Volume 4, Issue 3 (3-2020)                   NMCE 2020, 4(3): 42-58 | Back to browse issues page

XML Print

1- Ph. D. Candidate, Department of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran.
2- Corresponding Author: Associate Professor, Department of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran. , rkarami@kntu.ac.ir
3- M.Sc. in Earthquake Engineering, Department of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran.
Abstract:   (971 Views)
Structural system identification using recursive methods has been a research direction of increasing interest in recent decades. The two prominent methods, including the Extended Kalman Filter (EKF) and the Particle Filter (PF), also known as the Sequential Monte Carlo (SMC), are advantageous in this field. In this study, the system identification of a shake table test of a 4-story steel structure subjected to the base excitation has been implemented using these methods by considering the modeling and material model uncertainties. Implementing the 2D and 3D modelings, using the “parallelogram” and “scissors” methods for the modeling of panel zones and that of the wall panels by two methods (using beam-column elements and equivalent diagonal strut elements), are the assumptions of this study. Using the parallelogram method has resulted in fewer errors in the 2D modeling while implementing different methods for simulation of wall panels has had no specific achievements. As illustrated in the results, more significant uncertainties were expected in systems with highly nonlinear behavior, since the equivalent linearization was used to estimate the system states in the EKF method. However, this method is less time-consuming and gives more accurate results in comparison with the PF method, in which a lrge number of samples are required for the system identification.
Full-Text [PDF 1462 kb]   (514 Downloads)    
Type of Study: Research | Subject: Special
Received: 2019/12/5 | Revised: 2020/01/5 | Accepted: 2020/02/5

1. [1] Jaishi, B. and W.-X. Ren, Structural finite element model updating using ambient vibration test results. Journal of structural engineering, 2005. 131(4): p. 617-628. [DOI:10.1061/(ASCE)0733-9445(2005)131:4(617)]
2. [2] Marwala, T., Finite element model updating using computational intelligence techniques: applications to structural dynamics. 2010: Springer Science & Business Media. [DOI:10.1007/978-1-84996-323-7]
3. [3] Friswell, M.I., J.E. Mottershead, and H. Ahmadian, Finite-element model updating using experimental test data: parametrization and regularization. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2001. 359(1778): p. 169-186. [DOI:10.1098/rsta.2000.0719]
4. [4] Jaishi, B. and W.-X. Ren, Damage detection by finite element model updating using modal flexibility residual. Journal of sound and vibration, 2006. 290(1-2): p. 369-387. [DOI:10.1016/j.jsv.2005.04.006]
5. [5] Ren, W.-X. and H.-B. Chen, Finite element model updating in structural dynamics by using the response surface method. Engineering structures, 2010. 32(8): p. 2455-2465. [DOI:10.1016/j.engstruct.2010.04.019]
6. [6] Wu, J. and Q. Li, Finite element model updating for a high-rise structure based on ambient vibration measurements. Engineering Structures, 2004. 26(7): p. 979-990. [DOI:10.1016/j.engstruct.2004.03.002]
7. [7] Steenackers, G. and P. Guillaume, Finite element model updating taking into account the uncertainty on the modal parameters estimates. Journal of Sound and Vibration, 2006. 296(4-5): p. 919-934. [DOI:10.1016/j.jsv.2006.03.023]
8. [8] Astroza, R. and A. Alessandri, Effects of model uncertainty in nonlinear structural finite element model updating by numerical simulation of building structures. Structural Control and Health Monitoring, 2019. 26(3): p. e2297. [DOI:10.1002/stc.2297]
9. [9] Bayraktar, A., B. Sevim, and A.C. Altunişik, Finite element model updating effects on nonlinear seismic response of arch dam-reservoir-foundation systems. Finite elements in analysis and design, 2011. 47(2): p. 85-97. [DOI:10.1016/j.finel.2010.09.005]
10. [10] Ebrahimian, H., et al., Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation. Mechanical Systems and Signal Processing, 2017. 84: p. 194-222. [DOI:10.1016/j.ymssp.2016.02.002]
11. [11] Asgarieh, E., B. Moaveni, and A. Stavridis, Nonlinear finite element model updating of an infilled frame based on identified time-varying modal parameters during an earthquake. Journal of Sound and Vibration, 2014. 333(23): p. 6057-6073. [DOI:10.1016/j.jsv.2014.04.064]
12. [12] Ebrahimian, H., R. Astroza, and J.P. Conte, Nonlinear Structural Finite Element Model Updating using Batch Bayesian Estimation, in Model Validation and Uncertainty Quantification, Volume 3. 2015, Springer. p. 35-43. [DOI:10.1007/978-3-319-15224-0_4]
13. [13] Astroza, R., A. Alessandri, and J.P. Conte, A dual adaptive filtering approach for nonlinear finite element model updating accounting for modeling uncertainty. Mechanical Systems and Signal Processing, 2019. 115: p. 782-800. [DOI:10.1016/j.ymssp.2018.06.014]
14. [14] Giagopoulos, D. and A. Arailopoulos, Computational framework for model updating of large scale linear and nonlinear finite element models using state of the art evolution strategy. Computers & Structures, 2017. 192: p. 210-232. [DOI:10.1016/j.compstruc.2017.07.004]
15. [15] Jategaonkar, R.V., Flight vehicle system identification: A time-domain methodology. 2015: American Institute of Aeronautics and Astronautics, Inc. [DOI:10.2514/4.102783]
16. [16] Paleologu, C., J. Benesty, and S. Ciochina, A robust variable forgetting factor recursive least-squares algorithm for system identification. IEEE Signal Processing Letters, 2008. 15: p. 597-600. [DOI:10.1109/LSP.2008.2001559]
17. [17] Ding, F., et al., A recursive least squares parameter estimation algorithm for output nonlinear autoregressive systems using the input-output data filtering. Journal of the Franklin Institute, 2017. 354(15): p. 6938-6955. [DOI:10.1016/j.jfranklin.2017.08.009]
18. [18] Zhou, N., et al., Robust RLS methods for online estimation of power system electromechanical modes. IEEE Transactions on Power Systems, 2007. 22(3): p. 1240-1249. [DOI:10.1109/TPWRS.2007.901104]
19. [19] Andrieu, C., et al., Particle methods for change detection, system identification, and control. Proceedings of the IEEE, 2004. 92(3): p. 423-438. [DOI:10.1109/JPROC.2003.823142]
20. [20] Schön, T.B., et al., Sequential Monte Carlo methods for system identification. IFAC-PapersOnLine, 2015. 48(28): p. 775-786. [DOI:10.1016/j.ifacol.2015.12.224]
21. [21] Chatzi, E.N. and A.W. Smyth, The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non‐collocated heterogeneous sensing. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 2009. 16(1): p. 99-123. [DOI:10.1002/stc.290]
22. [22] Azam, S.E. and S. Mariani, Dual estimation of partially observed nonlinear structural systems: A particle filter approach. Mechanics Research Communications, 2012. 46: p. 54-61. [DOI:10.1016/j.mechrescom.2012.08.006]
23. [23] Chang, M. and S.N. Pakzad, Observer Kalman filter identification for output-only systems using interactive structural modal identification toolsuite. Journal of Bridge Engineering, 2014. 19(5): p. 04014002. [DOI:10.1061/(ASCE)BE.1943-5592.0000530]
24. [24] Sato, T. and M. Sato, Structural identification using neural network and Kalman filter algorithms. Doboku Gakkai Ronbunshu, 1997. 1997(563): p. 1-10. [DOI:10.2208/jscej.1997.563_1]
25. [25] Hoshiya, M. and A. Sutoh, Kalman filter-finite element method in identification. Journal of engineering mechanics, 1993. 119(2): p. 197-210. [DOI:10.1061/(ASCE)0733-9399(1993)119:2(197)]
26. [26] Lourens, E., et al., An augmented Kalman filter for force identification in structural dynamics. Mechanical Systems and Signal Processing, 2012. 27: p. 446-460. [DOI:10.1016/j.ymssp.2011.09.025]
27. [27] Jeen-Shang, L. and Z. Yigong, Nonlinear structural identification using extended Kalman filter. Computers & structures, 1994. 52(4): p. 757-764. [DOI:10.1016/0045-7949(94)90357-3]
28. [28] Yang, J.N., et al., An adaptive extended Kalman filter for structural damage identification. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 2006. 13(4): p. 849-867. [DOI:10.1002/stc.84]
29. [29] Ebrahimian, H., R. Astroza, and J.P. Conte, Extended Kalman filter for material parameter estimation in nonlinear structural finite element models using direct differentiation method. Earthquake Engineering & Structural Dynamics, 2015. 44(10): p. 1495-1522. [DOI:10.1002/eqe.2532]
30. [30] Hoshiya, M. and E. Saito, Structural identification by extended Kalman filter. Journal of engineering mechanics, 1984. 110(12): p. 1757-1770. [DOI:10.1061/(ASCE)0733-9399(1984)110:12(1757)]
31. [31] Smyth, A., et al., On-line parametric identification of MDOF nonlinear hysteretic systems. Journal of Engineering Mechanics, 1999. 125(2): p. 133-142. [DOI:10.1061/(ASCE)0733-9399(1999)125:2(133)]
32. [32] Gupta, A. and H. Krawinkler, Seismic demands for the performance evaluation of steel moment resisting frame structures. 1998, Stanford University.
33. [33] Castro, J., A. Elghazouli, and B. Izzuddin, Modelling of the panel zone in steel and composite moment frames. Engineering structures, 2005. 27(1): p. 129-144. [DOI:10.1016/j.engstruct.2004.09.008]
34. [34] Ibarra, L.F., R.A. Medina, and H. Krawinkler, Hysteretic models that incorporate strength and stiffness deterioration. Earthquake engineering & structural dynamics, 2005. 34(12): p. 1489-1511. [DOI:10.1002/eqe.495]
35. [35] Krawinkler, H., Shear in beam-column joints in seismic design of steel frames. Engineering Journal, 1978. 15(3).
36. [36] Fielding, D. and J. Huang, Shear in steel beam-to-column connections. Welding Journal, 1971. 50(7): p. 313-326.
37. [37] Filippou, F.C., V.V. Bertero, and E.P. Popov, Effects of bond deterioration on hysteretic behavior of reinforced concrete joints. 1983.
38. [38] Arulampalam, M.S., et al., A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on signal processing, 2002. 50(2): p. 174-188. [DOI:10.1109/78.978374]
39. [39] Andrieu, C. and A. Doucet, Particle filtering for partially observed Gaussian state space models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2002. 64(4): p. 827-836. [DOI:10.1111/1467-9868.00363]
40. [40] Kwok, N.M., G. Fang, and W. Zhou. Evolutionary particle filter: re-sampling from the genetic algorithm perspective. in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2005. IEEE. [DOI:10.1109/IROS.2005.1545119]
41. [41] Ebrahimian, H., R. Astroza, and J. Conte, Parametric identification of hysteretic material constitutive laws in nonlinear finite element models using extended Kalman filter. Department of Structural Engineering, University of California, San Diego, La Jolla, CA, 2014.
42. [42] Suita, K., et al. Collapse experiment on 4-story steel moment frame: Part 2 detail of collapse behavior. in Proceedings of the 14th world conference on earthquake engineering, Beijing, China. 2008.
43. [43] McKenna, F., OpenSees: a framework for earthquake engineering simulation. Computing in Science & Engineering, 2011. 13(4): p. 58-66. [DOI:10.1109/MCSE.2011.66]
44. [44] Tuan-Nam, T. and K. Kasai. Study on Shaking-Table Experiment of a Full-Scale Four-Story Steel Building. in the 15th World Conference on Earthquake Engineering. 2012.
45. [45] Biddah, A. and A. Ghobarah, Modelling of shear deformation and bond slip in reinforced concrete joints. Structural Engineering and Mechanics, 1999. 7(4): p. 413-432. [DOI:10.12989/sem.1999.7.4.413]
46. [46] Youssef, M. and A. Ghobarah, Modelling of RC beam-column joints and structural walls. Journal of Earthquake Engineering, 2001. 5(01): p. 93-111. [DOI:10.1080/13632460109350387]
47. [47] Lowes, L.N. and A. Altoontash, Modeling reinforced-concrete beam-column joints subjected to cyclic loading. Journal of Structural Engineering, 2003. 129(12): p. 1686-1697. [DOI:10.1061/(ASCE)0733-9445(2003)129:12(1686)]
48. [48] Krawinkler, H., Inelastic behavior of steel beam-to-column subassemblages. Vol. 71. 1971: University of California, Berkeley.
49. [49] Matsuoka, Y., et al. Non-structural component performance in 4-story frame tested to collapse. in Proceedings of the 14th World Conference on Earthquake Engineering. 2008.
50. [50] Paulay, T. and M.N. Priestley, Seismic design of reinforced concrete and masonry buildings. 1992. [DOI:10.1002/9780470172841]
51. [51] Lignos, D., H. Krawinkler, and A. Whittaker, Prediction and validation of sidesway collapse of two scale models of a 4‐story steel moment frame. Earthquake Engineering & Structural Dynamics, 2011. 40(7): p. 807-825. [DOI:10.1002/eqe.1061]
52. [52] Karsan, I.D. and J.O. Jirsa, Behavior of concrete under compressive loadings. Journal of the Structural Division, 1969. [DOI:10.1061/JSDEAG.0002424]
53. [53] Grant, M., S. Boyd, and Y. Ye, CVX: Matlab software for disciplined convex programming. 2009.
54. [54] Gokmen, F., et al., In situ seismic testing of a reinforced autoclaved aerated concrete building. ce/papers, 2018. 2(4): p. 253-258. [DOI:10.1002/cepa.817]
55. [55] Koh, C. and L. See, Identification and uncertainty estimation of structural parameters. Journal of Engineering Mechanics, 1994. 120(6): p. 1219-1236. [DOI:10.1061/(ASCE)0733-9399(1994)120:6(1219)]
56. [56] Astroza, R., H. Ebrahimian, and J.P. Conte, Material parameter identification in distributed plasticity FE models of frame-type structures using nonlinear stochastic filtering. Journal of Engineering Mechanics, 2015. 141(5): p. 04014149. [DOI:10.1061/(ASCE)EM.1943-7889.0000851]