Effects of Mathematical Model of MR Damper on Its Control Performance; A Nonlinear Comparative Study

Document Type : Research


1 Associate Professor, School of Civil and Environmental Engineering, K. N. Toosi University of Technology, Tehran, Iran.

2 Ph.D. Candidate, School of Civil and Environmental Engineering, K. N. Toosi University of Technology, Tehran, Iran.


In this paper, the effect of mathematical representation method of an MR damper on the performance of control algorithm is investigated. The most exact and common Maxwel Nonlinear Slider (MNS) and modified Bouc-Wen hysteretic models are employed through a nonlinear  comparatve numerical study. In many of semi-active control algorithms, a mathematical modelling method is required for determinig the Magneto-Rheological (MR) damper voltage at each time instant. Using different modelling methods can lead to different voltages for the MR damper, which subsequently results in changes to the responses of the controlled structure. A three story office building steel structure is excited by seven acceleration time histories. Nonlinear instantaneous optimal control (NIOC) and linear quadratic regulator (LQR) controllers are utilized as two active-based  semi-active algorithms. Results of nonlinear investigations show an obvious difference between the MNS and the modified Bouc-Wen models in the performance of control algorithms. Outputs show a higher performance for the modified Bouc-Wen model in reducing the hysteretic energy in the structure.


1. Fuller, C. R., Elliott, S. J. & Nelson, P. A., 1996. Active Control of Vibration. s.l.:Academic Press. [DOI:10.1016/B978-012269440-0/50007-8]
2. Soong, T. T. & Dargush, G. F., 1997. Passive Energy Dissipation Systems in Structural Engineering. s.l.:John Wiley & Sons, Ltd. (UK). [DOI:10.1201/9781439834350.ch27]
3. Connor, J. J., 2003. Introduction to Structural Motion Control. s.l.:Pearson Education Ltd..
4. Cheng, Y. F., Jiang, H. & Lou, K., 2008. SMART STRUCTURES, Innovative systems for Seismic Response Control. s.l.:CRC Press. [DOI:10.1201/9781420008173]
5. Cha, Y.-J.et al., 2013. Comparative Studies of Semiactive Control Strategies for MR Dampers: Pure Simulation and Real-Time Hybrid Tests. JOURNAL OF STRUCTURAL ENGINEERING, pp. 1237-1248. [DOI:10.1061/(ASCE)ST.1943-541X.0000639]
6. Dyke, S. J., Spencer Jr., B. F., Sain, M. K. & Carlson, J. D., 1996. Experimental Verification of Semi-Active Structural Control Strategies Using Acceleration Feedback. Chiba, Japan, s.n., pp. 291-296.
7. Hiramoto, K., Matsuoka, T. & Sunakoda, K., 2016. Semi-active vibration control of structural systems based on a reference active control law: output emulation approach. STRUCTURAL CONTROL AND HEALTH MONITORING, Volume 23, pp. 423-445. [DOI:10.1002/stc.1770]
8. Jansen, L. M. & Dyke, S. J., 2000. Semi-Active Control Strategies for MR Dampers: A Comparative Study. Journal of Engineering Mechanics, pp. 795-803. [DOI:10.1061/(ASCE)0733-9399(2000)126:8(795)]
10. Hashemi, S. M. A., Haji Kazemi, H. & Karamodin, A., 2016. Localized genetically optimized wavelet neural network for semiactive control of buildings subjected to earthquake. STRUCTURAL CONTROL AND HEALTH MONITORING. [DOI:10.1002/stc.1823]
11. Liu, Y., Lin, T. & Chang, K., 2018. Analytical and experimental studies on building mass damper system with semi‐active control device. Structural Control and Health Monitoring. [DOI:10.1002/stc.2154]
12. Zafarani, M. M. & Halabian, A. M., 2018. Supervisory adaptive nonlinear control for seismic alleviation of inelastic asymmetric buildings equipped with MR dampers. Engineering Structures, Volume 176, pp. 849-858. [DOI:10.1016/j.engstruct.2018.09.045]
13. Huang, K., Betti, R. & Ettouney, M. M., 1999. INSTANTANEOUS OPTIMAL CONTROL FOR SEISMIC ANALYSIS OF NON-LINEAR STRUCTURES. Journal of Earthquake Engineering, 3(1), pp. 83-106. [DOI:10.1080/13632469909350341]
14. Spencer Jr., B. F., Dyke, S. J., Sain, M. K. & Carlson, J. D., 1997. Phenomenological Model For Magnetorheological Dampers. Journal of Engineering Mechanics, pp. 230-238. [DOI:10.1061/(ASCE)0733-9399(1997)123:3(230)]
15. Chae, Y., Ricles, J. M. & Sause, R., 2013. Modeling of a large-scale magneto-rheological damper for seismic hazard mitigation. Part I: Passive mode. EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, Volume 42, p. 669-685. [DOI:10.1002/eqe.2237]
16. Winter, B. D. & Swartz, R. A., 2017. Low‐force magneto‐rheological damper design for small‐scale structural control. Structural Control and Health Monitoring. [DOI:10.1002/stc.1990]
17. Yanik, A. & Aldemir, U., 2019. A simple structural control model for earthquake excited structures. Engineering Structures, Volume 182, pp. 79-88. [DOI:10.1016/j.engstruct.2018.12.075]
18. American Society of Civil Engineers & Structural Engineering Institute, 2010. Minimum Design Loads for Buildings and Other Structures. ASCE/SEI.