Study of the Elastic and Inelastic Resistance to Lateral Torsional Buckling of Steel Semi-Compact I-Sections

Document Type : Research

Authors

1 Ph.D, Faculty of Science and Technology, Civil Engineering Department, University of Tebessa, BP 02, route de Constantine, Tébessa 12000, Algeria.

2 Senior lecturer in steel structures, Faculty of Science and Technology, Civil Engineering Department, University of Tebessa, BP 02, route de Constantine, Tébessa 12000, Algeria.

Abstract

This paper uses a parametric numerical study to assess the Lateral-torsional buckling (LTB) performance of several semi-compact beams: S1, S2, and S3. The carrying capacity of these beams, predominantly loaded in bending, is approached by elastic and inelastic buckling analyses. A series of parameters that are believed to influence the resistance to LTB of class 3 beams to (EC3) steel I-beams, namely boundary conditions, flange thickness, and load application level, are investigated. An eigenvalue analysis that predicts the theoretical buckling strength through 3D computational elastic beam models is first conducted using LTBEAM software and ABAQUS. A good agreement in the prediction of Mcr was found. Then, a parametric inelastic buckling analysis is performed using the Riks method implanted in ABAQUS. Results have shown the importance of the lateral restraint conditions and the transverse stiffeners to LTB resistance of compressive flange slenderness following EC3-1-1 for cross sections with a class 3 web and class 1 or 2 flange. In addition, an interaction of local buckling (LB) and LTB in the flanges was observed exclusively for restrained beams. The applied load level strongly affects the beams' elastic and inelastic resistance to LTB. 

Keywords


[1] Timoshenko, S. P., & Gere, J. M. (1963). Theory of Elastic Stability. 2nd ed., New York:: McGraw-Hill.
 
[2] Chajes, A. (1974). Principles of Structural Stability. 1st ed., New Jersey:: Prentice-Hall.
 
[3] Trahair, N. S. (1993). Flexural-Torsional Buckling of Structures. 1st ed., E & FN SPON, London:: Taylor & Francis Group.
https://doi.org/10.1201/9781482271218
 
[4] Benyamina, A. B., Meftah, S. A., Mohri, F., & Daya, E. M. (2013). Analytical solutions attempt for lateral torsional buckling of doubly symmetric web-tapered I-beams. Engineering Structures, 56, 1207-1219.
https://doi.org/10.1016/j.engstruct.2013.06.036
 
[5] Ozbasaran, H., Aydin, R., & Dogan, M. (2015). An alternative design procedure for lateral-torsional buckling of cantilever I-beams. Thin-Walled Structures, 90, 235-242.
https://doi.org/10.1016/j.tws.2015.01.021
 
[6] Wang, Y. Q., Yuan, H. X., Shi, Y. J., & Chenk, M. (2012). Lateral-torsional buckling resistance of aluminum I-beam. Thin-Walled Structures, 50, 24-36.
https://doi.org/10.1016/j.tws.2011.07.005
 
[7] Da Silva, L. S., Rebelo, C., Nethercot, D., Marques, L., Simões, R., & Real, PMM. (2009). Statistical evaluation of the lateral-torsional buckling resistance of steel I-beams. Part 2: Variability of steel properties, Journal of Constructional Steel Research, 65, 832-849.
https://doi.org/10.1016/j.jcsr.2008.07.017
 
[8] Rahair, N. S. (2009). Buckling analysis design of steel frames. Journal of Constructional Steel Research, 65, 1459-1463.
https://doi.org/10.1016/j.jcsr.2009.03.012
 
[9] Piotrowski, R., & Szychowski, A. (2019). Lateral Torsional Buckling of Steel Beams Elastically Restrained at the Support Nodes. Applied Sciences, 9, 1-17.
https://doi.org/10.3390/app9091944
 
[10] EN 1993-1-1:2005. (2005). Eurocode 3 Design of steel structures-Part 1-1: General rules and rules for buildings, European Committee for Standardization (CEN), Brussels.
 
[11] López, A., Yong, D. J., & Serna, M. A. (2006). Lateral-torsional buckling of steel beams: A general expression for the moment gradient factor. In Proceedings of the Stability and Ductility of Steel Structures Lisbon, Portugal.
 
[12] Li, X. X. (2007). Flexural strength for general lateral-torsional buckling. Journal of Structural Engineering, 133, 674-682.
https://doi.org/10.1061/(ASCE)0733-9445(2007)133:5(674)
 
[13] Trahair, N. S., Bradford, M. A., Nethercot, D. A., & Gardner, L. (2008). The Behaviour and Design of Steel Structures to EC3. Taylor and Francis, (4), London, New York.
 
[14] Yilmaz, T., & Kirac, N. (2016). On the Evaluation of Critical Lateral-Torsional Buckling Loads of Monosymmetric Beam-Columns. World Academy of Science, Engineering, and Technology International Journal of Civil and Environmental Engineering, 10, 885-892.
 
[15] Unterweger, H., Taras, A., & Feher, Z. (2016). Lateral-torsional buckling behavior of I-section beam-columns with one-sided rotation and warping restraint. Steel Construction, 9, 24-32.
https://doi.org/10.1002/stco.201610009
 
[16] Özbaşaran, H. (2013). Finite differences approach for calculating elastic lateral torsional buckling moment of cantilever I section. Journal of Science and Technology, 14, 143-152.
 
[17] Samanta, A., & Kumar, A. (2008). Distortional buckling in braced-cantilever I-beams. Thin Walled Structures, 46, 637-645.
https://doi.org/10.1016/j.tws.2007.12.004
 
[18] Eryiğit, E., Zor, M., & Arman, Y. (2009). Hole effects on lateral buckling of laminated cantilever beams. Composites Part B: Engineering, 40, 174-179.
https://doi.org/10.1016/j.compositesb.2008.07.005
 
[19] Balázs, I., & Melcher, J. (2015). Lateral torsional buckling of steel thin-walled beams with lateral restraints. International Journal of Civil, Engineering, Structural, Construction and Architectural Engineering, 9, 730-735.
 
[20] Jandera, M., Prachar, M., & Wald, F. (2020). Lateral torsional buckling of class 4 section uniform and web tapered beams at elevated temperature. Thin Walled Structures, 146, 1-12.
https://doi.org/10.1016/j.tws.2019.106458
 
[21] ˇSorf, M., & Jandera, M. (2020). Lateral-torsional buckling of slender cross-section stainless steel beams. Structures, 28, 1466-1478.
https://doi.org/10.1016/j.istruc.2020.09.073
 
[22] Kuś, J., & Maleska, T. (2021). Lateral torsional buckling of tapered steel I-beams with stiffener ribs. Modern Trends in Research on Steel, Aluminium and Composite Structures, 428-434.
https://doi.org/10.1201/9781003132134-55
 
[23] Kuś, J. (2015). Lateral-torsional buckling steel beams with simultaneously tapered flanges and web. Steel Composite Structures An International Journal, 19(4), 897-916.
https://doi.org/10.12989/scs.2015.19.4.897
 
[24] Soltani, M., Asgarian, B., & Mohri, F. (2019). Improved Finite Element Model for Lateral Stability Analysis of Axially Functionally Graded Nonprismatic I-beams. International Journal of Structural Stability and Dynamics, 19(9), 1-38.
https://doi.org/10.1142/S0219455419501086
 
[25] Soltani, M., Asil Gharebaghi, S., & Mohri, F. (2018). Lateral stability analysis of steel tapered thin-walled beams under various boundary conditions. Numerical Methods in Civil Engineering journal, 3(1), 13-25.
https://doi.org/10.29252/nmce.3.1.13
 
[26] Piotrowski, R., & Szychowski, A. (2022). The Effect of Steel Beam Elastic Restraint on the Critical Moment of Lateral Torsional Buckling. Materials, 15(4), 1275.
https://doi.org/10.3390/ma15041275
 
[27] Andrade, A., Camotim, D., & Providência, e Costa P. (2007). On the evaluation of elastic critical moments in doubly and singly symmetric I-section cantilevers. Journal of Constructional Steel Research, 63, 894-908.
https://doi.org/10.1016/j.jcsr.2006.08.015
 
[28] CTICM, LTBeam. (2001). Saint-Aubin, France.
 
[29] Galéa, Y. (2003). Moment critique de déversement élastique de poutres fléchies présentation du logiciel LTBEAM. Revue Construction Métallique, CTICM. https://www.cticm.com/centre-de-ressources.
 
[30] Dassault Systèmes Simulia Corp, ABAQUS/Standard User's Manual, version 6.13. (2013). Providence, RI. www.simulia.com.
 
[31] Oñate. (1992). Cálculo de Estructuras por el Método de Elementos Finitos. 1st ed., Spain :: CIMNE.
 
[32] Clark, J. W., & Hill, H. N. (1960). Lateral buckling of beams. Journal of Structural Division, 86, 175-196.
https://doi.org/10.1061/JSDEAG.0000540
 
[33] Chan, S. L. (2009). Guide on second-order and advanced analysis of structures. 2nd version.
 
[34] UY, B. (2006). Local and interaction buckling of composite construction members. in: Shanmugan, N. E., & Wang, C. M. (2nd Eds.), Analysis and Design of Plated Structures. Woodhead Publishing Series in Civil and Structural Engineering, School of Civil Engineering, University of Sydney, NSW, Australia. 343-363. https://doi.org/10.1016/B978-0-12-823570-6.00017-3