Volume 6, Issue 4 (6-2022)                   NMCE 2022, 6(4): 16-28 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Haghani Chegeni M, Sharbatdar M K, Mahjoub R, Raftari M. A novel method for detecting structural damage based on data-driven and similarity-based techniques under environmental and operational changes. NMCE. 2022; 6 (4) :16-28
URL: http://nmce.kntu.ac.ir/article-1-281-en.html
Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran. , msharbatdar@semnan.ac.ir
Abstract:   (485 Views)
The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to structural damage detection. The main aim of this article is to propose an efficient univariate similarity method named as Kullback similarity (KS) for identifying the location of damage and estimating the level of damage severity. An improved feature extraction technique based on autoregressive (AR) model is presented to extract independent residuals of the AR model as damage-sensitive features. This technique emphasizes to choose a sufficient order such that the model residuals be independent. The proposed univariate similarity approach is a new application of the well-known KS method that attempts to measure a difference between two randomly distributed variables. The major contribution of the proposed KS method is that it only requires one measurement of undamaged and damaged conditions to compute the similarity between them. For the process of damage localization, the sensor location associated with the largest KS quantity is identified as the damaged area. In the damage level estimation, it is necessary to compare at least two different damaged conditions and find the maximum KS value in these conditions as the highest level of damage severity. The performance and capability of the improved and proposed methods is successfully verified by an experimental laboratory frame belonging to the Los Alamos National Laboratory. Results show that the methods are powerful and reliable tools for identifying the location of damage and estimating the level of damage severity.
Full-Text [PDF 766 kb]   (159 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/08/10 | Revised: 2021/11/29 | Accepted: 2021/12/20 | ePublished ahead of print: 2021/12/25

1. Farrar CR, Worden K. An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2007;365:303-15. [DOI:10.1098/rsta.2006.1928]
2. Entezami A, Shariatmadar H, Sarmadi H. Structural damage detection by a new iterative regularization method and an improved sensitivity function. Journal of Sound and Vibration. 2017;399:285-307. [DOI:10.1016/j.jsv.2017.02.038]
3. Entezami A, Shariatmadar H, Ghalehnovi M. Damage detection by updating structural models based on linear objective functions. Journal of Civil Structural Health Monitoring. 2014;4:165-76. [DOI:10.1007/s13349-014-0072-9]
4. Mottershead J, Friswell M. Model updating in structural dynamics: a survey. Journal of sound and vibration. 1993;167:347-75. [DOI:10.1006/jsvi.1993.1340]
5. Rezaiee-Pajand M, Sarmadi H, Entezami A. A hybrid sensitivity function and Lanczos bidiagonalization-Tikhonov method for structural model updating: Application to a full-scale bridge structure. Applied Mathematical Modelling. 2020;89:860-84. [DOI:10.1016/j.apm.2020.07.044]
6. Rezaiee‐Pajand M, Entezami A, Sarmadi H. A sensitivity‐based finite element model updating based on unconstrained optimization problem and regularized solution methods. Structural Control and Health Monitoring. 2019;27:1-29. [DOI:10.1002/stc.2481]
7. Sarmadi H, Karamodin A, Entezami A. A new iterative model updating technique based on least squares minimal residual method using measured modal data. Applied Mathematical Modelling. 2016;40:10323-41. [DOI:10.1016/j.apm.2016.07.015]
8. Farrar CR, Doebling SW, Nix DA. Vibration-based structural damage identification. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2001;259:131-49. [DOI:10.1098/rsta.2000.0717]
9. Farrar CR, Worden K. Structural Health Monitoring : A Machine Learning Perspective: John Wiley & Sons Ltd; 2013. [DOI:10.1002/9781118443118]
10. Entezami A, Sarmadi H, Behkamal B, Mariani S. Big Data Analytics and Structural Health Monitoring: A Statistical Pattern Recognition-Based Approach. Sensors. 2020;20:2328. [DOI:10.3390/s20082328]
11. Entezami A, Sarmadi H, Salar M, De Michele C, Arslan AN. A novel data-driven method for structural health monitoring under ambient vibration and high-dimensional features by robust multidimensional scaling. Structural Health Monitoring. 2020. [DOI:10.1177/1475921720973953]
12. Sarmadi H, Entezami A, Saeedi Razavi B, Yuen K-V. Ensemble learning-based structural health monitoring by Mahalanobis distance metrics. Structural Control and Health Monitoring. 2020:e2663. [DOI:10.1002/stc.2663]
13. Entezami A, Shariatmadar H. An unsupervised learning approach by novel damage indices in structural health monitoring for damage localization and quantification. Structural Health Monitoring. 2017;17:325-45. [DOI:10.1177/1475921717693572]
14. Entezami A, Shariatmadar H, Karamodin A. Data-driven damage diagnosis under environmental and operational variability by novel statistical pattern recognition methods. Structural Health Monitoring. 2018;18:1416-43. [DOI:10.1177/1475921718800306]
15. Chegeni MH, Sharbatdar MK, Mahjoub R, Raftari M. New supervised learning classifiers for structural damage diagnosis using time series features from a new feature extraction technique. Earthquake Engineering and Engineering Vibration. 2022;21:169-91. [DOI:10.1007/s11803-022-2079-2]
16. Sohn H. Effects of environmental and operational variability on structural health monitoring. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2007;365:539-60. [DOI:10.1098/rsta.2006.1935]
17. Sarmadi H. Investigation of Machine Learning Methods for Structural Safety Assessment under Variability in Data: Comparative Studies and New Approaches. Journal of Performance of Constructed Facilities. 2021;35:04021090. [DOI:10.1061/(ASCE)CF.1943-5509.0001664]
18. Sarmadi H, Yuen K-V. Early damage detection by an innovative unsupervised learning method based on kernel null space and peak-over-threshold. Computer-Aided Civil and Infrastructure Engineering. 2020. [DOI:10.1111/mice.12635]
19. Sohn H, Czarnecki JA, Farrar CR. Structural health monitoring using statistical process control. Journal of Structural Engineering. 2000;126:1356-63. [DOI:10.1061/(ASCE)0733-9445(2000)126:11(1356)]
20. Fugate ML, Sohn H, Farrar CR. Vibration-based damage detection using statistical process control. Mechanical Systems and Signal Processing. 2001;15:707-21. [DOI:10.1006/mssp.2000.1323]
21. Nair KK, Kiremidjian AS, Law KH. Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure. Journal of Sound and Vibration. 2006;291:349-68. [DOI:10.1016/j.jsv.2005.06.016]
22. Mei L, Mita A, Zhou J. An improved substructural damage detection approach of shear structure based on ARMAX model residual. Structural Control and Health Monitoring. 2016;23:218-36. [DOI:10.1002/stc.1766]
23. Hoell S, Omenzetter P. Optimal selection of autoregressive model coefficients for early damage detectability with an application to wind turbine blades. Mechanical Systems and Signal Processing. 2016;70-71:557-77. [DOI:10.1016/j.ymssp.2015.09.007]
24. Figueiredo E, Figueiras J, Park G, Farrar CR, Worden K. Influence of the Autoregressive Model Order on Damage Detection. Computer-Aided Civil and Infrastructure Engineering. 2011;26:225-38. [DOI:10.1111/j.1467-8667.2010.00685.x]
25. Stull CJ, Hemez FM, Farrar CR. On assessing the robustness of structural health monitoring technologies. Structural Health Monitoring. 2012;11:712-23. [DOI:10.1177/1475921712451956]
26. Box GE, Jenkins GM, Reinsel GC. Time Series Analysis: Forecasting and Control (Fourth Edition) New Jersey: John Wiley & Sons, Inc; 2008. [DOI:10.1002/9781118619193]
27. Entezami A, Shariatmadar H. Structural health monitoring by a new hybrid feature extraction and dynamic time warping methods under ambient vibration and non-stationary signals. Measurement. 2019;134:548-68. [DOI:10.1016/j.measurement.2018.10.095]
28. Entezami A, Shariatmadar H. Damage localization under ambient excitations and non-stationary vibration signals by a new hybrid algorithm for feature extraction and multivariate distance correlation methods. Structural Health Monitoring. 2019;18:347-75. [DOI:10.1177/1475921718754372]
29. Entezami A, Shariatmadar H, Mariani S. Structural Health Monitoring for Condition Assessment Using Efficient Supervised Learning Techniques. Proceedings. 2020;42:17. [DOI:10.3390/ecsa-6-06538]
30. Entezami A, Sarmadi H, Razavi BS. An innovative hybrid strategy for structural health monitoring by modal flexibility and clustering methods. Journal of Civil Structural Health Monitoring. 2020;10:845-59. [DOI:10.1007/s13349-020-00421-4]
31. Sarmadi H, Entezami A, Daneshvar Khorram M. Energy-based damage localization under ambient vibration and non-stationary signals by ensemble empirical mode decomposition and Mahalanobis-squared distance. Journal of Vibration and Control. 2019;26:1012-27. [DOI:10.1177/1077546319891306]
32. Sarmadi H, Karamodin A. A novel anomaly detection method based on adaptive Mahalanobis-squared distance and one-class kNN rule for structural health monitoring under environmental effects. Mechanical Systems and Signal Processing. 2019;140:1-24. [DOI:10.1016/j.ymssp.2019.106495]
33. Entezami A, Shariatmadar H, Karamodin A. Improving feature extraction via time series modeling for structural health monitoring based on unsupervised learning methods. Scientia Iranica. 2020;27:1001-18.
34. Behkamal B, Naghibzadeh M, Pagnani A, Saberi MR, Al Nasr K. Solving the α-helix correspondence problem at medium-resolution Cryo-EM maps through modeling and 3D matching. Journal of Molecular Graphics and Modelling. 2021;103:107815. [DOI:10.1016/j.jmgm.2020.107815]
35. Behkamal B, Naghibzadeh M, Saberi MR, Tehranizadeh ZA, Pagnani A, Al Nasr K. Three-Dimensional Graph Matching to Identify Secondary Structure Correspondence of Medium-Resolution Cryo-EM Density Maps. Biomolecules. 2021;11:1773. [DOI:10.3390/biom11121773]
36. Behkamal B, Naghibzadeh M, Moghadam RA. Using pattern detection techniques and refactoring to improve the performance of ASMOV. 2010 5th International Symposium on Telecommunications: IEEE; 2010. p. 979-84. [DOI:10.1109/ISTEL.2010.5734164]
37. Gul M, Necati Catbas F. Statistical pattern recognition for Structural Health Monitoring using time series modeling: Theory and experimental verifications. Mechanical Systems and Signal Processing. 2009;23:2192-204. [DOI:10.1016/j.ymssp.2009.02.013]
38. Mosavi AA, Dickey D, Seracino R, Rizkalla S. Identifying damage locations under ambient vibrations utilizing vector autoregressive models and Mahalanobis distances. Mechanical Systems and Signal Processing. 2012;26:254-67. [DOI:10.1016/j.ymssp.2011.06.009]
39. Balsamo L, Betti R, Beigi H. A structural health monitoring strategy using cepstral features. Journal of Sound and Vibration. 2014;333:4526-42. [DOI:10.1016/j.jsv.2014.04.062]
40. Fassois SD, Sakellariou JS. Statistical time series methods for SHM. Encyclopedia of Structural Health Monitoring. 2009. [DOI:10.1002/9780470061626.shm044]
41. Entezami A. Feature Extraction in Time Domain for Stationary Data. Structural Health Monitoring by Time Series Analysis and Statistical Distance Measures: Springer; 2021. p. 17-45. [DOI:10.1007/978-3-030-66259-2_2]
42. Entezami A. An Introduction to Structural Health Monitoring. Structural Health Monitoring by Time Series Analysis and Statistical Distance Measures: Springer; 2021. p. 1-15. [DOI:10.1007/978-3-030-66259-2_1]
43. Figueiredo E, Park G, Figueiras J, Farrar C, Worden K. Structural health monitoring algorithm comparisons using standard data sets. Los Alamos National Laboratory: LA-14393; 2009. [DOI:10.2172/961604]
44. Hyndman RJ, Athanasopoulos G. Forecasting: principles and practice: OTexts; 2014.
45. Entezami A, Shariatmadar H, Sarmadi H. Condition Assessment of Civil Structures for Structural Health Monitoring Using Supervised Learning Classification Methods. Iranian Journal of Science and Technology, Transactions of Civil Engineering. 2020;44:51-66. [DOI:10.1007/s40996-020-00463-0]
46. Kullback S, Leibler RA. On information and sufficiency. The annals of mathematical statistics. 1951;22:79-86. [DOI:10.1214/aoms/1177729694]
47. Los Alamos National Laboratory: SHM data sets .

Add your comments about this article : Your username or Email:

Send email to the article author