Volume 4, Issue 2 (12-2019)                   NMCE 2019, 4(2): 44-54 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taban M H, Hajiazizi M, Ghobadian R. Predicting the value of the rock quality index in the Q-system using gene expression programming. NMCE 2019; 4 (2) :44-54
URL: http://nmce.kntu.ac.ir/article-1-254-en.html
1- M.Sc Student, Department of Geotechnical Engineering, Razi University, Kermanshah, Iran.
2- Associate Professor, Department of Geotechnical Engineering, Razi University, Kermanshah, Iran. , mhazizi@razi.ac.ir
3- Associate Professor, Department of water Engineering, Razi University, Kermanshah, Iran.
Abstract:   (5698 Views)
Among the methods used to design the tunnel, the Q-system is a comprehensive method that has attracted the attention of many researchers today. However, the limitations of the Q-system make it impossible to access all the required parameters as well as the time and cost of them,  which has made it impossible to classify the rock mass using the Q-system. This paper attempts to predict the value of Q by parameters that have the highest coefficient of importance in the value of Q, using the Gene Expression Programming (GEP) technique. The most effective parameters involved in the Q value have been identified using Pearson correlation analysis (PCA), and then three different input models have been used to obtain Q value so that they are more closely related to experimental values. A total number of 159 experimental data were used for training and testing of the models, respectively. The innovation of this paper is that instead of 6 parameters, only three influential ones were used for determining the value of Q. Using the three parameters RQD, Jn and Ja, which have been determined as the most effective parameters and applying Pearson correlation analysis method, the value of Q can be determined with an acceptable approximation. In the suggested relation, the coefficients of determination (R2), root mean square error (RMSE), BIAS and the scatter index (SI) obtained were 0.917, 2.31, 1.74 and 0.43, respectively that show the new equation presented by GEP, can be undoubtedly used to predict the value of Q.
Full-Text [PDF 752 kb]   (394 Downloads)    
Type of Study: case report | Subject: General
Received: 2019/09/6 | Revised: 2019/10/10 | Accepted: 2019/11/1 | ePublished ahead of print: 2019/11/15

1. [1] Hoek, E. (2004), Rock mass classification. Hoek's Corner.
2. [2] Yari, Gh., Hodhodi, M. (2012) "A new relationship between RMR and Q systems on the basis of their results around the world", The First Iranian Conference on Geotechnical.
3. [3] Palmström, A. (1996) "The Rock Mass index (RMi) applied in rock mechanics and rock engineering", Joumal of Rock Mechanics and Tunneling Technology, vol. 11, No.2, pp. 1-40. [DOI:10.1016/0886-7798(96)00015-6]
4. [4] Ozbek, A., Unsal, M., Dikec, A. (2013) "Estimating uniaxial compressive strength of rocks using genetic expression programming", Journal of Rock Mechanics and Geotechnical Engineering, Vol. 5, No .4, pp. 325-329. [DOI:10.1016/j.jrmge.2013.05.006]
5. [5] Shirani Faradonbeh, R., Jahed Armaghani, D., Monjezi, M., Tonnizam Mohamad, E. (2016) "Genetic programming and gene expression programming for fly rock assessment due to mine blasting", International Journal of Rock Mechanics & Mining Sciences, Vol. 88, pp. 254-264. [DOI:10.1016/j.ijrmms.2016.07.028]
6. [6] Alemdag, S., Gurocak, Z., Cevik, A., Cabalar, A.F., Gokceoglu, C. (2016) "Modeling Deformation Modulus of a Stratified Sedimentary Rock Mass Using Neural Network, Fuzzy Inference and Genetic Programming", Engineering Geology, Vol. 203, pp. 70-82. [DOI:10.1016/j.enggeo.2015.12.002]
7. [7] Yang, Ch.X., Wu, Y.H., Hon, T. (2010) "A no-tension elastic-plastic model and optimized back-analysis technique for modeling nonlinear mechanical behavior of rock mass in tunneling", Tunneling and Underground Space Technology, Vol. 25, pp. 279-289. [DOI:10.1016/j.tust.2010.01.001]
8. [8] Monjezi, M., Amini Khoshalan, H., Yazdian Varjani, A. (2011) "Optimization of Open pit Blast Parameters using Genetic Algorithm", International Journal of Rock Mechanics & Mining Sciences, Vol. 48, No. 5, pp. 864-869. [DOI:10.1016/j.ijrmms.2011.04.005]
9. [9] Beiki, M., Majdi, A., Givshad, A. (2013) "Application of genetic programming to predict the uniaxial compressive strength and elastic modulus of carbonate rocks", International Journal of Rock Mechanics & Mining Sciences, Vol. 63, pp. 159.169. [DOI:10.1016/j.ijrmms.2013.08.004]
10. [10] Feng, X.T., Chen, B.R., Yang, C.X, Zhou, H., Ding, X.L (2006) "Identification of visco-elastic models for rocks using genetic programming coupled with the modified particle swarm optimization algorithm", International Journal of Rock Mechanics & Mining Sciences, Vol. 43(5), pp. 789-801. [DOI:10.1016/j.ijrmms.2005.12.010]
11. [11] Fahimifar, A., Sahab, M.GH., Mahori, M. (2011). "Optimum design of the tunnel stabilization systems using genetic algorithms" First Asian Conference and The Ninth National Congress of the tunnel
12. [12] Li, W.X., Dai, L.F., Hou, X.B., Lei, W. (2007) "Fuzzy genetic programming method for analysis of ground movements due to underground mining", International Journal of Rock Mechanics & Mining Sciences, Vol. 44, No. 6, pp. 954-961. [DOI:10.1016/j.ijrmms.2007.02.003]
13. [13] Majdi, A., Beiki, M. (2010) "Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses", International Journal of Rock Mechanics & Mining Sciences, Vol. 47, No. 2, pp. 246-253. [DOI:10.1016/j.ijrmms.2009.09.011]
14. [14] Beiki, M., Bashari, A., Majdi, A. (2010) "Genetic programming approach for estimating the deformation modulus of rock mass using sensitivity analysis by neural network", International Journal of Rock Mechanics & Mining Sciences, Vol. 47, pp. 1091-1103. [DOI:10.1016/j.ijrmms.2010.07.007]
15. [15] Park, H., Kim, K., Kim, Y. (2015) "Field performance of a genetic algorithm in the settlement prediction of a thick soft clay deposit in the southern part of the Korean peninsula" Engineering Geology, Vol. 196, pp. 150-157. [DOI:10.1016/j.enggeo.2015.07.012]
16. [16] Gullu, H. (2012), "Prediction of peak ground acceleration by genetic expression programming and regression: A comparison using likelihood-based measure", Engineering Geology, Vol. 141, pp. 92-113. [DOI:10.1016/j.enggeo.2012.05.010]
17. [17] Ghobadian, R., Hajiabadi, R. (2013), "The use of GEP to estimate soil compaction in fine-grained and compare it with the experimental methods", First National Conference on Soil Mechanics and Foundation Engineering
18. [18] Liu, K.Y., Qiao, C.S., Tian, S.F. (2004) "Design of Tunnel Shotcrete-Bolting Support Based on a Support Vector Machine", International Journal of rock Mechanics & Mining Sciences, Vol. 41, pp. 768-773. [DOI:10.1016/j.ijrmms.2004.03.133]
19. [19] Mobarra, M. and M. Hasaninia (2015). "Comparisson Performance Evaluation of Multi Variable Regression model for Tunnel Boring Machine Penetration Predict Rate with ANFIS" 2etd Iranian Geotechnical Engineering Conference
20. [20] Jalalifar, H., Mojedifar, S., Sahebi, A.A. (2014) "Prediction of rock mass rating using fuzzy logic and multi-variable RMR regression model", International Journal of Mining Science and Technology, Vol. 24, PP. 237-244. [DOI:10.1016/j.ijmst.2014.01.015]
21. [21] Jalalifar, H., Mojedifar, S., Sahebi, A.A., Nezamabadipour, H. (2011) "Application of the adaptive neuro-fuzzy inference system for prediction of a rock engineering classification system", Computers and Geotechnics, Vol. 38, No. 6, pp. 783-790. [DOI:10.1016/j.compgeo.2011.04.005]
22. [22] Kavekar, Sh., Ghorbani, M.A., Ashrafzadeh, A., Darbandi, S. (2013) "experimental simulation of water level Fluctuations using GEP", Journal of Civil and Environmental Engineering, Vol. 43, No. 3, pp. 69-75.
23. [23] Alavi, H., Bolandi, H. (2012) "A new predictive model for compressive strength of HPC using gene expression programming", Advances in Engineering Software, Vol. 45, No. 1, pp. 105-114. [DOI:10.1016/j.advengsoft.2011.09.014]
24. [24] M.A. Antoniou, E.F. Georgopoulos, K.A. Theofilatos, A.P. Vassilopoulos, S.D. Likothanassis. (2010) "A gene expression programming environment for fatigue modeling of composite materials", Artificial Intelligence: Theories, Models and Applications, Vol. 6040, pp. 297-302. [DOI:10.1007/978-3-642-12842-4_33]
25. [25] Baykasoglu, A., Gullu, H., Canakci, H., Ozbakir, L. (2008) "Prediction of compressive and tensile strength of limestone via genetic programming", Expert Systems with Applications, Vol. 35, Issues. 1-2, pp. 111-123. [DOI:10.1016/j.eswa.2007.06.006]
26. [26] Naderpour, H. and Mirrashid M. (2018) "Shear Strength Prediction of RC Beams Using Adaptive Neuro-Fuzzy Inference System" Scientia Iranica, vol. 27, pp. 657-670. [DOI:10.24200/sci.2018.50308.1624]
27. [27] Taban, A., Mirmohammad Sadeghi, M., Rowshanzamir, M. A, (2018) "The Estimation of van Genuchten SWCC Model for Unsaturated Sands by means of the Genetic Programming" Scientia Iranica, vol. 25, pp. 2026-2038.
28. [28] Alikhani, H., Alvanchi, A., (2017) "Using genetic algorithms for long-term planning of network of bridges" Scientia Iranica, vol. 26, pp. 2653-2664. [DOI:10.24200/sci.2017.4604]
29. [29] Li, Z., and Li, B. (2017) "Optimizing insuring critical path problem under uncertainty based on GP-BPSO algorithm" Scientia Iranica, vol. 25, pp. 3713-3722. [DOI:10.24200/sci.2017.4587]
30. [30] Hajiazizi, M., Khatami, R. (2013) "Seismic analysis of the rock mass classification in the Q-system", International Journal of Rock Mechanics & Mining Sciences, 62, 123-130. [DOI:10.1016/j.ijrmms.2013.05.003]
31. [31] Hu, L. and Ghassemi, A. (2020) "Heat production from lab-scale enhanced geothermal systems in granite and gabbro", International Journal of Rock Mechanics & Mining Sciences, 126, 104205. [DOI:10.1016/j.ijrmms.2019.104205]
32. [32] Vogler, D., Walsh, S.D.C. and Saar, M. O. (2021) "A numerical investigation into key factors controlling hard rock excavation via electropulse stimulation", Journal of Rock Mechanics and Geotechnical Engineering, 12(4), 793-801. [DOI:10.1016/j.jrmge.2020.02.002]
33. [33] C. Ferreira. (2006), "Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence", 2nd ed. (Rev.), Springer-Verlag, Berlin, NY, USA.
34. [34] Dadkhah, R., Hoseeinmirzaee, Z. (2014). "Determination strength parameters rock masses jajarm tunnel based on geotechnical study", Journal of Biodiversity and Environmental Sciences(JBES), Vol. 4, No. 6, pp. 495-502.
35. [35] Dadkhah, R., Ajalloeian, R., Hoseeinmizaei, Z. (2010) "Investigation of Engineering Geology characterization of Khersan 3 dam site" The 1 st International Applied Geological Congress, Department of Geology, Islamic Azad University- Mashad Branch.
36. [36] Makurat, A., Løset, F., WoldHagen, A., Tunbridge, L., Kveldsvik, V., Grimstad, E. (2006) "A descriptive rock mechanics model for the 380-500 m level", Norwegian Geotechnical Institute, Oslo.
37. [37] Anbalagan, R., Singh, B., Bhargava, P. (2003). "Half tunnels along hill roads of Himalaya-an innovative approach", Tunnelling and Underground Space Technology, Vol. 18, No. 4, pp. 411-419. [DOI:10.1016/S0886-7798(02)00080-9]
38. [38] Barton, N. (2002). "Some new Q-value correlations to assist in site characterisation and tunnel design", International Journal of Rock Mechanics & Mining Sciences, Vol. 39, pp. 185-216. [DOI:10.1016/S1365-1609(02)00011-4]
39. [39] Goel, R.K., Jethwa, J.L., Paithankar, A.G. (1996). "Correlation Between Barton's Q and Bieniawski's RMR - A New Approach", International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, Vol. 33, Issue. 2, pp. 179-181. [DOI:10.1016/0148-9062(95)00057-7]
40. [40] Schwingenschloegl, R., Lehmann, Ch. (2009). "Swelling rock behaviour in a tunnel: NATM-support vs. Q-support - A comparison", Tunnelling and Underground Space Technology. Vol. 24, Issue. 3, pp. 356-362. [DOI:10.1016/j.tust.2008.08.007]
41. [41] Barton, N., Gammelsaeter, B. (2010). "Application of the Q-system and QTBM prognosis to predict TBM tunnelling potential for the planned OSLO-SKI RAIl tunnels", Nordic Rock Mech Symp. Kongsberg.
42. [42] Barton, N., Grimstad, E. (2014). "Forty years with the Q-system in Norway and Abroad", Fjellsprengningsteknikk, NFF, Oslo, 25p.
43. [43] Barton, N., Grimstad, E. (2014). "Q-system - An illustrated guide following Forty years in tunnelling", Technical Report.

Add your comments about this article : Your username or Email:

Send email to the article author