SPH Technique to Study the Sloshing in Concrete Liquid Tanks

Document Type : Research

Authors

1 PhD in Structural Engineering, Civil Engineering Department, K. N. Toosi University of Technology, Tehran, Iran.

2 Associate Professor, Civil Engineering Department, K. N. Toosi University of Technology, Tehran, Iran.

3 Graduate Student in Structural Engineering, Civil Engineering Department, K. N. Toosi University of Technology, Tehran, Iran.

Abstract

This study aims to consider the sloshing height and hydrodynamic pressure in roofless and roofed liquid storage tanks utilizing a coupled FE-SPH technique. As a design technique for determining the necessary analyses and main parameters to reach reasonable results, the Taguchi method is used. The SPH formulation models the liquid concerning the large amplitude sloshing waves, and the finite element method simulates the structure. At first, it is found that expressions presented in ACI 350.3-06 should be revised when calculating the sloshing height in a rectangular tank. Secondly, when determining the hydrodynamic pressure applied on the roof and, also the sloshing height, the frequency content of the input ground motion affects significantly the contained liquid responses. Comparison of the results obtained for roofed and roofless tanks indicate no clear correlation between their dynamic responses. The results of this study suggest the ratio of liquid height to its length, the length itself, and earthquake record PGA as noise parameters in Taguchi analysis. At last, the suggested Taguchi analysis’s main design parameters for future studies are the acceleration spectrum intensity ASI and the liquid’s height in the storage tank.

Keywords

Main Subjects


[1] Westergaard, H. M. (1933). Water pressures on dams during earthquakes. Transactions of the American society of Civil Engineers, 98(2), 418-433.
https://doi.org/10.1061/TACEAT.0004496
 
[2] Jacobsen, L. S. (1949). Impulsive hydrodynamics of fluid inside a cylindrical tank and of fluid surrounding a cylindrical pier. Bulletin of the Seismological Society of America, 39(3), 189-204.
https://doi.org/10.1785/BSSA0390030189
 
[3] Housner, G. W. (1957). Dynamic pressures on accelerated fluid containers. Bulletin of the seismological society of America, 47(1), 15-35.
https://doi.org/10.1785/BSSA0470010015
 
[4] Housner, G. W. (1963). The dynamic behavior of water tanks. Bulletin of the seismological society of America, 53(2), 381-387.
https://doi.org/10.1785/BSSA0530020381
 
[5] Mostafaei, H., Behnamfar, F., & Alembagheri, M. (2022). Reliability and sensitivity analysis of wedge stability in the abutments of an arch dam using artificial neural network. Earthquake Engineering and Engineering Vibration, 21(4), 1019-1033.
https://doi.org/10.1007/s11803-022-2133-0
 
[6] Mostafaei, H., Mostofinejad, D., Ghamami, M., & Wu, C. (2023). A new approach of ensemble learning in fully automated identification of structural modal parameters of concrete gravity dams: A case study of the Koyna dam. Structures, 50, 255-271.
https://doi.org/10.1016/j.istruc.2023.02.034
 
[7] Mashayekhi, M., & Mostafaei, H. (2020). Determining the critical intensity for crack initiation in concrete arch dams by endurance time method. Numerical Methods in Civil Engineering, 5(2), 21-32.
https://doi.org/10.52547/nmce.5.2.21
 
[8] Haroun, M. A., & Tayel, M. A. (1985). Response of tanks to vertical seismic excitations. Earthquake engineering & structural dynamics, 13(5), 583-595.
https://doi.org/10.1002/eqe.4290130503
 
[9] Babu, S. S., & Bhattacharyya, S. K. (1996). Finite element analysis of fluid-structure interaction effect on liquid retaining structures due to sloshing. Computers & structures, 59(6), 1165-1171.
https://doi.org/10.1016/0045-7949(95)00271-5
 
[10] Virella, J. C., Prato, C. A., & Godoy, L. A. (2008). Linear and nonlinear 2D finite element analysis of sloshing modes and pressures in rectangular tanks subject to horizontal harmonic motions. Journal of Sound and Vibration, 312(3), 442-460.
https://doi.org/10.1016/j.jsv.2007.07.088
 
[11] Kianoush, M. R., & Ghaemmaghami, A. R. (2011). The effect of earthquake frequency content on the seismic behavior of concrete rectangular liquid tanks using the finite element method incorporating soil-structure interaction. Engineering structures, 33(7), 2186-2200.
https://doi.org/10.1016/j.engstruct.2011.03.009
 
[12] Manser, W. S., Touati, M., & Barros, R. C. (2017). The maximum sloshing wave height evaluation in cylindrical metallic tanks by numerical means. In MATEC Web of Conferences95, 17005.
https://doi.org/10.1051/matecconf/20179517005
 
[13] Zhang, Y., & Wan, D. (2018). MPS-FEM coupled method for sloshing flows in an elastic tank. Ocean Engineering, 152, 416-427.
https://doi.org/10.1016/j.oceaneng.2017.12.008
 
[14] Liu, G. R., & Liu, M. B. (2003). Smoothed particle hydrodynamics: a meshfree particle method. World scientific.
https://doi.org/10.1142/5340
 
[15] Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly notices of the royal astronomical society, 181(3), 375-389.
https://doi.org/10.1093/mnras/181.3.375
 
[16] Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 82, 1013-1024.
https://doi.org/10.1086/112164
 
[17] Groenenboom, P. H., & Cartwright, B. K. (2010). Hydrodynamics and fluid-structure interaction by coupled SPH-FE method. Journal of Hydraulic Research, 48(sup1), 61-73.
https://doi.org/10.1080/00221686.2010.9641246
 
[18] Hu, D., Long, T., Xiao, Y., Han, X., & Gu, Y. (2014). Fluid-structure interaction analysis by coupled FE-SPH model based on a novel searching algorithm. Computer Methods in Applied Mechanics and Engineering, 276, 266-286.
https://doi.org/10.1016/j.cma.2014.04.001
 
[19] Nunez‐Ramirez, J., Marongiu, J. C., Brun, M., & Combescure, A. (2017). A partitioned approach for the coupling of SPH and FE methods for transient nonlinear FSI problems with incompatible time‐steps. International Journal for Numerical Methods in Engineering, 109(10), 1391-1417.
https://doi.org/10.1002/nme.5331
 
[20] Han, L., & Hu, X. (2018). SPH modeling of fluid-structure interaction. Journal of Hydrodynamics, 30, 62-69.
https://doi.org/10.1007/s42241-018-0006-9
 
[21] D Jena and K C Biswal. Violent sloshing and wave impact in a seismically excited liquid-filled tank: Meshfree particle approach. Journal of Engineering Mechanics, 144(3), 04017182. doi: 10.1061/(ASCE) EM.1943-7889.0001364.
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001364
 
[22] Xu, Y., Yu, C., Liu, F., & Liu, Q. (2019). A coupled NMM-SPH method for fluid-structure interaction problems. Applied Mathematical Modelling, 76, 466-478.
https://doi.org/10.1016/j.apm.2019.06.020
 
[23] Dinçer, A. E., Demir, A., Bozkuş, Z., & Tijsseling, A. S. (2019). Fully Coupled Smoothed Particle Hydrodynamics-Finite Element Method Approach for Fluid-Structure Interaction Problems With Large Deflections. Journal of Fluids Engineering, 141(8), 081402.
https://doi.org/10.1115/1.4043058
 
[24] Moslemi, M., Farzin, A., & Kianoush, M. R. (2019). Nonlinear sloshing response of liquid-filled rectangular concrete tanks under seismic excitation. Engineering Structures, 188, 564-577.
https://doi.org/10.1016/j.engstruct.2019.03.037
 
[25] Ng, K. C., Alexiadis, A., Chen, H., & Sheu, T. W. H. (2020). A coupled smoothed particle hydrodynamics-volume compensated particle method (SPH-VCPM) for fluid structure interaction (FSI) modelling. Ocean Engineering, 218, 107923.
https://doi.org/10.1016/j.oceaneng.2020.107923
 
[26] Kalateh, F., & Koosheh, A. (2020). Simulation of cavitating fluid-Structure interaction using SPH-FE method. Mathematics and Computers in Simulation, 173, 51-70.
https://doi.org/10.1016/j.matcom.2020.01.019
 
[27] Varas, D., Zaera, R., & López-Puente, J. (2009). Numerical modelling of the hydrodynamic ram phenomenon. International Journal of Impact Engineering, 36(3), 363-374.
https://doi.org/10.1016/j.ijimpeng.2008.07.020
 
[28] Kackar, R. N. (1985). Off-line quality control, parameter design, and the Taguchi method. journal of Quality Technology, 17(4), 176-188.
https://doi.org/10.1080/00224065.1985.11978964
 
[29] Leon, R. V., Shoemaker, A. C., & Kacker, R. N. (1987). Performance measures independent of adjustment: an explanation and extension of Taguchi's signal-to-noise ratios. Technometrics, 29(3), 253-265.
https://doi.org/10.1080/00401706.1987.10488231
 
[30] Pignatiello Jr, J. J. (1988). An overview of the strategy and tactics of Taguchi. IIE transactions, 20(3), 247-254.
https://doi.org/10.1080/07408178808966177
 
[31] Tsui, K. L. (1992). An overview of Taguchi method and newly developed statistical methods for robust design. Iie Transactions, 24(5), 44-57.
https://doi.org/10.1080/07408179208964244
 
[32] Ground motion database. https://peer.berkeley.edu/peer-strong-ground-motion-databases.
 
[33] Elnashai, A. S., & Di Sarno, L. (2015). Fundamentals of earthquake engineering: from source to fragility. John Wiley & Sons.
 
[34] Kianoush, M. R., Mirzabozorg, H., & Ghaemian, M. (2006). Dynamic analysis of rectangular liquid containers in three-dimensional space. Canadian Journal of Civil Engineering, 33(5), 501-507.
https://doi.org/10.1139/l05-120
 
[35] Goudarzi, M. A., & Sabbagh-Yazdi, S. R. (2012). Investigation of nonlinear sloshing effects in seismically excited tanks. Soil Dynamics and Earthquake Engineering, 43, 355-365.
https://doi.org/10.1016/j.soildyn.2012.08.001
 
[36] ACI Committee 350.3-06. (2006). Seismic design of liquid-containing concrete structures (ACI 350.3-06) and commentary (ACI 350.3R-06). American Concrete Institute (ACI), Farmington Hills, United States.
 
[37] Bradley, B. A. (2010). Site-specific and spatially distributed ground-motion prediction of acceleration spectrum intensity. Bulletin of the Seismological Society of America, 100(2), 792-801.
https://doi.org/10.1785/0120090157
 
[38] Thun, J., Roehm, L. H., Scott, G. A., & Wilson, J. (1988). Earthquake ground motions for design and analysis of dams. Geotechnical special publication, 20, 463- 481.