Volume 6, Issue 4 (6-2022)                   NMCE 2022, 6(4): 38-46 | Back to browse issues page


XML Print


1- Ph.D. Student, School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran.
2- Associate Professor, Faculty of Engineering, University of Science and Culture, Tehran, Iran, Email: nikkhoo@usc.ac.ir , nikkhoo@usc.ac.ir
Abstract:   (405 Views)
In this paper, the dynamic responses of cracked beams under different moving forces, including moving load, moving mass, moving oscillator, and four-degrees-of-freedom moving system, are investigated. Structural elements such as beams are designed to withstand the predicted loads, but unfortunately, they are always exposed to unpredictable damage such as cracks. Several factors may cause these damages, and the important thing is that their presence can affect the dynamic behavior of the beam or even endanger its reliability and durability in some cases. Therefore, this study considers an Euler-Bernoulli single-span beam with simple supports and a crack. First, with the help of the function expansion method and by employing MATLAB software, the dynamic time history responses of the beam at its midpoint under the influence of each type of moving force are extracted. Then, the changes in maximum displacement responses due to various parameters such as velocity, load magnitude, crack depth, and crack location are plotted in different spectra and compared with each other. The results show that the beam will have close results under all types of moving force (moving load, moving oscillator, and moving system) except moving mass. Obviously, this difference is due to the effect of inertia on the moving mass.
Full-Text [PDF 690 kb]   (158 Downloads)    
Type of Study: Research | Subject: General
Received: 2021/08/25 | Revised: 2021/12/21 | Accepted: 2022/01/3

References
1. Ostachowicz, W. and M. Krawczuk, Analysis of the effect of cracks on the natural frequencies of a cantilever beam. Journal of sound and vibration, 1991. 150(2): p. 191-201. [DOI:10.1016/0022-460X(91)90615-Q]
2. Pesterev, A., et al., Response of elastic continuum carrying multiple moving oscillators. Journal of engineering mechanics, 2001. 127(3): p. 260-265. [DOI:10.1061/(ASCE)0733-9399(2001)127:3(260)]
3. Muscolino, G., A. Palmeri, and A. Sofi, Absolute versus relative formulations of the moving oscillator problem. International Journal of Solids and Structures, 2009. 46(5): p. 1085-1094. [DOI:10.1016/j.ijsolstr.2008.10.019]
4. Van Do, V.N., T.H. Ong, and C.H. Thai, Dynamic responses of Euler-Bernoulli beam subjected to moving vehicles using isogeometric approach. Applied Mathematical Modelling, 2017. 51: p. 405-428. [DOI:10.1016/j.apm.2017.06.037]
5. Yang, Y., et al., Two-axle test vehicle for bridges: Theory and applications. International Journal of Mechanical Sciences, 2019. 152: p. 51-62. [DOI:10.1016/j.ijmecsci.2018.12.043]
6. Şimşek, M., Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory. International Journal of Engineering Science, 2010. 48(12): p. 1721-1732. [DOI:10.1016/j.ijengsci.2010.09.027]
7. Arani, A.G., M. Roudbari, and S. Amir, Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle. Physica B: Condensed Matter, 2012. 407(17): p. 3646-3653. [DOI:10.1016/j.physb.2012.05.043]
8. Lee, H. and T. Ng, Dynamic response of a cracked beam subject to a moving load. Acta mechanica, 1994. 106(3): p. 221-230. [DOI:10.1007/BF01213564]
9. Law, S. and X. Zhu, Dynamic behavior of damaged concrete bridge structures under moving vehicular loads. Engineering Structures, 2004. 26(9): p. 1279-1293. [DOI:10.1016/j.engstruct.2004.04.007]
10. Mahmoud, M. and M. Abou Zaid, Dynamic response of a beam with a crack subject to a moving mass. Journal of Sound and Vibration, 2002. 256(4): p. 591-603. [DOI:10.1006/jsvi.2001.4213]
11. Nikkhoo, A., F. Rofooei, and M. Shadnam, Dynamic behavior and modal control of beams under moving mass. Journal of Sound and Vibration, 2007. 306(3-5): p. 712-724. [DOI:10.1016/j.jsv.2007.06.008]
12. Kiani, K., A. Nikkhoo, and B. Mehri, Assessing dynamic response of multispan viscoelastic thin beams under a moving mass via generalized moving least square method. Acta Mechanica Sinica, 2010. 26(5): p. 721-733. [DOI:10.1007/s10409-010-0365-0]
13. Kiani, K. and B. Mehri, Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories. Journal of Sound and Vibration, 2010. 329(11): p. 2241-2264. [DOI:10.1016/j.jsv.2009.12.017]
14. Kiani, K. and Q. Wang, On the interaction of a single-walled carbon nanotube with a moving nanoparticle using nonlocal Rayleigh, Timoshenko, and higher-order beam theories. European Journal of Mechanics-A/Solids, 2012. 31(1): p. 179-202. [DOI:10.1016/j.euromechsol.2011.07.008]
15. Kiani, K., Nanoparticle delivery via stocky single-walled carbon nanotubes: a nonlinear-nonlocal continuum-based scrutiny. Composite Structures, 2014. 116: p. 254-272. [DOI:10.1016/j.compstruct.2014.03.045]
16. Ghorbanpour Arani, A., M.A. Roudbari, and K. Kiani, Vibration of double-walled carbon nanotubes coupled by temperature-dependent medium under a moving nanoparticle with multi physical fields. Mechanics of Advanced Materials and Structures, 2016. 23(3): p. 281-291. [DOI:10.1080/15376494.2014.952853]
17. Thatoi, D., et al. Analysis of the dynamic response of a cracked beam structure. in Applied mechanics and materials. 2012. Trans Tech Publ. [DOI:10.4028/www.scientific.net/AMM.187.58]
18. Pala, Y. and M. Reis, Dynamic response of a cracked beam under a moving mass load. Journal of Engineering Mechanics, 2013. 139(9): p. 1229-1238. [DOI:10.1061/(ASCE)EM.1943-7889.0000558]
19. Jena, S.P. and D.R. Parhi, Dynamic response and analysis of cracked beam subjected to transit mass. International Journal of Dynamics and Control, 2018. 6(3): p. 961-972. [DOI:10.1007/s40435-017-0361-3]
20. Cicirello, A., On the response bounds of damaged Euler-Bernoulli beams with switching cracks under moving masses. International Journal of Solids and Structures, 2019. 172: p. 70-83. [DOI:10.1016/j.ijsolstr.2019.05.003]
21. Al Rjoub, Y.S. and A.G. Hamad. Forced vibration of axially-loaded, multi-cracked Euler-Bernoulli and Timoshenko beams. in Structures. 2020. Elsevier. [DOI:10.1016/j.istruc.2020.03.030]
22. Nikkhoo, A. and M. Sharifinejad, The impact of a crack existence on the inertial effects of moving forces in thin beams. Mechanics Research Communications, 2020. 107: p. 103562. [DOI:10.1016/j.mechrescom.2020.103562]
23. Nikkhoo, A. and F.R. Rofooei, Parametric study of the dynamic response of thin rectangular plates traversed by a moving mass. Acta Mechanica, 2012. 223(1): p. 15-27. [DOI:10.1007/s00707-011-0547-2]
24. Nikkhoo, A., Investigating the behavior of smart thin beams with piezoelectric actuators under dynamic loads. Mechanical Systems and Signal Processing, 2014. 45(2): p. 513-530. [DOI:10.1016/j.ymssp.2013.11.003]
25. Nikkhoo, A., S. Zolfaghari, and K. Kiani, A simplified-nonlocal model for transverse vibration of nanotubes acted upon by a moving nanoparticle. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017. 39(12): p. 4929-4941. [DOI:10.1007/s40430-017-0892-8]
26. Kiani, K., A. Nikkhoo, and B. Mehri, Prediction capabilities of classical and shear deformable beam models excited by a moving mass. Journal of Sound and Vibration, 2009. 320(3): p. 632-648. [DOI:10.1016/j.jsv.2008.08.010]
27. Maghsoodi, A., A. Ghadami, and H.R. Mirdamadi, Multiple-crack damage detection in multi-step beams by a novel local flexibility-based damage index. Journal of sound and vibration, 2013. 332(2): p. 294-305. [DOI:10.1016/j.jsv.2012.09.002]
28. Moezi, S.A., E. Zakeri, and A. Zare, A generally modified cuckoo optimization algorithm for crack detection in cantilever Euler-Bernoulli beams. Precision Engineering, 2018. 52: p. 227-241. [DOI:10.1016/j.precisioneng.2017.12.010]
29. Attar, M., A transfer matrix method for free vibration analysis and crack identification of stepped beams with multiple edge cracks and different boundary conditions. International Journal of Mechanical Sciences, 2012. 57(1): p. 19-33. [DOI:10.1016/j.ijmecsci.2012.01.010]
30. Al Rjoub, Y.S. and A.G. Hamad, Free Vibration of Axially Loaded Multi-Cracked Beams Using the Transfer Matrix Method. International Journal of Acoustics & Vibration, 2019. 24(1). [DOI:10.20855/ijav.2019.24.11274]
31. Hudson, D.E., Dynamics of structures: Theory and applications to earthquake engineering, by Anil K. Chopra, Prentice‐Hall, Englewood Cliffs, NJ, 1995. No. of pages: xxviii+ 761, ISBN 0‐13‐855214‐2. 1995, John Wiley & Sons, Ltd New York. [DOI:10.1002/eqe.4290240809]
32. Lin, H.P., S.C. CHANG, and J.-D. Wu, Beam vibrations with an arbitrary number of cracks. Journal of Sound and vibration, 2002. 258(5): p. 987-999. [DOI:10.1006/jsvi.2002.5184]