Volume 7, Issue 1 (9-2022)                   NMCE 2022, 7(1): 28-36 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tehranizadeh M, Khademi M, Shirkhani A. Seismic assessment of a dual concentrically braced steel structure under near-fault ground motions. NMCE 2022; 7 (1) :28-36
URL: http://nmce.kntu.ac.ir/article-1-409-en.html
1- Professor, Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran. , tehranizadeh@aut.ac.ir
2- MSc, Department of Civil and Environmental Engineering, Amirkabir ‎University of Technology, Tehran, Iran.‎
3- PhD, Department of Structural Engineering, Faculty of Civil Engineering, ‎University of Tabriz, Tabriz, Iran.‎‏ ‏
Abstract:   (765 Views)
In this paper, the ‎seismic performance of ‎a five-story steel ‎structure with a dual ‎system used as a lateral load resisting system ‎comprised of a moment-resisting frame ‎and a concentrically ‎braced frame is ‎evaluated ‎under near-field ground motion ‎records with and ‎without pulses. This research paper aims to ‎evaluate ‎the pulses’ ‎effects ‎on ‎the ‎probability ‎of ‎the ‎collapse, global ‎damage index, ‎and the ‎annual and 50-‎‎year collapse risks of ‎the ‎structure ‎with such dual ‎systems, which have been less ‎considered‎ in previous ‎research works. To this ‎end, ‎incremental ‎dynamic ‎analyses ‎are ‎performed, and to ‎determine the ‎probability that the ‎studied structure ‎will ‎exceed a specific ‎damage state, ‎fragility ‎functions are ‎developed. ‎The ‎global damage index ‎of the structure is also ‎computed, and a full ‎assessment of the ‎collapse risk of the ‎structure is carried ‎out under the ‎near-field ‎ground ‎motion ‎records ‎with ‎and ‎without ‎pulses. ‎Finally, It is ‎concluded ‎that ‎the ‎probability ‎of ‎ ‎collapse, global ‎damage index, ‎and the ‎annual and 50-‎‎year collapse risks of ‎the ‎‎structure subjected ‎to ‎the ground ‎motions ‎with pulses ‎are ‎higher than the ‎ground ‎motions ‎without ‎pulses. For the pulse periods larger than two times the period‎ of the ‎first ‎mode of the ‎structure, ‎the ‎intensification occurs due to the equalization ‎of the increased period of the first mode of the ‎structure and the ‎period of the pulse. 
Full-Text [PDF 660 kb]   (206 Downloads)    
Type of Study: Research | Subject: General
Received: 2022/02/25 | Revised: 2022/03/17 | Accepted: 2022/03/19 | ePublished ahead of print: 2022/06/6

References
1. Tirca, L., Chen, L., & Tremblay, R. (2015). Assessing Collapse Safety of CBF Buildings Subjected to Crustal and Subduction Earthquakes. Journal of Constructional Steel Research, 115, 47-61. [DOI:10.1016/j.jcsr.2015.07.025]
2. Bosco, M., & Tirca, L. (2017). Numerical Simulation of Steel I-shaped Beams Using a Fiber-based Damage Accumulation Model. Journal of Constructional Steel Research, 133, 241-255. [DOI:10.1016/j.jcsr.2017.02.020]
3. Liao, K. W., Wen, Y. K., & Foutch, D. A. (2007). Evaluation of 3D Steel Moment Frames Under Earthquake Excitations. I: Modeling. Journal of Structural Engineering, 133(3), 462-470. [DOI:10.1061/(ASCE)0733-9445(2007)133:3(462)]
4. Ebrahimi, A., Edalati, M., Valizadeh, M., & Karimipour, A. (2021). Increase the Effectiveness of AMTMDs and PMTMDs on the Seismic Behaviour of Structures Case Study: Ten-stories Short Period Concrete Building. Engineering Structures, 237, Article e112122. [DOI:10.1016/j.engstruct.2021.112122]
5. Ghalehnovi, M., Karimipour, A., & Azad Darmian, J. (2019). Study of the Effect of Friction Rotational Damper, Viscoelastic and TADAS on the Structures Seismic Behaviour. Journal of Modeling in Engineering, 17(59), 87-107.
6. Ghalehnovi, & Mansour. (2021). Investigation Responses of the Diagrid Structural System of High-rise Buildings Equipped with Tuned Mass Damper Using New Dynamic Method. Journal of Building Material Science, 1. [DOI:10.30564/jbms.v1i2.2580]
7. National Research Council Canada. (2015). National Building Code of Canada 2015.
8. Kiggins, S., & Uang, C. M. (2006). Reducing Residual Drift of Buckling-restrained Braced Frames as a Dual System. Engineering Structures, 28(11), 1525-1532. [DOI:10.1016/j.engstruct.2005.10.023]
9. Xie, Q. (2008). Dual System Design of Steel Frames Incorporating Buckling-Restrained Braces. The 14th World Conference on Earthquake Engineering, Beijing, China.
10. Bosco, M., Marino, E. M., & Rossi, P. P. (2012). Behavior Factor of Dual Concentrically Braced Systems Designed by Eurocode 8. The 15th World Conference on Earthquake Engineering, Lisbon, Porttugal.
11. Giugliano, M. T., Longo, A., Montuori, R., & Piluso, V. (2010). Failure Mode and Drift Control of MRF-CBF Dual Systems. The Open Construction & Building Technology Journal, 4(1). [DOI:10.2174/1874836801004010121]
12. Longo, A., Montuori, R., & Piluso, V. (2014). Theory of Plastic Mechanism Control for MRF-CBF Dual Systems and its Validation. Bulletin of Earthquake Engineering, 12(6), 2745-2775. [DOI:10.1007/s10518-014-9612-2]
13. Longo, A., Montuori, R., & Piluso, V. (2016). Moment Frames-concentrically Braced Frames Dual Systems: Analysis of Different Design Criteria. Structure and Infrastructure Engineering, 12(1), 122-141. [DOI:10.1080/15732479.2014.996164]
14. Nastri, E., Montuori, R., & Piluso, V. (2015). Seismic Design of MRF-EBF Dual Systems with Vertical Links: EC8 vs Plastic Design. Journal of Earthquake Engineering, 19(3), 480-504. [DOI:10.1080/13632469.2014.978917]
15. Montuori, R., Nastri, E., & Piluso, V. (2016). Theory of Plastic Mechanism Control for MRF-EBF Dual Systems: Closed Form Solution. Engineering Structures, 118, 287-306. [DOI:10.1016/j.engstruct.2016.03.050]
16. American Society of Civil Engineers(ASCE). (2010). ASCE7-10: Minimum Design Loads for Buildings and Other Structures.
17. American Institute of Steel Construction . (2005).ANSI/AISC360-05: LRFD-Load Resistance Factor Design,-Metric Conversion of the Third Edition.
18. Vamvatsikos, D., & Cornell, C. A. (2002). Incremental Dynamic Analysis. Earthquake Engineering & Structural Dynamics, 31(3), 491-514. [DOI:10.1002/eqe.141]
19. Lee, K., & Foutch, D. A. (2002). Seismic Performance Evaluation of Pre-Northridge Steel Frame Buildings with Brittle Connections. Journal of Structural Engineering, 128(4), 546-555. [DOI:10.1061/(ASCE)0733-9445(2002)128:4(546)]
20. Lee, K., & Foutch, D. A. (2002). Performance Evaluation of New Steel Frame Buildings for Seismic Loads. Earthquake Engineering & Structural Dynamics, 31(3), 653-670. [DOI:10.1002/eqe.147]
21. Yun, S. Y., Hamburger, R. O., Cornell, C. A., & Foutch, D. A. (2002). Seismic Performance Evaluation for Steel Moment Frames. Journal of Structural Engineering, 128(4), 534-545. [DOI:10.1061/(ASCE)0733-9445(2002)128:4(534)]
22. Tagawa, H., MacRae, G., & Lowes, L. (2008). Probabilistic Evaluation of Seismic Performance of 3‐story 3D One‐and Two‐way Steel Moment‐frame Structures. Earthquake Engineering & Structural Dynamics, 37(5), 681-696. [DOI:10.1002/eqe.778]
23. Pinho, R., Casarotti, C., & Antoniou, S. (2007). A Comparison of Single‐run Pushover Analysis Techniques for Seismic Assessment of Bridges. Earthquake Engineering & Structural Dynamics, 36(10), 1347-1362. [DOI:10.1002/eqe.684]
24. Goulet, C. A., Haselton, C. B., Mitrani‐Reiser, J., Beck, J. L., Deierlein, G. G., Porter, K. A., & Stewart, J. P. (2007). Evaluation of the Seismic Performance of a Code‐conforming Reinforced‐concrete Frame Building-from Seismic Hazard to Collapse Safety and Economic Losses. Earthquake Engineering & Structural Dynamics, 36(13), 1973-1997. [DOI:10.1002/eqe.694]
25. Wang, Y. (2018). Seismic Performance of Steel Buildings with Braced Dual Configuration and Traditional Frame Systems Through Nonlinear Collapse Simulations. Doctoral dissertation. Concordia University.
26. Mashayekhi, M., Harati, M., Darzi, A., & Estekanchi, H. E. (2020). Incorporation of Strong Motion Duration in Incremental-based Seismic Assessments. Engineering Structures, 223, Article e111144. [DOI:10.1016/j.engstruct.2020.111144]
27. Harati, M., Mashayekhi, M., Barmchi, M. A., & Estekanchi, H. E. (2019). Influence of Ground Motion Duration on the Structural Response at Multiple Seismic Intensity Levels. Journal of Numerical Methods in Civil Engineering, 3, 10-23. [DOI:10.29252/nmce.3.4.10]
28. Vamvatsikos, D., & Cornell, C. A. (2004). Applied Incremental Dynamic Analysis. Earthquake Spectra, 20(2), 523-553. [DOI:10.1193/1.1737737]
29. Vamvatsikos, D. (2011). Performing Incremental Dynamic Analysis in Parallel. Computers and Structures, 89, 170-80. [DOI:10.1016/j.compstruc.2010.08.014]
30. Cornell, C. A. (1968). Engineering Seismic Risk Analysis. Bulletin of the Seismological Society of America, 58(5), 1583-1606. [DOI:10.1785/BSSA0580051583]
31. American Society of Civil Engineers(ASCE). (2016). ASCE7-16: Minimum Design Loads and Associated Criteria for Buildings and Other Structures.
32. Shirkhani, A., Azar, B. F., & Basim, M. C. (2021). Seismic Loss Assessment of Steel Structures Equipped with Rotational Friction Dampers Subjected to Intensifying Dynamic Excitations. Engineering Structures, 238, Article e112233. [DOI:10.1016/j.engstruct.2021.112233]
33. Shirkhani, A., Azar, B. F., Basim, M. C., & Mashayekhi, M. (2021). Performance-based Optimal Distribution of Viscous Dampers in Structure Using Hysteretic Energy Compatible Endurance Time Excitations. Journal of Numerical Methods in Civil Engineering. [DOI:10.52547/nmce.5.3.46]
34. American Society of Civil Engineers(ASCE). (2007). ASCE/SEI 41-06: Seismic rehabilitation of Existing Buildings.
35. Foyouzat, M. A., & Estekanchi, H. E. (2016). Application of Rigid-perfectly Plastic Spectra in Improved Seismic Response Assessment by Endurance Time Method. Engineering Structures, 111, 24-35. [DOI:10.1016/j.engstruct.2015.11.025]
36. American Institute of Steel Construction. (2010). ANSI/AISC360-10: Specification for Structural Steel Buildings.
37. American Institute of Steel Construction. (2016). ANSI/AISC341-16: Seismic Provisions for Structural Steel Buildings.
38. Mazzoni, S., McKenna, F., Scott, M. H., Fenves, G. L., & Jeremic, B. (2006). Open System for Earthquake Engineering Simulation (OpenSees). California: Berkeley.
39. Applied Technology Council (ATC). (2017). Guidelines for Nonlinear Structural Analysis for Design of Buildings. Part I - General, NIST GCR 17-917-46v1.
40. Applied Technology Council (ATC). (2017). Guidelines for Nonlinear Structural Analysis for Design of Buildings. Part IIb-Reinforced Concrete Moment Frames, NIST GCR 17-917-46v3.
41. Bradley, B. A., & Dhakal, R. P. (2008). Error Estimation of Closed‐form Solution for Annual Rate of Structural Collapse. Earthquake Engineering & Structural Dynamics, 37(15), 1721-1737. [DOI:10.1002/eqe.833]
42. Hosseini SA, Banazadeh M. (2021, May 26-29). Collapse Risk Assessment of Mid-Rise to High-Rise Buildings with SMRF Equipped with Viscous Damper (VD) and Buckling-Restrained Brace Frame (BRBF). CSCE 2021 Annual Conference, Las Vegas, USA.
43. Champion, C., & Liel, A. (2012). The Effect of Near‐fault Directivity on Building Seismic Collapse Risk. Earthquake Engineering & Structural Dynamics, 41(10), 1391-1409. [DOI:10.1002/eqe.1188]
44. American Society of Civil Engineers. (2017). ASCE/SEI 41-17: Seismic Evaluation and Retrofit of Existing Buildings Seismic Rehabilitation.
45. Powell, G. H., & Allahabadi, R. (1988). Seismic Damage Prediction by Deterministic Methods: Concepts and Procedures. Earthquake Engineering & Structural Dynamics, 16(5), 719-734. [DOI:10.1002/eqe.4290160507]
46. Krawinkler, H., & Zohrei, M. (1983). Cumulative Damage in Steel Structures Subjected to Earthquake Ground Motions. Computers & Structures, 16, 531-541. [DOI:10.1016/0045-7949(83)90193-1]
47. Nabid, N., Hajirasouliha, I., & Petkovski, M. (2018). Performance-based Optimisation of RC Frames with Friction Wall Dampers Using a Low-cost Pptimisation Method. Bulletin of Earthquake Engineering, 16(10), 5017-5040. [DOI:10.1007/s10518-018-0380-2]
48. Moghaddam, H., Hajirasouliha, I., & Doostan, A. (2005). Optimum Seismic Design of Concentrically Braced Steel Frames: Concepts and Design Procedures. Journal of Constructional Steel Research, 61(2), 151-166. [DOI:10.1016/j.jcsr.2004.08.002]
49. De Domenico, D., & Hajirasouliha., I. (2021). Multi-level Performance-based Design Optimisation of Steel Frames with Nonlinear Viscous Dampers. Bulletin of Earthquake Engineering, 19(12), 5015-5049. [DOI:10.1007/s10518-021-01152-7]
50. FEMA 356, F. E. (2000). Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Federal Emergency Management Agency: Washington, DC, USA.
51. Eads, L., Miranda, E., Krawinkler, H., & Lignos, D. G. (2013). An Efficient Method for Estimating the Collapse Risk of Structures in Seismic Regions. Earthquake Engineering & Structural Dynamics, 42(1), 25-41. [DOI:10.1002/eqe.2191]
52. Taslimi, A., & Tehranizadeh, M. (2022). The Effect of Vertical Near-field Ground Motions on the Collapse Risk of High-rise Reinforced Concrete Frame-core Wall Structures. Advances in Structural Engineering, 25(2), 410-425. [DOI:10.1177/13694332211056106]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author