1. R. Karami-Mohammadi, M. Mirtaheri, M. Salkhordeh, M.A. Hariri-Ardebili, Vibration Anatomy and Damage Detection in Power Transmission Towers with Limited Sensors, Sensors. 20 (2020) 1731. [
DOI:10.3390/s20061731]
2. K. Goda, T. Kiyota, R.M. Pokhrel, G. Chiaro, T. Katagiri, K. Sharma, S. Wilkinson, The 2015 Gorkha Nepal earthquake: insights from earthquake damage survey, Front. Built Environ. 1 (2015) 8.
https://doi.org/10.3389/fbuil.2015.00008 [
DOI:https://doi.org/10.3389/fbuil.2015.00008.]
3. T. Parsons, C. Ji, E. Kirby, Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin, Nature. 454 (2008) 509-510.
https://doi.org/10.1038/nature07177 [
DOI:https://doi.org/10.1038/nature07177.]
4. N. Mori, T. Takahashi, T. Yasuda, H. Yanagisawa, Survey of 2011 Tohoku earthquake tsunami inundation and run-up, Geophys. Res. Lett. 38 (2011).
https://doi.org/10.1029/2011GL049210 [
DOI:https://doi.org/10.1029/2011GL049210.]
5. M. Mirtaheri, M. Salkhordeh, M. Mohammadgholiha, A System Identification-Based Damage-Detection Method for Gravity Dams, Shock Vib. 2021 (2021). [
DOI:10.1155/2021/6653254]
6. L. Ye, X. Lu, Y. Li, Design objectives and collapse prevention for building structures in mega-earthquake, Earthq. Eng. Eng. Vib. 9 (2010) 189-199.
https://doi.org/10.1007/s11803-010-0005-5 [
DOI:https://doi.org/10.1007%2Fs11803-010-0005-5.]
7. A. Hasegawa, K. Yoshida, Y. Asano, T. Okada, T. Iinuma, Y. Ito, Change in stress field after the 2011 great Tohoku-Oki earthquake, Earth Planet. Sci. Lett. 355 (2012) 231-243.
https://doi.org/10.1016/j.epsl.2012.08.042 [
DOI:https://doi.org/10.1016/j.epsl.2012.08.042.]
8. X. Lu, B. Han, M. Hori, C. Xiong, Z. Xu, A coarse-grained parallel approach for seismic damage simulations of urban areas based on refined models and GPU/CPU cooperative computing, Adv. Eng. Softw. 70 (2014) 90-103. [
DOI:10.1016/j.advengsoft.2014.01.010]
9. C. Rojahn, R.L. Sharpe, Earthquake damage evaluation data for California, Applied technology council, 1985.
10. N.I. of Building Sciences (Washington, U.S.F.E.M. Agency, Earthquake Loss Estimation Methodology:" HAZUS" Technical Manual, Federal Emergency Management Agency, 1997.
11. F.E.M.A. (FEMA), Multi-hazard loss estimation methodology earthquake model, HAZUS-MH MR3 Technical Manual, (2003).
12. W.D. Iwan, Drift spectrum: measure of demand for earthquake ground motions, J. Struct. Eng. 123 (1997) 397-404.
https://doi.org/10.1061/(ASCE)0733-9445(1997)123:4(397) [
DOI:https://doi.org/10.1061/(ASCE)0733-9445(1997)123:4(397).]
13. D.M. Seyedi, P. Gehl, J. Douglas, L. Davenne, N. Mezher, S. Ghavamian, Development of seismic fragility surfaces for reinforced concrete buildings by means of nonlinear time-history analysis, Earthq. Eng. Struct. Dyn. 39 (2010) 91-108.
https://doi.org/10.1002/eqe.939 [
DOI:https://doi.org/10.1002/eqe.939.]
14. A.T.C. for the Federal Emergency Management Agency, Next-Generation Methodology for Seismic Performance Assessment of Buildings, Federal Emergency Management Agency, 2012.
15. J. Ruiz-Garcia, E. Miranda, Probabilistic estimation of residual drift demands for seismic assessment of multi-story framed buildings, Eng. Struct. 32 (2010) 11-20.
https://doi.org/10.1016/j.engstruct.2009.08.010 [
DOI:https://doi.org/10.1016/j.engstruct.2009.08.010.]
16. M. Salkhordeh, E. Govahi, M. Mirtaheri, Seismic fragility evaluation of various mitigation strategies proposed for bridge piers, Structures. 33 (2021) 1892-1905. [
DOI:10.1016/j.istruc.2021.05.041]
17. R. Karami-Mohammadi, M. Mirtaheri, M. Salkhordeh, E. Mosaffa, G. Mahdavi, M.A. Hariri-Ardebili, Seismic mitigation of substation cable connected equipment using friction pendulum systems, Struct. Eng. Mech. 72 (2019) 785-796. [
DOI:10.12989/sem.2019.72.6.785]
18. M. Yekrangnia, Application of Endurance Time method in evaluation of seismic performance of a typical sandwich panel building, J. Numer. Methods Civ. Eng. 5 (2020) 45-52. [
DOI:10.52547/nmce.5.2.45]
19. M. Mirtaheri, M. Salkhordeh, S.M. S Kolbadi, H. Mirzaeefard, M.R. Razzaghian, Evaluation of 2D concentrically braced frames with cylindrical dampers subjected to near-field earthquake ground motions, Numer. Methods Civ. Eng. 4 (2020) 21-30. [
DOI:10.52547/nmce.4.3.21]
20. R. Karami-Mohammadi, M. Mirtaheri, M. Salkhordeh, M. Hariri-Ardebili, A cost-effective neural network--based damage detection procedure for cylindrical equipment, Adv. Mech. Eng. 11 (2019) 1687814019866942. [
DOI:10.1177/1687814019866942]
21. M. Salkhordeh, M. Mirtaheri, S. Soroushian, A decision-tree-based algorithm for identifying the extent of structural damage in braced-frame buildings, Struct. Control Heal. Monit. (2021) e2825.
https://doi.org/10.1002/stc.2825 [
DOI:10.1002/stc.2825 https://doi.org/https://doi.org/10.1002/stc.2825.]
22. E. Norouzi, S. Behzadi, Evaluating machine learning methods and satellite images to estimate combined climatic indices, Int. J. Numer. Methods Civ. Eng. 4 (2019) 30-38. [
DOI:10.52547/nmce.4.1.30]
23. M.I. Jordan, T.M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science (80-. ). 349 (2015) 255-260.
https://doi.org/10.1126/science.aaa8415 [
DOI:https://doi.org/10.1126/science.aaa8415.]
24. B. Yegnanarayana, Artificial neural networks, PHI Learning Pvt. Ltd., 2009.
25. J.C. Weinstein, M. Sanayei, B.R. Brenner, Bridge damage identification using artificial neural networks, J. Bridg. Eng. 23 (2018) 4018084. [
DOI:10.1061/(ASCE)BE.1943-5592.0001302]
26. J. Gu, M. Gul, X. Wu, Damage detection under varying temperature using artificial neural networks, Struct. Control Heal. Monit. 24 (2017) e1998. [
DOI:10.1002/stc.1998]
27. B.K. Oh, Y. Park, H.S. Park, Seismic response prediction method for building structures using convolutional neural network, Struct. Control Heal. Monit. 27 (2020) e2519.
https://doi.org/10.1002/stc.2519 [
DOI:https://doi.org/10.1002/stc.2519.]
28. FEMA, Multi-Hazard Loss Estimation Methodology HAZUS-MH 2.1 Advanced Engineering Building Module (AEBM) Technical and User's Manual, Federal Emergency Management Agency Washington, DC, 2012.
29. M. Zhu, F. McKenna, M.H. Scott, OpenSeesPy: Python library for the OpenSees finite element framework, SoftwareX. 7 (2018) 6-11. [
DOI:10.1016/j.softx.2017.10.009]
30. S. Mazzoni, F. McKenna, M.H. Scott, G.L. Fenves, others, OpenSees command language manual, Pacific Earthq. Eng. Res. Cent. 264 (2006).
31. A. Ranganathan, The levenberg-marquardt algorithm, Tutoral LM Algorithm. 11 (2004) 101-110.
32. V. Ahmadian, S.B. Beheshti Aval, E. Darvishan, Real-time damage detection of bridges using adaptive time-frequency analysis and ANN, Int. J. Numer. Methods Civ. Eng. 4 (2019) 49-61. [
DOI:10.52547/nmce.4.1.49]
33. C.E. Rasmussen, Gaussian processes in machine learning, in: Summer Sch. Mach. Learn., 2003: pp. 63-71. [
DOI:10.1007/978-3-540-28650-9_4]
34. J. Snoek, H. Larochelle, R.P. Adams, Practical bayesian optimization of machine learning algorithms, in: Adv. Neural Inf. Process. Syst., 2012: pp. 2951-2959.