Simulation of Wave and Non-Newtonian Mud Interaction using an ‎‎ISPH Based on Modified Inter-Particle Average ‎

Document Type : Research

Authors

1 K.N. Toosi University of Technology, Tehran, IRAN, hejazik@kntu.ac..ir

2 K.N. Toosi University of Technology, Tehran, IRAN, soltanpour@kntu.ac.ir

3 K.N. Toosi University of Technology, Tehran, IRAN, a.aslani@mail.kntu.ac.ir

Abstract

Fluid mud is found in ‎many areas, ‎including coastal ‎area ‎and river ‎estuaries.‎ The typical ‎characteristics of ‎overlaying waves ‎interacting with ‎muddy beds are mud ‎mass transport and ‎high wave ‎‎attenuation ‎‎(dissipation). In this ‎study, an ‎Incompressible ‎Smoothed Particle ‎Hydrodynamics‏ ‏‏‎(ISPH) ‎method has ‎been developed to ‎simulate the ‎interaction of wave ‎and non-Newtonian ‎mud. A modified ‎inter-particle ‎average technique ‎was used to solve the ‎‎discontinuity through ‎the interface. An ‎iterative method was ‎applied to update ‎viscous force and to ‎fulfill the requirement ‎of the full ‎‎incompressibility ‎of ‎the fluid. An improved ‎formulation of ‎viscous force terms, ‎new interface and ‎‎free-surface ‎treatments have been ‎presented. Some ‎hydrodynamic tests ‎were performed to ‎‎verify the model by ‎comparing the ‎simulated results with ‎‎analytical solutions. ‎Several wave-mud ‎simulations were ‎carried out to ‎investigate ‎ mass ‎transport velocities ‎and wave attenuation ‎‎in the mud layer ‎under the different ‎wave and mud ‎characteristics. To ‎validate the results, ‎the simulated results ‎were compared with ‎the laboratory ‎measurements. The ‎new modifications ‎‎improve the force ‎transferred from the ‎surface wave into the ‎fluid mud and ‎enhance the ‎‎simulated results in ‎terms of the position ‎of the particles, ‎dissipation rate, and ‎mud mass transport ‎velocity. An ‎intense ‎gradient in the mass ‎transport velocity is ‎found at the water-‎mud interface. ‎

Keywords

Main Subjects


  • Samsami, F., Haghshenas, S. A., Soltanpour, M., 2022. Physical and rheological characteristics of sediment for nautical depth assessment in Bushehr Port and its access channel. Water, 14 (24), 4116, https://doi.org/10.3390/w14244116.
  • Li, W., Li, M., Zhang, X., Li, J. (2023). Characteristics of fluid mud in the Yangtze Estuary: Storm, tide, and slope-triggered sediment dynamics and effects, Estuarine. Coastal and Shelf Science, 281, 108194. https://doi.org/10.1016/j.ecss.2022.108194.
  • Hejazi, K., Soltanpour, M., Aslani Kordkandi, A. (2023). An incompressible SPH numerical model for simulating wave and non-Newtonian mud interaction. Coastal Engineering 185 104379. doi.org/10.1016/j.coastaleng.2023.104379.
  • Sakakiyama, T., Bijker, E.W. (1989). Mass transport velocity in mud layer due to progressive waves. J. Waterway Port Coast Ocean Eng. ASCE, 115 (5), 614–633.
  • Soltanpour, M., Samsami, F. (2011). A comparative study on the rheology and wave dissipation of kaolinite ‎and natural Hendijan Coast mud. the Persian Gulf. Ocean Dynamics, 61, 295‎–‎‎
  • Hsu, W.Y., Wung, H.H., Hsu, T.J., Torres‎–‎Freyermuth, A., Yang, R.Y. (2013). An experimental and numerical investigation on wave‎–‎mud interactions. J. Geophys. Res. Oceans, 118, 1126–1141.
  • Soltanpour, M., Shamsnia, S.H., Shibayama, T., Nakamura, R. (2018). A study on mud particle velocities and mass transport in wave‎–‎current‎–‎ Applied Ocean Research, 78, 267–280.
  • Shamsnia, S.H., Soltanpour, M., Bavandpour, M., Gualtieri, C. (2019). A Study of Wave ‎Dissipation Rate and Particles Velocity in Muddy Beds. Geosciences, 9, 212. ‎https://doi.org/10.3390/geosciences9050212.‎
  • Soltanpour, M., Shamsnia, S.H., Shibayama, T. et al. (2020). Experimental and analytical ‎investigation of the response of a mud layer to solitary waves. Ocean Dynamics 70, 165–186. ‎https://doi.org/10.1007/s10236-019-01319-6‎.
  • Quesada, A., Bautista, E., Méndez, F. (2022). Damping coefficient by long waves-‎viscoelastic mud–current interaction. Physics of Fluids 34, (9). ‎https://doi.org/10.1063/5.0098055. ‎
  • Mahshid, K., Ghader, S., Shamsnia, S.H. et al. (2022). An analytical solution to wave ‎dissipation induced by interacting waves and currents with muddy deposits. Ocean Dynamics ‎‎72, 715–730. https://doi.org/10.1007/s10236-022-01526-8‎.
  • Hejazi, K., Soltanpour, M., Sami, S. (2013). Numerical modeling of wave‎–‎mud interaction using projection method. Ocean Dynamics, 63, 1093‎–‎
  • Zainali A., Tofighi N., Shadloo M.S, Yildiz M. (2013). Numerical investigation of Newtonian and non-Newtonian multi-‎phase Flows Using ISPH Method. Comput Meth Appl Mech Eng, 254, 99–113.‎
  • Monaghan, J.J., Rafiee, A. (2013). A simple SPH algorithm for multi‎–‎fluid flow with high density ratios. Int. ‎ Numer. Meth. In Fluids, 71, 537–561.‎
  • Hu, X.Y., Adams, N.A. (2007). An incompressible multi‎–‎phase SPH method. Journal of Computational Physics, 227, 264–278.
  • Hu, X.Y., Adams, N.A. (2009). A constant‎–‎density approach for incompressible multi‎–‎phase SPH. Journal of Computational Physics, 228 (6), 2082 – 2091.
  • Harada, E., H., Ikari, Tazaki, T., Gotoh, H. (2021). Numerical simulation for coastal morphodynamics using ‎DEM-MPS method. Applied Ocean Research 117(9),102905. DOI: 10.1016/j.apor.2021.102905.‎
  • Tsurudome, C., Liang, D., Shimizu, Y., Khayyer, A., Gotoh, H. (2021). Study of beach permeability’s ‎‎influence ‎on solitary wave runup with ISPH method. Applied Ocean Research, 117,102957.‎
  • Mao, Y., Kong, Y., Guan, M. (2022). GPU-accelerated SPH modelling of flow-driven sediment erosion with ‎‎‎different rheological models and yield criteria. Powder Technology, 412, 118015.‎
  • Tazaki, T., Harada, E., Gotoh, H. (2023). Grain-scale investigation of swash zone sediment transport on a ‎‎gravel ‎beach using DEM-MPS coupled scheme. Coastal Engineering Journal, 65(2), 347–368.‎
  • Xu, F., Wang, J., Yang, Y., Wang, L., Dai, Z., Han, R. (2023). On methodology and ‎application of smoothed ‎particle hydrodynamics in fluid, solid and biomechanics. Acta ‎ Sin., 39, 722185. ‎https://doi.org/10.1007/ s10409-022-22185-x .‎
  • Nabian, M. A., Farhadi, L. (2017). Multiphase mesh-free particle method for simulating granular flows and ‎‎sediment transport. Journal of Hydraulic Engineering, 143(4), 4016102.‎
  • Wang, L., Jiang, Q., Khayyer, A., Zhang, C. (2019). A multiphase particle method for interaction between ‎‎‎sluicing water and fluvial mud beds. Proceedings of the Twenty-ninth International Ocean and Polar ‎‎‎Engineering Conference.‎
  • Han, Z., Su, B., Li, Y., Wang, W., Wang, W., Huang, J., Chen, G. (2019). Numerical simulation of debris-flow ‎behavior based on the SPH method incorporating the Herschel-Bulkley-Papanastasiou rheology model. ‎Engineering Geology, 225, 26-36.‎
  • Shao, S., Lo, E.Y.M. (2003). Incompressible SPH method for simulating Newtonian and non‎–‎Newtonian ‎flows with a free surface. Advances in water resources, 26 (7), 787‎–‎‎
  • Monaghan, J.J. (2005). Smoothed particle hydrodynamics, Reports on Progress in Physics, 68, 1703–1759.‎
  • Kruisbrink, A., Korzilius, S., Pearce, F., Morvan, H. (2018). SPH particle collisions for the reduction of ‎particle clustering, interface stabilisation and wall modelling. Journal of Applied Mathematics and Physics, ‎‎6 (9), DOI: 10.4236/jamp.2018.69158. ‎
  • Ataie‎-‎Ashtiani, B., Shobeiry, G., Farhadi, L. (2008). Modified incompressible SPH method for simulating ‎free surface problems. Fluid Dynamic Research, 40, 637–661.‎
  • Chen, Z., Zong, Z., Liu, M.B., Zou, L., Li, H.T., Shu, C. (2015). An SPH model for multiphase flows with ‎complex interfaces and large density differences. Journal of Computational Physics, 283, 169–188. ‎
  • Khayyer, A., Gotoh, H., Shao, S. (2008). Corrected Incompressible SPH method for accurate water-surface‏ ‏tracking in breaking waves. Coastal Engineering, 55, 236-250.‎
  • Papanastasiou, T.C. (1987). Flows of materials with yield. journal of rheology, 31, 385-404. ‎https://doi.org/10.1122/1.549926.‎
  • Bonet, J., Lok, T.S. (1999). Variational and momentum preservation aspects of smooth particle ‎hydrodynamic ‎ Comput. Methods Appl. Mech. Eng., 180 (1-2), 97–115.‎
  • Lee J.J. et al. (1982). Measurement of velocities in solitary waves. J. Waterway Port, Coast Ocean Div, ASCE ‎‎108 (2). https://doi.org/10.1061/JWPCDX.0000293.
  • Dean R.G., Dalrymple R.A. (1991). Water Wave Mechanics for Engineers and Scientists. Prentice-Hall, Englewood Cliffs, ‎‎‎
  • Iwasaki T., Sato M. ‎‎(1972). Dissipation of wave energy due to opposing current. 13th Coastal Eng. Conf., ASCE, 1, ‎‎605–622.‎
  • Shibayama T., Okuno M., Sato S. (1990). Mud transport rate in mud layer due to wave action. Proc. Coast. Eng., ASCE, 3037–3049.