Volume 2, Issue 1 (9-2017)                   NMCE 2017, 2(1): 15-23 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kheyroddin A, Maleki F. Prediction of effective moment of inertia for hybrid FRP-steel reinforced concrete beams using the genetic algorithm . NMCE 2017; 2 (1) :15-23
URL: http://nmce.kntu.ac.ir/article-1-104-en.html
1- Professor, Department of Civil Engineering, Semnan University, Semnan, Iran , kheyroddin@semnan.ac.ir
2- MSc student, Department of Civil Engineering, Semnan University, Semnan, Iran
Abstract:   (2370 Views)

Abstract:

 
The use of Concrete beams reinforced with a combination of fiber reinforced polymer (FRP) and steel bars has increased dramatically in recent years, due to improvement in strength and flexural ductility simultaneously. In this paper, we proposed a new equation for estimating the effective moment of inertia of hybrid FRP-steel reinforced concrete (RC) beams on the basis of the genetic algorithm and experimental results.The genetic algorithm is used to optimize the percent error between experimental and analytical responses. In the proposed equation, additional coefficients are considered in order to take into account the specific properties of FRP bars. The effects of the elastic modulus of FRP and steel bars, the hybrid reinforcement ratio, Af /As, and the different level of loading on the effective moment of inertia has been considered.These coefficients are used to modify Bransons equation to compute the effective moment of inertia of concrete beams reinforced by FRP and steel bars. Comparison between the experimental and predicted results showed the adequacy of the model used in predicting the effective moment of inertia, and deflection of hybrid – RC beams.
Full-Text [PDF 592 kb]   (1264 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/02/25 | Revised: 2017/04/6 | Accepted: 2017/06/19 | ePublished ahead of print: 2017/06/29

References
1. [1] Dundar, C., Tanrikulu, A.K. and Frosch, R.J., 2015. Prediction of load-deflection behavior of multi-span FRP and steel reinforced concrete beams. Composite Structures, 132, pp.680-693. [DOI:10.1016/j.compstruct.2015.06.018]
2. [2] Aiello, M.A. and Ombres, L., 2002. Structural performances of concrete beams with hybrid (fiber-reinforced polymer-steel) reinforcements. Journal of Composites for Construction, 6(2), pp.133-140. [DOI:10.1061/(ASCE)1090-0268(2002)6:2(133)]
3. [3] Masmoudi, R., Theriault, M. and Benmokrane, B., 1998. Flexural behavior of concrete beams reinforced with deformed fiber reinforced plastic reinforcing rods. Structural Journal, 95(6), pp.665-676. [DOI:10.14359/580]
4. [4] Kocaoz, S., Samaranayake, V.A. and Nanni, A., 2005. Tensile characterization of glass FRP bars. Composites Part B: Engineering, 36(2), pp.127-134. [DOI:10.1016/j.compositesb.2004.05.004]
5. [5] Bakis, C.E., Nanni, A., Terosky, J.A. and Koehler, S.W., 2001. Self-monitoring, pseudo-ductile, hybrid FRP reinforcement rods for concrete applications. Composites science and technology, 61(6), pp.815-823. [DOI:10.1016/S0266-3538(00)00184-6]
6. [6] Jo, B.W., Tae, G.H. and Kwon, B.Y., 2004. Ductility evaluation of prestressed concrete beams with CFRP tendons. Journal of reinforced plastics and composites, 23(8), pp.843-859. [DOI:10.1177/0731684404033492]
7. [7] Newhook, J.P., 2000. Design of under-reinforced concrete T-sections with GFRP reinforcement. In Proc., 3rd int. conf. on advanced composite materials in bridges and structures. Montreal: Canadian Society for Civil Engineering, pp. 153-60.
8. [8] Acciai, A., D'Ambrisi, A., De Stefano, M., Feo, L., Focacci, F. and Nudo, R., 2016. Experimental response of FRP reinforced members without transverse reinforcement: failure modes and design issues. Composites Part B: Engineering, 89, pp.397-407. [DOI:10.1016/j.compositesb.2016.01.002]
9. [9] Kara, I.F., Ashour, A.F. and Dundar, C., 2013. Deflection of concrete structures reinforced with FRP bars. Composites Part B: Engineering, 44(1), pp.375-384. [DOI:10.1016/j.compositesb.2012.04.061]
10. [10] Ge, W., Zhang, J., Cao, D. and Tu, Y., 2015. Flexural behaviors of hybrid concrete beams reinforced with BFRP bars and steel bars. Construction and Building Materials, 87, pp.28-37. [DOI:10.1016/j.conbuildmat.2015.03.113]
11. [11] Qu, W., Zhang, X. and Huang, H., 2009. Flexural behavior of concrete beams reinforced with hybrid (GFRP and steel) bars. Journal of Composites for construction, 13(5), pp.350-359. [DOI:10.1061/(ASCE)CC.1943-5614.0000035]
12. [12] El Refai, A., Abed, F. and Al-Rahmani, A., 2015. Structural performance and serviceability of concrete beams reinforced with hybrid (GFRP and steel) bars. Construction and Building Materials, 96, pp.518-529. [DOI:10.1016/j.conbuildmat.2015.08.063]
13. [13] Pang, L., Qu, W., Zhu, P. and Xu, J., 2015. Design propositions for hybrid FRP-steel reinforced concrete beams. Journal of Composites for Construction, 20(4), p.04015086. [DOI:10.1061/(ASCE)CC.1943-5614.0000654]
14. [14] Qin, R., Zhou, A. and Lau, D., 2017. Effect of reinforcement ratio on the flexural performance of hybrid FRP reinforced concrete beams. Composites Part B: Engineering, 108, pp.200-209. [DOI:10.1016/j.compositesb.2016.09.054]
15. [15] Branson, D.E., 1968, September. Design procedures for computing deflections. In Journal Proceedings, Vol. 65, No. 9, pp. 730-742. [DOI:10.14359/7508]
16. [16] Yost, J.R., Gross, S.P. and Dinehart, D.W., 2003. Effective moment of inertia for glass fiber-reinforced polymer-reinforced concrete beams. Structural Journal, 100(6), pp.732-739. [DOI:10.14359/12839]
17. [17] Bischoff, P.H., 2005. Reevaluation of deflection prediction for concrete beams reinforced with steel and fiber reinforced polymer bars. Journal of Structural Engineering, 131(5), pp.752-767. [DOI:10.1061/(ASCE)0733-9445(2005)131:5(752)]
18. [18] Kheyroddin, A. and Mirza, M.S., 1995. Flexural rigidity of reinforced concrete beams. In Canadian Society for Civil Engineering Annual Conference Proceedings, June (pp. 1-3).
19. [19] Kheyroddin, A., 1996. Nonlinear Finite Element Analysis of Flexure- Dominant Reinforced Concrete Structures, Ph.D. Thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Canada, 290p.
20. [20] Shayanfar, M.A., Kheyroddin, A., and Mirza, M.S. 1997. Element Size Effects in Nonlinear Analysis of Reinforced Concrete Members, Computers & Structures, 62(2), pp.339-352. [DOI:10.1016/S0045-7949(96)00007-7]
21. [21] Bischoff, P.H., 2007. Deflection calculation of FRP reinforced concrete beams based on modifications to the existing Branson equation. Journal of Composites for Construction, 11(1), pp.4-14. [DOI:10.1061/(ASCE)1090-0268(2007)11:1(4)]
22. [22] ACI 440.1R. 2015. Guide for the design and construction of structural concrete reinforced with FRP bars. American Concrete Institute, Farmington Hills.
23. [23] Benmokrane, B., Chaallal, O. and Masmoudi, R., 1996. Flexural response of concrete beams reinforced with FRP reinforcing bars. ACI Structural Journal, 93(1), pp.46-55. [DOI:10.14359/9839]
24. [24] Mousavi, S.R. and Esfahani, M.R., 2012. Effective moment of inertia prediction of FRP-reinforced concrete beams based on experimental results. Journal of Composites for Construction, 16(5), pp.490-498. [DOI:10.1061/(ASCE)CC.1943-5614.0000284]
25. [25] CAN, C.S., 2012. CSA-S806-12. Design and construction of building components with fiber-reinforced polymers. Mississauga, Ontario, Canada: Canadian Standards Association.
26. [26] Goldberg, D.E., 1989. Genetic algorithms in search, optimization, and machine learning, 1989. Reading: Addison-Wesley.
27. [27] Bodenhofer, U., 2003. Genetic algorithms: theory and applications.
28. [28] Leung, H.Y. and Balendran, R.V., 2003. Flexural behaviour of concrete beams internally reinforced with GFRP rods and steel rebars. Structural Survey, 21(4), pp.146-157. [DOI:10.1108/02630800310507159]
29. [29] Almusallam, T.H., Elsanadedy, H.M., Al-Salloum, Y.A. and Alsayed, S.H., 2013. Experimental and numerical investigation for the flexural strengthening of RC beams using near-surface mounted steel or GFRP bars. Construction and Building Materials, 40, pp.145-161. [DOI:10.1016/j.conbuildmat.2012.09.107]
30. [30] Safan, M.A., 2013. Flexural Behavior and Design of Steel-GFRP Reinforced Concrete Beams. ACI Materials Journal, 110(6). [DOI:10.14359/51686335]
31. [31] Yang, J.M., Min, K.H., Shin, H.O. and Yoon, Y.S., 2011. Behavior of high-strength concrete beams reinforced with different types of flexural reinforcement and fiber. In Advances in FRP Composites in Civil Engineering ,pp. 275-278. [DOI:10.1007/978-3-642-17487-2_58]
32. [32] Sun, Z.Y., Yang, Y., Qin, W.H., Ren, S.T. and Wu, G., 2012. Experimental study on flexural behavior of concrete beams reinforced by steel-fiber reinforced polymer composite bars. Journal of Reinforced Plastics and Composites, 31(24), pp.1737-1745. [DOI:10.1177/0731684412456446]
33. [33] Bischoff, P.H. and Scanlon, A., 2007. Effective moment of inertia for calculating deflections of concrete members containing steel reinforcement and fiber-reinforced polymer reinforcement. ACI Structural Journal, 104(1), p.68. [DOI:10.14359/18434]
34. [34] Naderpour, H., Kheyroddin, A. and Amiri, G.G., 2010. Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Composite Structures, 92(12), pp.2817-2829. [DOI:10.1016/j.compstruct.2010.04.008]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author