcan G., "Performance of nonstructural components during the 27 February 2010 Chile earthquake.", Earthquake Spectra., 2012;28:453-71. https://doi.org/10.1193/1.4000032 [DOI:10.1193/1.4000032.]
4. Schwarz S., Hanaor A., Yankelevsky D.Z., "Experimental response of reinforced concrete frames with AAC masonry infill walls to in-plane cyclic loading.", J. Structures, 2015;3:306-319. https://doi.org/10.1016/j.istruc.2015.06.005 [DOI:10.1016/j.istruc.2015.06.005.]
5. Khoshnoud H.R., Marsono K.., "Experimental study of masonry infill reinforced concrete frames with and without corner openings.", Struct Eng Mech, 2016;57(4):641-56. https://doi.org/10.12989/sem.2016.57.4.641 [DOI:10.12989/sem.2016.57.4.641.]
6. Karimi A.H., Karimi M.S., Kheyroddin A., Shahkarami A.A.., "Experimental and numerical study on seismic behavior of an infilled masonry wall compared to an arched masonry wall.", J Structures, 2016;8(1):144-53. https://doi.org/10.1016/j.istruc.2016.09.012 [DOI:10.1016/j.istruc.2016.09.012.]
7. Tidke K., Jangave S.., "Seismic analysis of building with and without infill wall.", Int J Innov Res Sci Eng Technol., 2016;5(7):12646-52. [DOI:10.15680/IJIRSET.2016.0507079.]
8. Pasca M., Liberatore L., Masiani R., "Reliability of analytical models for the prediction of out-of-plane capacity of masonry infills.", Struct Eng Mech., 2017;64(6):765-81. [DOI:10.12989/sem.2017.64.6.765.]
9. Ozturkoglu O., Ucar T., Yesilce Y., "Effect of masonry infill walls with openings on nonlinear response of reinforced concrete frames.", Earthq Struct., 2017;12(3):333-47. https://doi.org/10.12989/eas.2017.12.3.333 [DOI:10.12989/eas.2017.12.3.333.]
10. Baloevic G., Radnic J., Grgic N., Matesan D., "Shake-table study of plaster effects on the behavior of masonry-infilled steel frames.", Steel Compos Struct., 2017;23(2):195-204. https://doi.org/10.12989/scs.2017.23.2.195 [DOI:10.12989/scs.2017.23.2.195.]
11. Mohamed H.M., Romao X.., "Performance analysis of a detailed FE modelling strategy to simulate the behaviour of masonry-infilled RC frames under cyclic loading.", Earthq Struct., 2018;14(6):551-65. [DOI:10.12989/eas.2018.14.6.551.]
12. Lotfi1a S., Zahrai S.M., "Blast behavior of steel infill panels with various thickness and stiffener arrangement." Struct Eng Mech., 2018;65:587-600. [DOI:10.12989/sem.2018.65.5.587.]
13. De Domenico D., Falsone G., Laudani R., "In-plane response of masonry infilled RC framed structures: A probabilistic macromodeling approach.", Struct Eng Mech., 2018;68(4):423-42. [DOI:10.12989/sem.2018.68.4.423.]
14. Dautaj A.D., Kadiri Q., Kabashi N., "Experimental study on the contribution of masonry infill in the behavior of RC frame under seismic loading.", Eng Struct., 2018;165:27-37. https://doi.org/10.1016/j.engstruct.2018.03.013 [DOI:10.1016/j.engstruct.2018.03.013.]
15. Gong M., Zuo Z., Wang X., Lu X., Xie L., "Comparing seismic performances of pilotis and bare RC frame structures by shaking table tests.", Eng Struct., 2019;199:e109442. https://doi.org/10.1016/j.engstruct.2019.109442 [DOI:10.1016/j.engstruct.2019.109442.]
16. Lemonis M.E., Asteris P.G., Zitouniatis D.G., Ntasis G.D., "Modeling of the lateral stiffness of masonry infilled steel moment-resisting frames.", Struct Eng Mech., 2019;70(4):421-9. [DOI:10.12989/sem.2019.70.4.421.]
17. Aknouche H., Airouche A., Bechtoula H., "Effect of masonry infilled panels on the seismic performance of a R/C frames.", Earthq Struct., 2019;16(3):329-48. [DOI:10.12989/eas.2019.16.3.329.]
18. Furtado A., Rodrigues H., Arêde A., Varum H., "Cost-effective analysis of textile-reinforced mortar solutions used to reduce masonry infill walls collapse probability under seismic loads.", J Structures., 28, 141-157. https://doi.org/10.1016/j.istruc.2020.08.066 [DOI:10.1016/j.istruc.2020.08.066.]
19. Nyunn S., Wang F., Yang J., Liu Q.F., Azim I., Bhatta S., "Numerical studies on the progressive collapse resistance of multi-story RC buildings with and without exterior masonry walls.", J Structures, 2020;28:1050-1059. https://doi.org/10.1016/j.istruc.2020.07.049 [DOI:10.1016/j.istruc.2020.07.049.]
20. Mannan A., Zaidi S.A., Saeed M.A., Haider F., "Influence of Infill Masonry on a Building Frame under Seismic Loadings and Its Hazards Vulnerability Assessment." Indian J Sci Technol., 2020;13(06):617-29. https://doi.org/10.17485/ijst/2020/v13i06/149873 [DOI:10.17485/ijst/2020/v13i06/149873.]
21. Noorifard A., Tabeshpour M.R., Saradj F.M., "New approximate method to identify soft story caused by infill walls.", J Structures, 2020;24:929-939. https://doi.org/10.1016/j.istruc.2020.01.050 [DOI:10.1016/j.istruc.2020.01.050.]
22. Jiang R., Jiang L., Hu Y., Ye J., Zhou L., "A simplified method for estimating the fundamental period of masonry infilled reinforced concrete frames.", Struct Eng Mech., 2020;74(6):821-32. [DOI:10.12989/sem.2020.74.6.821.]
23. Kostinakis K.G., Morfidis K.E., "Optimization of the seismic performance of masonry infilled R/C buildings at the stage of design using artificial neural networks.", Struct Eng Mech., 2020;75(3):295-309. [DOI:10.12989/sem.2020.75.3.295.]
24. Li Y.W., Yam M.C., Cao K., "Seismic collapse risk of RC frames with irregular distributed masonry infills.", Struct Eng Mech., 2020;76(3):421-33. [DOI:10.12989/sem.2020.76.3.421.]
25. Huang C.T., Chiou T.C., Chung L.L., Hwang S.J., Jaung W.C., "Verifying ASCE 41 the evaluation model via field tests of masonry infilled RC frames with openings.", Earthq Struct., 2020;19(3):157-74. [DOI:10.12989/eas.2020.19.3.157.]
26. ASCE/SEI 41-17 (2017), Seismic rehabilitation of existing buildings. Reston, VA: American Society of Civil Engineers.
27. De Angelis A., Pecce M.R., "The Role of Infill Walls in the Dynamic Behavior and Seismic Upgrade of a Reinforced Concrete Framed Building.", Front Built Environ, 2020;6:e590114. https://doi.org/10.3389/fbuil.2020.590114 [DOI:10.3389/fbuil.2020.590114.]
28. Ferraioli M., Lavino A., "Irregularity Effects of Masonry Infills on Nonlinear Seismic Behaviour of RC Buildings." Mathematical Problems in Engineering, 2020; e4086320. https://doi.org/10.1155/2020/4086320 [DOI:10.1155/2020/4086320.]
29. CEN European Standard EN1998-1 (2004), Eurocode 8: Design of Structures for Earthquake Resistance, European Committee for Standardisation, Brussels.
30. Jebadurai S.V., Tensing D., Pradhan P.M., Hemalatha G., "Enhancing performance of infill masonry with latex modified mortar subjected to cyclic load.", J Structures, 2020;23:551-557. [DOI:10.1016/j.istruc.2019.11.001]
31. Jalaeefar A., Zargar A., "Effect of infill walls on behavior of reinforced concrete special moment frames under seismic sequences.", J Structures, 2020;28:766-73. https://doi.org/10.1016/j.istruc.2020.09.029 [DOI:10.1016/j.istruc.2020.09.029.]
32. Standard No 2800 (2014), Iranian Code of Practice for Seismic Resistance Design of Buildings, Iranian Buildings Codes and Standard, Tehran, Iran. (in Persian)
33. Radovanović Ž., Grebović R.S., Dimovska S., Serdar N., Vatin N., Murgul V., "The mechanical properties of masonry walls-Analysis of the test results." Procedia Eng., 2015;117:865-73. https://doi.org/10.1016/j.proeng.2015.08.155 [DOI:10.1016/j.proeng.2015.08.155.]
34. FEMA P695(2009), Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency, Washington D.C.