Seismic Retrofit of Vulnerable Steel Frames Using Articulated Quadrilateral bracing system

Document Type : Research

Author

Assistant professor, Department of Civil Engineering, Roudehen Brach, Islamic Azad University, Roudehen, Tehran, Iran.

Abstract

This paper investigates the applicabilty of an innovative bracing, called Articulated Quadrilateral (AQ) bracing system, which uses shape memory alloys (SMAs), for retroffiting low-rise to high-rise vulnerable SMFRs against strong ground motions. The paper investigates brace fundamental engineering characteristics, design of the system and also configuration of the brace (the proportion of SMA wire, C-shape dissipator and Post-tensioning tendons). OpenSees program is utilized for nonlinear dynamic finite element analysis and the validation of modeling using data from full-scale experimental tests performed by Speicher et al. at Georgia Institute of technology. Using 3-, 9- and 20-story steel moment resisting frames from the SAC phase II project, nonlinear pushover, incremental dynamic analysis, and fragility analysis of frames with and without AQ bracing were conducted using FEMA P695 far-field ground acceleration records. Results show that by retrofitting MRF system with AQ bracing, strength of the buildings increases up to 40%. Also, bracing of the frames yields more uniform drift distribution which reduces the likelihood of soft story formation.

Keywords


1. Lotfollahi, M., & Alinia, M. M., Effect of tension bracing on the collapse mechanism of steel moment frames, Journal of Constructional Steel Research, 2009, 65(10-11): p. 2027-2039. [DOI:10.1016/j.jcsr.2009.06.003]
2. Soong, T.T. and M.C. Costantinou, Passive and active structural vibration control in civil engineering. 345. p. 2014: Springer.
3. Weisman, J. and G.P. Warn, Stability of elastomeric and lead-rubber seismic isolation bearings. Journal of Structural Engineering, 2011. 138(2): p. 215-223. [DOI:10.1061/(ASCE)ST.1943-541X.0000459]
4. Veismoradi, S., Cheraghi A., and Darvishan, E., Probabilistic mainshock-aftershock collapse risk assessment of buckling restrained braced frames, Soil Dynamics and Earthquake Engineering, 2018. 115: p. 205-216. [DOI:10.1016/j.soildyn.2018.08.029]
5. Wilson, J.C. and M.J. Wesolowsky, Shape Memory Alloys for Seismic Response Modification: A State-of-the-Art Review. Earthquake Spectra, 2005. 21(2): p. 569-601. [DOI:10.1193/1.1897384]
6. Dolce, M. and D. Cardone, Mechanical behaviour of shape memory alloys for seismic applications 1. Martensite and austenite NiTi bars subjected to torsion. International Journal of Mechanical Sciences, 2001. 43(11): p. 2631-2656. [DOI:10.1016/S0020-7403(01)00049-2]
7. Clark, P.W., et al., Experimental and analytical studies of shape-memory alloy dampers for structural control. Smart Structures and Materials '95. Vol. 2445. 1995: SPIE. [DOI:10.1117/12.208891]
8. Dolce, M., D. Cardone, and R. Marnetto, Implementation and testing of passive control devices based on shape memory alloys. Earthquake Engineering & Structural Dynamics, 2000. 29(7): p. 945-968. https://doi.org/10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-# [DOI:10.1002/1096-9845(200007)29:73.0.CO;2-#]
9. Han, Y.-L., et al., NiTi-wire Shape Memory Alloy Dampers to Simultaneously Damp Tension, Compression, and Torsion. Journal of Vibration and Control, 2005. 11(8): p. 1067-1084. [DOI:10.1177/1077546305055773]
10. Saadat, S., et al., Using NiTi SMA tendons for vibration control of coastal structures. Smart Materials and Structures, 2001. 10(4): p. 695.[11] Moradi, S., Alam, M. S., & Asgarian, B. Incremental dynamic analysis of steel frames equipped with NiTi shape memory alloy braces. The Structural Design of Tall and Special Buildings, 2014, 23(18), p. 1406-1425. [DOI:10.1002/tal.1149]
11. Zhu, S., & Zhang, Y. (2007). Seismic behaviour of self‐centring braced frame buildings with reusable hysteretic damping brace. Earthquake engineering & structural dynamics, 36(10), p. 1329-1346. [DOI:10.1002/eqe.683]
12. Asgarian, B., & Moradi, S. Seismic response of steel braced frames with shape memory alloy braces. Journal of Constructional Steel Research, 2011, 67(1), p. 65-74. [DOI:10.1016/j.jcsr.2010.06.006]
13. Speicher MS, DesRoches R, Leon RT. Cyclic Testing of a SMA-Based Articulated Quadrilateral Bracing System. InThe International Conference on Shape Memory and Superelastic Technologies 2010.
14. Pall, A.S. and C. Marsh, Response of friction damped braced frames. Journal of Structural Engineering, 1982. 108(9): p. 1313-1323. [DOI:10.1061/JSDEAG.0005968]
15. Bekey, G. and T. Oaughey, On-line control of nonlinear flexible structures. Journal of Applied Mechanics, 1982. 49: p. 877. [DOI:10.1115/1.3162631]
16. Reinhorn, A., G. Manolis, and C. Wen, Active control of inelastic structures. Journal of engineering mechanics, 1987. 113(3): p. 315-333. [DOI:10.1061/(ASCE)0733-9399(1987)113:3(315)]
17. Yang, J., Z. Li, and S. Liu, Control of hysteretic system using velocity and acceleration feedbacks. Journal of engineering mechanics, 1992. 118(11): p. 2227-2245. [DOI:10.1061/(ASCE)0733-9399(1992)118:11(2227)]
18. Yang, J., Z. Li, and S. Vongchavalitkul, Generalization of optimal control theory: linear and nonlinear control. Journal of engineering mechanics, 1994. 120(2): p. 266-283. [DOI:10.1061/(ASCE)0733-9399(1994)120:2(266)]
19. Barroso, L.R. and H.A. Smith, Performance evaluation of vibration controlled steel structures under seismic loading. 1999: John A. Blume Earthquake Engineering Center.
20. Gupta, A. and Krawinkler H., Seismic demands for the performance evaluation of steel moment resisting frame structures. 1999, Stanford University Stanford, California.
21. Venture, S.J., Interim guidelines: evaluation, repair, modification and design of steel moment frames. Rep. No. SAC 95, 1995.
22. Speicher, M.S., R. DesRoches, and R.T. Leon, Investigation of an articulated quadrilateral bracing system utilizing shape memory alloys. Journal of Constructional Steel Research, 2017. 130: p. 65-78. [DOI:10.1016/j.jcsr.2016.11.022]
23. Dolce, M. and D. Cardone, Theoretical and Experimental Studies for the Application of Shape Memory Alloys in Civil Engineering. Journal of Engineering Materials and Technology, 2006. 128(3): p. 302-311. [DOI:10.1115/1.2203106]
24. Dolce, M., D. Cardone, and R. Marnetto. SMA re-centering devices for seismic isolation of civil structures. in Proceedings of SPIE. 2001. [DOI:10.1117/12.434123]
25. DesRoches, R., J. McCormick, and M. Delemont, Cyclic properties of superelastic shape memory alloy wires and bars. Journal of Structural Engineering, 2004. 130(1): p. 38-46. [DOI:10.1061/(ASCE)0733-9445(2004)130:1(38)]
26. McCormick, J., et al., Structural engineering with NiTi. II: mechanical behavior and scaling. Journal of Engineering Mechanics, 2007. 133(9): p. 1019-1029. [DOI:10.1061/(ASCE)0733-9399(2007)133:9(1019)]
27. Zhu, S. and Y. Zhang, Seismic analysis of concentrically braced frame systems with self-centering friction damping braces. Journal of Structural Engineering, 2008. 134(1): p. 121-131. [DOI:10.1061/(ASCE)0733-9445(2008)134:1(121)]
28. Speicher, M., et al., Shape memory alloy tension/compression device for seismic retrofit of buildings. Journal of Materials Engineering and Performance, 2009. 18(5-6): p. 746-753. [DOI:10.1007/s11665-009-9433-7]
29. Miller, D.J., L.A. Fahnestock, and M.R. Eatherton, Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace. Engineering Structures, 2012. 40: p. 288-298. [DOI:10.1016/j.engstruct.2012.02.037]
30. Ocel, J., et al. Full-scale testing of nitinol based semi-rigid connections. in Proceedings of the 12th European Conference on Earthquake Engineering. 2002.
31. Sepúlveda, J., et al., Steel beam-column connection using copper-based shape memory alloy dampers. Journal of Constructional Steel Research, 2008. 64(4): p. 429-435. [DOI:10.1016/j.jcsr.2007.09.002]
32. DesRoches, R., B. Taftali, and B.R. Ellingwood, Seismic performance assessment of steel frames with shape memory alloy connections. Part I-analysis and seismic demands. Journal of Earthquake Engineering, 2010. 14(4): p. 471-486. [DOI:10.1080/13632460903301088]
33. Ellingwood, B.R., B. Taftali, and R. DesRoches, Seismic performance assessment of steel frames with shape memory alloy connections, Part II-Probabilistic seismic demand assessment. Journal of Earthquake Engineering, 2010. 14(5): p. 631-645. [DOI:10.1080/13632460903247935]
34. Andrawes, B. and R. DesRoches, Unseating prevention for multiple frame bridges using superelastic devices. Smart Materials and Structures, 2005. 14(3): p. S60. [DOI:10.1088/0964-1726/14/3/008]
35. Youssef, M., M. Alam, and M. Nehdi, Experimental investigation on the seismic behavior of beam-column joints reinforced with superelastic shape memory alloys. Journal of Earthquake Engineering, 2008. 12(7): p. 1205-1222. [DOI:10.1080/13632460802003082]
36. Graesser, E. and F. Cozzarelli, Shape-memory alloys as new materials for aseismic isolation. Journal of Engineering Mechanics, 1991. 117(11): p. 2590-2608. [DOI:10.1061/(ASCE)0733-9399(1991)117:11(2590)]
37. Speicher, M.S., Cyclic testing and assessment of shape memory alloy recentering systems. 2009, Georgia Institute of Technology.
38. Renzi, E., et al., Design, test and analysis of a light‐weight dissipative bracing system for seismic protection of structures. Earthquake engineering & structural dynamics, 2007. 36(4): p. 519-539. [DOI:10.1002/eqe.641]
39. Renzi, E., N. Ranieri, and G. DeCanio. Experimental verifications of seismic protection of steel and RC structures at Enea-Casaccia shaking tables. in Proc., 13th World Conf. on Earthquake Engineering. 2004.
40. P. Clark, K. Frank, H. Krawinkler, R. Shaw, Protocol for Farbrication, Inspection, Testing, and Documentation of Beam- Column Connection Tests and Other Experimental Specimens. SAC Steel Project Background Document, 1997.
41. Ciampi, V., M. De Angelis, and F. Paolacci, Design of yielding or friction-based dissipative bracings for seismic protection of buildings. Engineering Structures, 1995. 17(5): p. 381-391. [DOI:10.1016/0141-0296(95)00021-X]
42. Wilde, K., P. Gardoni, and Y. Fujino, Base isolation system with shape memory alloy device for elevated highway bridges. Engineering structures, 2000. 22(3): p. 222-229. [DOI:10.1016/S0141-0296(98)00097-2]
43. Christopoulos, C., et al., Self-centering energy dissipative bracing system for the seismic resistance of structures: development and validation. Journal of Structural Engineering, 2008. 134(1): p. 96-107. [DOI:10.1061/(ASCE)0733-9445(2008)134:1(96)]
44. Miller D.J. Development and experimental validation of self-centering buckling-restrained braces with shape memory alloy. M.S. Thesis, University of Illinois at Urbana-Champaign, 2011.
45. Krawinkler, H., 2000, State of the Art Report on Systems Performance of Moment Steel Frame Buildings in Earthquakes, FEMA 355C, Federal Emergency Management Agency,
46. Washington, DC.
47. Mazzoni, S., et al., The Open System for Earthquake Engineering Simulation (OpenSEES) User Command-Language Manual. 2006.
48. Ibarra, L.F., R.A. Medina, and H. Krawinkler, Hysteretic models that incorporate strength and stiffness deterioration. Earthquake engineering & structural dynamics, 2005. 34(12): p. 1489-1511. [DOI:10.1002/eqe.495]
49. Lignos, D.G. and H. Krawinkler, A database in support of modeling of component deterioration for collapse prediction of steel frame structures, in Structural Engineering Research Frontiers. 2007. p. 1-12. [DOI:10.1061/40944(249)31]
50. Silwal, B., O.E. Ozbulut, and R.J. Michael, Incremental Dynamic Analyses of Steel Moment Resisting Frames with Superelastic Viscous Dampers, in Special Topics in Structural Dynamics, Volume 6. 2016, Springer. p. 165-174. [DOI:10.1007/978-3-319-29910-5_17]
51. Vamvatsikos, D. and C.A. Cornell, Incremental dynamic analysis. Earthquake Engineering & Structural 52, 2002. 31(3): p. 491-514. [DOI:10.1002/eqe.141]
52. FEMA, P., 695. Quantification of Building Seismic Performance Factors. Federal Emergency Management Agency, 2009.
53. Vamvatsikos, D. and C.A. Cornell, Applied incremental dynamic analysis. Earthquake Spectra, 2004. 20(2): p. 523-553. [DOI:10.1193/1.1737737]
54. Venture, S.J. and G.D. Committee, Recommended seismic design criteria for new steel moment-frame buildings. Vol. 350. 2000: Federal Emergency Management Agency.
55. Venture, S.J., Recommended seismic evaluation and upgrade criteria for existing welded steel moment-frame buildings. Vol. 351. 2000: Federal Emergency Management Agency.
56. Ibarra, L., R. Medina, and H. Krawinkler. Collapse assessment of deteriorating SDOF systems. in Proceedings of the 12th European Conference on Earthquake Engineering. 2002.