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Abstract: 

 

The present research deals with the flexural-torsional buckling analysis of sandwich web and/or 

flanges tapered doubly-symmetric I-beam. All section walls are composed of two metal face 

layers and a functionally graded (FG) porous core. It is assumed that the material properties 

of the porous core vary gradually in the longitudinal direction according to the simple power-

law function considering the even distribution of porosities. Based on Vlasov’s theory for thin-

walled cross-section, the governing equations are derived via the energy method. The effect of 

axial load eccentricity is also considered in the formulation. The differential quadrature method 

is used to estimate the buckling load. In special cases, the results are compared to other 

available studies. Then the effects of gradient index, axial load eccentricity, porous coefficient, 

thickness ratio and tapering parameter on stability behavior of a simply supported three-layered 

sandwich tapered  I-beam with FG porous core are comprehensively assessed. The numerical 

outcomes of this paper demonstrated that the normalized flexural-torsional buckling load 

decreases with an increase in the porosity volume fraction.

 

1. Introduction 

Sandwich thin-walled structural components have been 

applied in aeronautical and mechanical applications, in 

virtue of their excellent engineering features, such as the 

low specific density, corrosion resistance, good buckling 

strength, and good surface finish. Nowadays, the use of 

multi-layered sandwich members is further enhanced with 

the development of manufacturing processes and by the 

introduction of the porous functionally graded materials 

(FGMs) as the core of sandwich panels. The main reason 

for this increase is the attractive features of porous FGMs 

such as thermal resistance, optimal distribution of weight, 

heat exchange and energy absorbance. Therefore, up to 

date, several studies have focused on the static, stability 

and vibration response of FGM and/or homogeneous 

structural elements with arbitrary cross-sections, a short 

description of which is presented below. 
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Based on non-linear strain displacement relationship and 

using the finite element method, Rajasekaran and Nalinaa 

[1] investigated the vibration and stability analyses of non-

prismatic thin-walled composite spatial members of 

generic section. Samanta and Kumar [2] provided the shell 

finite element solution for studying the distortional 

buckling capacity of simply supported beams with mono-

symmetric I-section. Machado and Cortinez [3] adopted a 

geometrically non-linear theory and large displacements 

and rotations assumptions to investigate the free vibration 

of composite beams with doubly-symmetric thin-walled 

open cross-section under static initial stresses and external 

loading. By considering the impact of the position of 

transverse load, the distortional and lateral-torsional 

stability analyses of Light Steel Beams (LSBs) subjected 

to simply-simply end conditions were studied by 

Kurniawan and Mahendran [4] through a new finite 

element methodology. The lateral buckling strength of 

doubly-symmetric tapered beams subjected to free bending 

and warping end restrains and the arbitrary bending 

moment was estimated by Ibanez and Serna [5] via the 

equivalent moment method. Yuan et al. [6] presented the 

outcomes of the lateral-torsional buckling of steel Tee-
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section beams having linear tapered web subjected to 

fixed-free end conditions and various transverse loading 

cases including uniformly distributed force and/or a 

concentrated one. Additionally, Li et al. [7] exploited the 

influence of exponential variation of material or 

geometrical properties on the linear vibration of beams 

under different end supports. Ebrahimi and Mokhtari [8] 

inspected the problem of transverse vibration of rotating 

Timoshenko beam using the differential transform method. 

Jabbari et al. [9] studied the thermal buckling of a radially 

solid sandwich circular plate made of a piezoelectric 

actuator and porous material. Based on the shear 

deformation theory, the free and forced vibrations of 

functionally graded porous beams were perused by Chen 

et al. [10]. In the context of Timoshenko beam theory, 

Chen at al. [11] assessed the nonlinear free vibration 

analysis of sandwich beam having a functionally graded 

porous core using Ritz method and a direct iterative 

algorithm. Based on Ritz and Galerkin's methods, Saoula 

et al. [12] studied the stability resistance of laterally 

unrestrained simply supported thin-walled box beam 

elements subjected to combined bending and axial forces. 

Utilizing a Navier solution methodology, the vibrational 

characteristics of functionally graded (FG) Reddy beams 

made of porous material loaded by various thermal forces 

were assessed by Ebrahimi and Jafari [13]. Within the 

frame of Eringen’s nonlocal elasticity theory, Shafiei and 

Kazemi [14] analyzed the linear buckling behavior of two-

dimensional functionally graded tapered beams made of 

porous materials. Khaniki and Rajasekaran [15] examined 

the mechanical responses of two-directionally FG 

microbeam with variable cross-section employing the 

theory of modified couple stress. Lezgy-Nazargah et al. 

[16-21] presented some useful work about the analysis of 

beams with thin-walled cross-section made of functionally 

graded materials. In the field of functionally graded porous 

materials, Li at al. [22] employed the generalized 

differential quadrature method for stability analysis of 

two-directionally porous beam. Taking into consideration 

the impact of shear deformation and following Vlasov’s 

assumptions, Nguyen et al. [23] conducted the linear 

stability and vibration analyses of FG laminated beams 

with an I-section under different boundary conditions. A 

finite element approach was recently developed by 

Koutoati [24] to assess the static and free vibration 

behaviors of multilayer composite and FG beams through 

different shear deformation beam theories. Based on 

Love’s shell theory, Ghasemi and Meskini [25] perused the 

free vibrational characteristics of porous laminated 

rotating circular cylindrical shells subjected to simply 

supported boundary conditions via Navier’s solution. 

Achref et al. [26] assessed higher buckling and lateral 

buckling responses of beams with open cross-sections 

through an analytical technique and finite element 

solution. Using a finite element model, a comprehensive 

investigation on the elastic instability and free vibration 

behaviors of bi-directional functionally graded tapered 

thin-walled beams with arbitrary cross-sections was 

presented by Rajasekaran and Khaniki [27]. 

As can be seen, the studies in the field of porous materials 

are exclusively devoted to beams with rectangular cross-

section. Hence, there has been no research presented to 

study the lateral-torsional stability behavior of sandwich 

doubly-symmetric tapered I-beam having axially 

functionally graded porous core. Additionally, in previous 

author’s studies, the lateral stability analysis of 

homogenous beams with variable mono-symmetric cross-

section [28], the free vibrational problem and flexural-

torsional buckling of non-prismatic beams with thin-

walled section [29], steel web and/or flanges tapered 

beams [30], as well as the lateral buckling problem of 

tapered I-beams with axially varying materials [31-33] 

were comprehensively assessed. Due to the application of 

composite structural members with thin-walled cross-

sections in the design of sensitive and modern structures 

such as aircraft wings, helicopter and turbine blades, it is 

necessary to study the problem of sandwich laminated 

thin-walled beams made of porous materials. Motivated by 

these facts, the main target of the present work is to 

precisely inspect the influence of porosity on the flexural-

torsional buckling behavior of sandwich tapered I-beams 

having AFG porous core by considering the effects of axial 

load and bending moment interaction. To this end, the 

following steps are considered: 

Within the framework of Vlasov’s model for non-uniform 

torsion, the coupled fourth-order differential equations for 

the vertical and lateral deformations as well as the twist 

angle are acquired using the energy method. It is necessary 

to note that the compressive axial load and bending 

moment interaction is also considered in our formulation. 

It is supposed that all section walls are stacked as steel/ 

functionally graded porous materials/steel. The material 

properties of the functionally graded porous core, varies 

continuously in the longitudinal direction according to the 

power law model considering the even distribution of 

porosities. The flexural-torsional buckling load is then 

estimated for simply supported end conditions with the 

help of the differential quadrature method. Eventually, a 

numerical example is provided to investigate the effects of 

prominent parameters such as power-law index, porosity 

volume fraction, web and flanges tapering parameters, 

thickness ratio and axial load positions on the flexural-

torsional buckling strength of sandwich thin-walled beams 

with tapered I-section having a porous core under simply 

supported boundary conditions. 
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2. Governing equations 

2.1. Axially functionally graded porous material 

Through this paper, the linear flexural-torsional buckling 

analysis is conducted for a sandwich porous I-beam with 

tapered web and flanges. The right-hand Cartesian co-

ordinate system, with x the initial longitudinal axis 

measured from the left end of the beam, the y-axis in the 

lateral direction and the z-axis along the vertical direction 

is considered as indicated in Fig. 1. The origin of these axes 

(O) is located at the centroid of doubly-symmetric I-

section. The sandwich tapered I-beam is subjected to a 

constant axial load at its ends. To perform the flexural-

torsional buckling analysis, the compressive axial force 

can be applied through an eccentricity from the centroid 

along the z-axis. It is also assumed that the width of both 

flanges (bL) and the web height (dL) of I-section at the left 

end are respectively made to increase linearly to 

(1 )R f Lb b   and (1 )R w Ld d  at the right one. 

Therefore, the flanges and web tapering ratios are defined 

as / 1f R Lb b    and / 1w R Ld d   , respectively. 

Note that these two parameters ( f  w ) are non-

negative variables and can change concurrently or 

separately. Moreover, by equating these two mentioned 

parameters ( f  w ) to zero, I-beam with uniform cross-

section is achieved. As shown in Fig. 1, the thicknesses of 

the flanges and the web are equal, that is, 2c ft t t   

where tc denotes the core thickness and tf is the thickness 

of face layers that are assumed to be perfectly bonded to 

the core material.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

           

                           
 

 

 

 

 
 

 

 

 

 

 

Fig. 1: Beam with variable doubly symmetric I-section: 

Coordinate system and notation for displacement parameters. 

It is assumed that the core of sandwich beam is made of 

axially varying materials with uniform porosity. Hence, 

the material features vary along the beam’s length from 

pure ceramic at the left end to pure metal at the right one. 

FGM possesses characteristics that can be acquired in 

accordance with the volume fraction of the phase material 

based on different theories such as: polynomial, 

exponential, and trigonometric volume fraction laws. 

Among these functions, power-law distribution [34-35] 

and exponential function [36-37] are extensively used to 

describe the material properties variation for FGM. In this 

study, power-law function is considered to model the 

material variations. 

As mentioned above, the even distribution porosities in the 

material is considered. Regarding this we have half of the 

porosity in the ceramic phase and another half in the metal 

constituents. Under these conditions, the modulus of 

elasticity of the even porosity type are expressed using Eq. 

(1) as: 

( ) ( )( ) ( )
2

p

c m c m c

x
E x E E E E E

L


                      (1) 

Here, we use the subscripts of ()m and ()c to express the 

metallic and ceramic phases. α (<<1) is the porosity 

volume fraction. It is to be mentioned that  provides a 

perfect beam.  

 

2.2. Kinematic relations 

In this study, the thin-walled beam with doubly-symmetric 

I-section is modeled within the framework of Vlasov’s 

thin-walled beam theory for non-uniform torsion. 

Regarding this theory and following small displacements 

assumption, the displacement field can be presented as 

follows:               

0

( ) ( )
( , , ) ( )

( )
                  ( , )

dv x dw x
U x y z u x y z

dx dx

d x
y z

dx




  



 
  (2a)  

 

( , , ) ( ) ( )V x y z v x z x   (2b) 

( , , ) ( ) ( )W x y z w x y x   (2c) 

O: Centroid 

u0 

v 

w

 

z 

y 

x 


O 

L
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z 

(a) 

t 

bL 

dL 
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I-section at x=0   
 

bR 

dR 
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I-section at x=L   
 

t 

tf 

tc 

tf 
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Face layer 

Porous core 

Face layer 
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(c) 

(b) 

Wall section details 

 

(d) 
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In these equations, U is the axial displacement and 

displacement components V and W represent lateral and 

vertical displacements (in direction y and z). The term 

( , )y z  signifies a cross-section variable that is called the 

warping function, which can be defined based on Saint-

Venant’s torsion theory and  is twisting angle. 

The Green’s strain tensor components which incorporate 

large displacements including linear and non-linear strain 

parts are given by: 

*1 1
( )

2 2

   , , , ,

j li k k

ij ij ij

j i i j

UU U U

x x x x

i j k x y z

  
  

   

 
     

 
 



        (3) 

l

ij  
denotes the linear parts and 

*

ij  
the quadratic non-

linear parts. Using relationships (1-2) and taking into 

account for tapering, the non-zero linear and non-linear 

parts of strain displacement are the following: 
'

0

l

xx
u yv zw         (4a) 

'2
xz xz

l l y
z


  

 
   

 
 (4b) 

'2
xy xy

l l z
y


  

 
    

 
 (4c) 

* 2 2 2 21
' ' ' ' ' ' '

2
xx

v w r yw zv           (4d) 

 *

xz
v z       (4e) 

 *

xy
w y      (4f) 

In Eq. (4d), the term 
2r  represents 2 2y z . 

In this study, it is contemplated that the concentrated 

compressive axial load (P) is applied at end beam without 

an eccentricity from centroid along z-axis. Therefore, an 

external bending moment occurs about the major principal 

axis (
*

y
M ) and the magnitude of bending moment with 

respect to z-axis (
*

z
M ) is equal to zero.  Regarding this, 

the most general case of normal and shear stresses 

associated with the external bending moment *

y
M  and 

shear force Vz are considered as: 

* *

0 0 ,                
y yz

xx xz

y

M MVP
z

A I A A
 


             (5a, b) 

Where 0

xz  represents the mean value of the shear stress 

and 0

xx  signifies initial normal stress in the cross section. 

Also, A and Iy are the cross-sectional area and the second 

moment of inertia about y-axis, are defined as follows: 

2,    y

A A

A dA I z dA                 (6a, b) 

 

 

 

2. 3. Equilibrium equations 

The principle of minimum total potential energy is adopted 

herein to obtain equilibrium equations and boundary 

conditions. For beams with thin-walled section, the total 

potential energy  is expressed by the summation of the 

elastic strain energy Ul and the strain energy due to initial 

stress U0: 

 0 0lU U            (7)  

  is a variational symbol in the last formulation. Note that 

in the context of linear stability, where the beam is not 

under any external forces, one considers that the work done 

by external applied loads (We) equals to zero. Ul could be 

computed using the following equations: 

 
0

L
l l l

l xx xx xy xy xz xy
A

U dAdx             (8) 

in which, L expresses the element length and the cross-

sectional area, respectively. l

xx , l

xz  and l

xy are the 

variation of the linear parts of strain tensor. Substituting 

equations (4a) to (4c) into relation (8), the expression of 

the virtual elastic strain energy can be carried out as: 

 0
0

0

0

( )

( )

L

l xx
A

L

xy
A

L

xz
A

U u y v z w dAdx

z dAdx
y

y dAdx
z

     


 


 

      

 
   

 

 
  

 

 

 

 

    (9) 

 Integrating over beam’s cross-section area yields: 

 

 

0

0

l z y
L

L

sv

U N u M v M w B dx

M dx


    



      






  (10) 

where N is the axial force. My and Mz denote the bending 

moments about major and minor axes, respectively. B is 

the bi-moment. Msv is the St-Venant torsion moment. 

These stress resultants used in Eq. (10) are defined as 

xx
A

N dA   (11a) 

y xx
A

M zdA   (11b) 

z xx
A

M ydA   (11c) 

    xx
A

B dA  (11d) 

( ) ( )
sv xz xy

A

M y z dA
z y

 
 
  

    
  

  (11e) 

Also, the variation of strain energy due to initial stresses 

can be stated as: 

 0 * 0 * 0 *

0
0

L

xx xx xy xy xz xz
A

U dAdx                    (12) 

Inserting the first variation of non-linear strain-

displacement relations defined in Eqs. (4d)-(4f) and initial 

stresses (5a, b) in Eq. (12), the following equation is 

obtained. 
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 

* 2

0
0

*

0

' '
( )

' '

' ' ' '

( )

L
y

A
y

L
y

A

v v w w

M r y wP
U z dAdx

A I yw

z v zv

M
v v z z dAdx

A

 

   




  

    

    
 

    
 
    


        

 

 

 (13) 

In this stage, by integrating Eq. (13) over the cross-section 

in the context of principal axes, the final form of the 

variation of the strain energy due to the initial stresses is 

acquired as: 

 

 

0
0

*

0

*

0

( )

( ' ' ' ')

( )

L
y z

L

y

L

y

I I
U P v v w w dx

A

M v v dx

M v v dx

    

  

 

 
        

 

 

   







         (14) 

Or 

 

 

2

0
0

* *

0

L

O

L

y y

U Pv v Pw w r dx

M v M v dx

    

 

       

   




                    (15) 

In Eq. (15), Iz is the second moment of inertia about z-axis 

and r0 the polar radius gyration about the centroid given 

by:  

2 ,  
y z

z o

A

I I
I y dA r

A


                                    (16) 

By inserting Eqs. (10) and (15) into Eq. (7) and setting the 

coefficients of    
0
, , ,u v w zero, the following 

equilibrium equations are acquired: 

0N      (17a) 

( ) 0yM Pw      (17b) 

*( ) ( ) 0
z y

M M Pv       (17c) 

* 2( ) 0


       
y sv O

B M v M Pr  (17d) 

Under the following boundary conditions: 

0N   or 0
0u   (18a) 

0
y

M   or 0w    (18b) 

0
y

M Pw    or 0w   (18c) 
* 0

z y
M M    or 0v    (18d) 

*( ) 0
z y

M M Pv       or 0v   (18e) 

0B

  or 0   (18f) 

2 0
sv O

B M Pr


      or 0   (18g) 

The present model is applied in the case of balanced and 

symmetrical lay-ups of the web and both flanges. In the 

context of classical laminated plate theory and substitution 

Eq. (4) into Eq. (11), the stress resultants are derived in 

terms of displacement components as: 

0
( )

com
N EA u   (19a) 

( )
z z com

M EI v   (19b) 

( )
y y com

M EI w    (19c) 

( )
com

B EI
 

  (19d) 

( )
sv com

M GJ   (19e) 

where ( )
com

EA denotes axial rigidity. ( )
y com

EI  and 

( )
z com

EI  represent the flexural rigidities of the y- and z-

axes, respectively. ( )
com

EI


 and ( )
com

GJ are, 

respectively, warping and torsional rigidities of composite 

thin-walled beams with doubly symmetric I-section, 

defined by: 

11
( ) (2 ( ))

com f f
EA b d t A    (20a) 

3

11 11
( ) 2

12

f

z com

b
EI A dD   (20b) 

2

11 11

3

11

( )
( ) 2 2

4

( )

12

f

y com f f

f

d t
EI b D b A

d t
A


 




 (20c) 

32 3

11 11 11
( ) 2( )

4 12 12

f

com

bd d
EI A D D


    (20d) 

66
( ) 4(2 )

com f
GJ b d D   (20e) 

in which, 11A and 11 66,D D  are the matrices of extensional 

and bending stiffness of each wall section, respectively, 

including the contribution from both the porous core and 

face layers, which are calculated as: 

0.5 0.5

11 2 20.5 0.5

0.5

2 0.5

( )

1 1

1

c c

c f c

c f

c

t t
f

t t t
f

t t
f

t
f

E E x
A dz dz

E
dz



  



 
 




 



 (21a) 

0.5 0.5
2 2

11 2 20.5 0.5

0.5
2

2 0.5

( )

1 1

1

c c

c f c

c f

c

t t
f

t t t
f

t t
f

t
f

E E x
D z dz z dz

E
z dz



  



 
 




 



 (21b) 

0.5 0.5
2 2

66
0.5 0.5

0.5
2

0.5

( )

2(1 ) 2(1 )

2(1 )

c c

c f c

c f

c

t t
f

t t t
f

t t
f

t
f

E E x
D z dz z dz

E
z dz



  



 
   


 

 



 (21c) 

where Ef and vf are Young’s modulus and Poisson’s ratio  

of the face layers. E and v denote Young’s moduli and 

Poisson’s ratio of the porous core which are given in Eq. 

(1). 

This study is established in the context of small 

displacements and deformations. According to linear 

stability, non-linear terms are also disregarded in the 

equilibrium equations. Based on these assumptions, the 

system of equilibrium equations for tapered I-beam are 

finally derived by replacing Eq. (19) into Eq. (17) 
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0
(( ) ) 0

com
EA u     (22a) 

(( ) ) 0
y com

EI w Pw     (22b) 

*(( ) ) ( ) 0
z com y

EI v M Pv        (22c) 
*(( ) ) (( ) )

com com y
EI GJ M v


         (22d) 

The related boundary conditions at the ends of thin-walled 

beam with I-section can be expressed as: 

In the subsequent section, a numerical solution procedure 

of the governing equations for flexural-torsional buckling 

of sandwich tapered I-beam having AFG porous core is 

presented based on the differential quadrature method 

(DQM). 

 

3. Solution Methodology 

As aforementioned, the differential quadrature method is 

used to calculate the critical loads trough solving the 

couple fourth-order differential equations. According to 

DQM, the mth order derivative of a function f(x) is 

described as: 

( )

1

( )         1,2,...,

p

Nm
m

jijm
jx x

d f
A f x for i N

dx 

       (24)     

where N signifies the number of grid points and 
( )m
ijA  is 

the weighting coefficient for the mth-order derivative. 

Following the DQ rules, the first-order derivative 

weighting coefficient (
(1)
ijA ) is derived as: 

(1)

(1)

1,

( )
     i j

( ) ( )
 , 1,2,...,

            i=j

i

i j j

ij N

ik

k k i

M x
for

x x M x
A i j N

A for

 


 


 





 (25)

  

Where M(x) is: 

1,

( ) ( )          1,2,...,

N

i i j

j j i

M x x x for i N

 

          (26)  

The higher-order DQM weighting coefficients can be 

acquired from the first-order weighting coefficient as:  

( ) (1) ( 1)
           2 1

m m
ij ij ijA A A m N


                          (27) 

The position of the sample points along x direction is also 

acquired via the Chebyshev-Gauss-Lobatto methodology 

as: 

1
1 cos ,  

2 1

if   0 x L        1,2,...,

i

L i
x

N

i N

  
    

  

  

        (28) 

In order to facilitate the solution of the stability equations 

by means of the differential quadrature approach, a non-

dimensional variable ( /x L ) is introduced. By the 

expansion of Eqs. (22b) - (22c), and then applying the 

differential quadrature discretization to the non-

dimensional form of the resultant equations, the following 

expressions are obtained: 

(4) (2)

1 1

(3) (2)2

1 1

( ) ( )( ) ( ) ( )( )

2( ) ( )( ) ( ) 0

N N

y com j j y com j jij ij

j j

N N

y com j j jij ij

j j

EI A w EI A w

EI A w L P A w

 



 

 



  

 

 
(29a)        

(4) (2)

1 1

(3) (2)2

1 1

(2) (1)2 2

1 1

2

( ) ( )( ) ( ) ( )( )

2( ) ( )( ) ( )

( )( ) 2 ( )( )

( ) 0

N N

z com j j z com j jij ij

j j

N N

z com j j jij ij

j j

N N

y j j y j jij ij

j j

y j j

EI A v EI A v

EI A v L P A v

L M A L M A

L M

 



   

 

 

 

 

 





 

 

 

 

 

 

   (29b)        

(4) (3)

1 1

(2)2

1

(1) (2)2 2

1 1

(1) (22 2 *

1

( ) ( )( ) 2( ) ( )( )

(( ) ( ) ( ) ( ))( )

( ) ( )( ) ( )( )

( )( ) ( )(

N N

com j j com j jij ij

j j

N

com j com j jij

j

N N

com j j o j jij ij

j j

N

o j j y jij ij

j

I A I A

I L GJ A

L GJ A PL R A

PL R A L M A

 



   

  

   

  

 



 



  

  

 

 

 



 

 )

1

) 0

N

j

j

v





 (29c) 

In Eq. (29c), 
2

0oR r . It is possible to express the 

quadrature analog of the mentioned above formulations in 

the following matrix form: 

0( ) 0comEA u    or 0
0u   

(23) 

( ) 0
y com

EI w    or 0w    

(( ) ) 0y comEI w Pw     or 0w   

( ) 0z com yEI v M     or 0v    

(( ) ) ( )

0

z com yEI v M

Pv

  

 
 or 0v   

( ) 0
com

EI


   or 0   

2

(( ) )

( ) 0

com

y O

EI GJ

M v Pr

  



  

   
 or 0   
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Where 

 

     

 

(4) (3) (2)1 1 1

(2)2

[ ]

[ ]
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            

 

 

     

 
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 
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(31) 

 

in which 
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Here, jk is Kronecker delta and defined as: 

; 1

; 0

   

   

jk

jk

if j k

if j k
                                                       (33) 

In Eq. (30), the displacement vectors and the torsion angle 

vector are expressed as: 

   1 21
...

T

NN
w w w w


  (34a) 

   1 21
...

T

NN
v v v v


  (34b) 

   1 21
...

T

NN
   


  (34c) 

The simple form of the final equation (Eq. (25)) can be 

stated as: 

         3 13 13 3
( ) {0} NNN N

K P M d 
              (35)  

or 

    {0}GK K d       (36) 

in which                

[ ] [ ] [ ]

{ }

{ } { }

{ }

GK P M

w

d v



 

 
 

  
 
 

            (37a, b) 

K and KG
 are 3 3N N matrices. As mentioned previously, 

N denotes the number of grid points along the computation 

domain ( 0 1   ).   are the eigenvalues and { }d  are the 

related eigenvectors. By imposing the boundary conditions 

at two ends, the flexural-torsional buckling loads are 

estimated through solving the eigenvalue problem. 

 

4. Numerical Example 

In the preceding section, a mathematical methodology has 

been formulated to calculate the flexural-torsional 

buckling loads of sandwich I-beam with varying cross-

section. In this section, a comprehensive example is 

conducted to show the effects of significant parameters 

such as axial load position, power-law index, porosity 

volume fraction, thickness ratio (tc/tf) and non-uniformity 

parameter on the buckling capacity of sandwich doubly-

symmetric web and flanges tapered I-beam having AFG 

porous core subjected to simply supported end conditions. 
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To this aim, the current section is divided to two different 

subsections; the first one for verification purpose of the 

formulation in the context of homogenous perfect tapered 

beam and the second one is devoted to perusing the 

influence of the above-mentioned factors on the linear 

buckling behavior of the considered member subjected to 

a compressive axial force at its ends.  

In this benchmark example, it is supposed that the 

compressive axial load is applied at three different 

positions: the Top Flange (TF) of the left end section 

(x=0), the Centroid, and the TF of the right end section 

(x=L). It should be pointed out that the variations of 

flanges’ width and web’s height are identical to section 2.1 

and Fig. 1. The geometrical data and loading positions for 

the considered beam are depicted in Fig. 2. 

Material characteristics of sandwich porous beams with 

varying I-section which are stacked as steel/ axially 

functionally graded porous materials/steel with the 

following parameters:  

Face layers: Ef=200GPa; 0.3f  . 

AFG porous core: Al2O3: Ec=380GPa; Al: Em=70GPa; 

0.3  . 

To have a better understanding of the numerical outcomes, 

the evaluated flexural-torsional buckling load is presented 

in the non-dimensional form as:  
2

3

cr

nor

f L

P L
P

E td
     (38) 

 

 
Fig. 2: Configuration of tapered I-beam with simply supported 

boundary condition, (a) Axial load on the TF of the left end 

section, (b) Axial load on the centroid, (c) Axial load on the TF 

of the right end section, (d) Geometry properties.  

4.1. Verification  

The aim of the first part of the current section is to define 

the needed number of points along the longitudinal 

direction while using DQM to obtain an acceptable 

accuracy on flexural-torsional buckling loads. In the 

absence of numerical studies on the subject of sandwich 

porous thin-walled beams, herein, the accuracy and 

exactness of the predicted results by the present 

formulation in the case of homogenous doubly-symmetric 

tapered beam are checked with those acquired by finite 

element technique proposed by Soltani et al. [38]. 

Regarding this, the lowest values of the non-dimensional 

buckling parameter (Pnor) of the contemplated beam with 

variable thin-walled I-section made of  Alumina for two 

different loading positions and various values of tapering 

ratios ( 0f w   , 0.2, 0.5, and 0.8) are evaluated 

versus the number of sampling points adopted in DQ 

methodology. The resulting buckling parameters by the 

present formulation is depicted in Table 1.   

 

Table 1: Convergence of the differential quadrature technique 

in determination of the lowest non-dimensional buckling load 

(Pnor) for tapered homogenous I-beam with different tapering 

parameters and loading positions. 

Axial 

load 

position 
f w   

DQM Soltani 
et al. 

[38] 

Number of points along x-direction 

N=5 N=10 N=15 N=20 

C
en

tr
o

id
 

0 0.205 0.206 0.206 0.206 0.206 

0.2 0.270 0.271 0.271 0.271 0.272 

0.5 0.386 0.383 0.383 0.383 0.383 

0.8 0.530 0.511 0.511 0.511 0.511 

T
F

 o
f 

le
ft

 

en
d

 s
ec

ti
o

n
 0 0.191 0.191 0.191 0.191 0.192 

0.2 0.247 0.247 0.247 0.247 0.248 

0.5 0.346 0.340 0.340 0.340 0.340 

0.8 0.475 0.442 0.442 0.442 0.443 

 

It is seen from Table 1 that ten number of grid points 

(N=10) are sufficient to obtain the lowest normalized 

buckling loads for different axial load positions and non-

uniformity parameters. Under this condition, for each case 

and load position, there is a good agreement between the 

proposed mathematical approach and those obtained by 

finite element solution developed by Soltani et al. [38]. 

 

4.2. Parametric Study 

After the validation process of the present formulation for 

double-tapered I-section subjected to simply supported 

end conditions, the effects of significant parameters such 

as porosity volume fraction, the eccentric axial load, web 

and flanges tapering parameters and AFG power index (p), 
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on the flexural-torsional stability of sandwich thin-walled 

beam with AFG porous core are studied for 10c

f

t

t
  . 

In order to assess the linear stability strength of the 

sandwich AFG porous beam with varying I-section, the 

lowest normalized flexural-torsional buckling loads (Pnor) 

of considered I-beam subjected to simply supported end 

conditions are arranged in Table 2, which figures out the 

impact of web and flanges tapering ratios ( 0f w  

), material composition (power-law 

exponent), porosity volume fraction (= 0 and 0.1) and 

three different loading positions on the buckling capacity 

of considered element. The compressive axial load can be 

applied on the TF of left end section (x=0), the centroid, 

and on the TF of right end section (x=L). 

 

 

Table 2: Axial load eccentricity, gradient index and tapering 

parameter effect on the normalized buckling load (Pnor) of 

simply supported thin-walled beam subjected to constant 

compressive load with two different porosity volume fractions. 

Loading 

Position 
 f =w

Material properties 

Pure 

Ceramic 
p=0.8 p=1.6 p=2.4 

A
x

ia
l 

lo
ad

 o
n

 t
h

e 
T

F
 o

f 
le

ft
 

en
d

 s
ec

ti
o

n
 (

x
=

0
) 0 

0.0 0.362 0.203 0.258 0.292 

0.2 0.467 0.272 0.346 0.388 

0.5 0.640 0.392 0.495 0.550 

0.8 0.833 0.529 0.663 0.732 

0.1 

0.0 0.330 0.182 0.238 0.272 

0.2 0.425 0.245 0.319 0.362 

0.5 0.583 0.355 0.459 0.515 

0.8 0.758 0.482 0.617 0.686 

A
x

ia
l 

lo
ad

 o
n

 t
h

e 
ce

n
tr

o
id

 

0 

0.0 0.396 0.215 0.277 0.315 

0.2 0.522 0.294 0.378 0.427 

0.5 0.737 0.435 0.555 0.623 

0.8 0.982 0.601 0.764 0.851 

0.1 

0.0 0.360 0.192 0.254 0.292 

0.2 0.474 0.264 0.348 0.398 

0.5 0.670 0.392 0.513 0.582 

0.8 0.894 0.544 0.708 0.797 

A
x

ia
l 

lo
ad

 o
n

 t
h

e 
T

F
 o

f 
ri

g
h
t 

en
d

 s
ec

ti
o

n
 (

x
=

L
) 0 

0.0 0.362 0.194 0.247 0.280 

0.2 0.462 0.256 0.324 0.366 

0.5 0.621 0.357 0.452 0.507 

0.8 0.792 0.469 0.592 0.661 

0.1 

0.0 0.330 0.174 0.226 0.260 

0.2 0.421 0.230 0.298 0.341 

0.5 0.566 0.322 0.416 0.473 

0.8 0.721 0.424 0.547 0.618 

 

Next, the influence of porosity volume fraction (ranging 

from 0 to 0.2) on the variations of the non-dimensional 

flexural-torsional buckling loads (
nor

P ) of sandwich thin-

walled beam with varying I-section having pure ceramic or 

axially functionally materials core with different gradient 

indexes (p=1 and 3) with respect to tapering ratios (varying 

from 0 to 1.0) is plotted in Figs. 3-5 for three different 

loading positions. Load position of the constant 

compressive axial load is on the TF of the smaller cross-

section (x=0), on the centroid and the TF of the larger 

cross-section (x=L). In this stage, the non-uniform beam 

having equal web height and flanges width tapering ratios 

( f w  ) is perused.  

 

 
 

 

 
 

 

 
Fig. 3: Variation of the non-dimensional flexural-torsional 

buckling load (Pnor) of sandwich I-beam with tapering 

parameter and porosity volume fraction for different material 

indexes (axial load on the TF of left end section). 
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Fig. 4: Variation of the non-dimensional flexural buckling load 

(Pnor) of sandwich I-beam with tapering parameter and porosity 

volume fraction for different material indexes (axial load on the 

centroid). 

 

 

 

 

 
Fig. 5: Variation of the non-dimensional flexural-torsional 

buckling load (Pnor) of sandwich I-beam with tapering 

parameter and porosity volume fraction for different material 

indexes (axial load on the TF of right end section). 
 

 

 
 

Table 3: Power-law exponent and tapering parameter effects on the normalized flexural-torsional buckling load (Pnor) of simply supported 

sandwich thin-walled beam with different porous parameters (axial load on the TF of left end section). 

 w 
p=0.6 p=1.2 p=1.8 

0f   0.4f   0.8f   0f   0.4f   0.8f   0f   0.4f   0.8f   

0 

0 0.1839 0.3126 0.4638 0.2343 0.3983 0.5880 0.2684 0.4517 0.6608 

0.4 0.1852 0.3162 0.4715 0.2362 0.4036 0.5990 0.2707 0.4582 0.6740 

0.8 0.1863 0.3193 0.4780 0.2377 0.4080 0.6081 0.2727 0.4636 0.6848 

0.1 

0 0.1631 0.2798 0.4181 0.2134 0.3658 0.5429 0.2477 0.4198 0.6167 

0.4 0.1642 0.2830 0.4248 0.2150 0.3706 0.5529 0.2499 0.4258 0.6289 

0.8 0.1651 0.2856 0.4304 0.2164 0.3745 0.5611 0.2516 0.4307 0.6388 

0.2 

0 0.1417 0.2462 0.3712 0.1920 0.3327 0.4971 0.2268 0.3876 0.5721 

0.4 0.1425 0.2487 0.3769 0.1934 0.3368 0.5060 0.2286 0.3930 0.5833 

0.8 0.1432 0.2509 0.3815 0.1945 0.3402 0.5133 0.2302 0.3974 0.5924 
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Table 4: Power-law exponent and tapering parameter effects on the normalized flexural-torsional buckling load (Pnor) of simply supported 

sandwich thin-walled beam with different porous parameters (axial load on the TF of right end section). 

 w 
p=0.6 p=1.2 p=1.8 

0f   0.4f   0.8f   0f   0.4f   0.8f   0f   0.4f   0.8f   

0 

0 0.1771 0.3091 0.4743 0.2239 0.3930 0.6033 0.2566 0.4483 0.6848 

0.4 0.1686 0.2925 0.4471 0.2125 0.3709 0.5679 0.2433 0.4229 0.6446 

0.8 0.1614 0.2786 0.4249 0.2030 0.3529 0.5395 0.2323 0.4023 0.6125 

0.1 

0 0.1564 0.2750 0.4241 0.2031 0.3588 0.5533 0.2359 0.4145 0.6356 

0.4 0.1489 0.2602 0.3997 0.1927 0.3386 0.5207 0.2236 0.3909 0.5982 

0.8 0.1426 0.2478 0.3799 0.1841 0.3222 0.4947 0.2135 0.3719 0.5684 

0.2 

0 0.1350 0.2398 0.3726 0.1817 0.3239 0.5024 0.2149 0.3804 0.5859 

0.4 0.1286 0.2269 0.3510 0.1725 0.3055 0.4726 0.2037 0.3586 0.5513 

0.8 0.1231 0.2161 0.3335 0.1647 0.2907 0.4489 0.1944 0.3412 0.5238 

 

 

The magnitude of the normalized flexural-torsional 

buckling parameter (
nor

P ) for various combinations of 

web height and flange width tapering ratios ( f  and w ), 

porosity volume fractions (= 0, 0.1 and 0.2) with different 

in-homogenous indices (p=0.6, 1.2 and 1.8) are listed in 

Tables 3-4. The contribution of axial load eccentricity 

from the cross-section centroid on the buckling resistance 

is also taken into account. The resulting normalized 

buckling parameters are respectively illustrated in Tables 

3 and 4 for load positions on the TF of smaller end-section 

and on the TF of right end-section. 

The tables and figures indicate that non-uniformity 

parameter has a remarkable influence on the non-

dimensional flexural-torsional buckling loads. It can be 

deduced that for any value of power-law exponents, 

porosity volume fraction and loading positions, the 

stability of prismatic beam ( 0w f   ) and double 

tapered one with 1w f    is least and most, 

respectively. By pondering Tables 3-4 and Figs. 6-7, one 

can conclude that the effect of the rate of flanges width 

tapering parameter (
f ) is more than the effect of the web 

non-uniformity ratio (
w ). The reason is attributed to the 

fact that the lowest flexural-torsional buckling modes 

usually occur with respect to the minor axis moment of 

inertia.  
According to the illustrations related to beams subjected to 

axial load on the centroid and on the TF of smaller end 

section, it is observed that the buckling parameter 

increases with an increase in web non-uniformity ratio (

w ), as a result of the enhancement of all geometrical 

characteristics of cross-section and consequently flexural 

stiffness and torsional rigidity of the elastic member.  

While the other results relating to I-beams with an axial 

load on the TF of right end section do not follow a similar 

pattern. As shown in Table 4, the linear stability strength 

of beams having constant flanges’ width is diminished 

with web tapering ratio. For instance, the flexural-torsional 

buckling loads of perfect and porous I-beams with constant 

web height ( 0f  ) are larger than those of web-tapered 

with tapering ratio equals 1. This interesting reason is 

attributed to the fact that the initial bending moment (
*

yM

) due to axial load eccentricity is enhanced by increasing 

the web tapering ratio (
f ) from zero. Finally, it can be 

stated that this phenomenon is negligible on the buckling 

resistance of web and flanges tapered beams when all 

section walls have a same non-uniformity ratio (
w f 

.  

One remarks that for the three contemplated load cases, the 

buckling capacity is best when the axial load location is on 

the centroid and the lower values are obtained when the 

load is applied on the TF positions owing to the presence 

of the initial bending moment resulting by axial load 

eccentricity. 

It is observable from these illustrations that the non-

dimensional buckling load decreases by increasing the 

porosity due to decreasing the stiffness. Also, it is seen that 

a higher flexural-torsional buckling capacity is obtained by 

an increase in the power index (p). The reason is the higher 

portion of ceramic phase as the value of the gradient index 

rises.  

The effect of thickness ratio c

f

t
t

is then perused. 

Assuming that compressive load is located on the centroid, 

Figs. 6 illustrates the variation of the normalized buckling 

load with respect to the tapering parameter (
w f  ) for 

different thickness ratios. In this section, the flanges and 

web thicknesses are kept constant while both ct and ft are 

varied. It is necessary to point out that a larger thickness 

ratio matched with a sandwich I-beam which is closer to a 

functionally graded porous beam without metal face 

layers. Under this condition, the stiffness of the member is 

increased and consequently higher buckling load is 

obtained. 
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Fig. 6: Variation of the non-dimensional flexural-torsional 

buckling load (Pnor) of sandwich I-beam with tapering 

parameter and thickness ratio for different material indexes 

(axial load on the centroid). 

 

 

5. Conclusions 

In this manuscript, the effect of porosity on flexural-

torsional buckling behavior of simply supported sandwich 

web and/or flanges tapered beam subjected to eccentrically 

compressive axial load was investigated. It is assumed that 

all section walls (the web and both flanges) are stacked as 

steel/ axially functionally graded porous materials/steel. 

Following the assumptions of Vlasov’s theory and in the 

context of small displacement, the system of governing 

equilibrium equations is obtained using the energy method. 

As the resulting differential equations are strongly coupled 

in terms of the vertical and lateral displacements and the 

twist angle, the differential quadrature method is employed 

to estimate the critical buckling load. After verification, the 

influence of web and/or flanges tapering ratios, porosity 

volume fraction, thickness ratio, axial load position and 

axial variation of mechanical properties on flexural-

torsional stability of sandwich I-beam is exhaustively 

surveyed. According to the numerical outcomes, it is 

concluded that the mentioned above parameters play 

significant roles in the stability strength of sandwich 

tapered I-beam having AFG porous core. It can be stated 

that the buckling capacity is best when the compressive 

axial load is applied on the centroid. It is illustrated that the 

non-dimensional buckling load increases by an increase in 

the percentage of ceramic phase. Additionally, it is 

revealed that the increase in porosity volume fraction leads 

to decrease the buckling strength. By increasing the 

thickness of porous core, the stability strength is obviously 

enhanced. It is deduced that the effect of the flange 

tapering parameter (
f ) on the buckling capacity is more 

than the web tapering ratio (
w ).  
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