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Abstract: 

The Finite Element Model (FEM) derived from the design drawings may not precisely depict 

the behavior of the actual structure. This is due to various factors, such as construction 

variations, uncertainties in boundary conditions, discrepancies in material properties, 

inaccuracies in FEM discretization, uncertainties in external excitations, and more. Hence, this 

paper proposes a process that employs stochastic subspace identification (SSI) to estimate the 

modal parameters of the structural system with minimal user-defined parameters from ambient 

vibration data, which are then used to update the FEM. First, the optimal dimensions of the 

matrix with minimal noise errors are determined by analyzing the condition number of the 

Hankel matrix. Next, the models are filtered to remove modes caused by numerical instabilities 

resulting from over-determination in the system. Finally, selecting structural modes involves 

utilizing Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering 

and confirming the complexity of the shape modes. The algorithm was tested on a numerical 

model of a 2D concrete frame and used to analyze ambient vibration data from a 6-story 

building. The first five modes of the residential building with irregular plans were extracted 

successfully. Thus, the first two modes of the structure have a difference of less than 15%, and 

the other three modes have a 95% agreement with the results of the updated finite element 

model. It is important to note that the initial FEM did not accurately represent seismic behavior 

due to the used concrete strength.

1. Introduction 

Reinforced concrete (RC)buildings are a common type of 

residential structure. However, the models used to analyze 

their seismic behavior need improvement due to infill wall 

effects, foundation compliance, and building material 

quality[1]. Thus, updating the numerical models of these 

structures based on experimental evaluation of vibration 

modes is essential. Ambient vibration tests have become 

famous for extracting these modal parameters, and many 

studies have explored output-only techniques for identifying 

the characteristics of RC buildings[2]. One notable study 

conducted by Mirteheri et al.[3] used environmental 

vibration tests to determine the natural frequency of 40 

concrete and steel structures. The findings of this study 

uncovered significant discrepancies between numerical  
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analysis and codes and standards. Another study by CLIK et 

al. used the analytical signal method to analyze an RC 

building that was subsequently reinforced with cast-in-place 

reinforced concrete infill shear walls near the North 

Anatolian fault. This method can quickly and accurately 

identify mode shapes, frequencies, and damping ratios from 

forced vibration testing[4]. 

One of the most popular output-only methods is the 

stochastic subspace method (SSI)[5]. The SSI approach 

estimates a linear, time-invariant system model from output-

only data. This technique relies on projecting a matrix of 

recent data onto the subspace formed by the rows of a matrix 

containing the minor current data[6]. One of the primary 

reasons behind the popularity of SSI is its ability to offer high 

computational robustness and efficiency, along with accurate 

estimations[7]. Brownjohn conducted vibration monitoring 

on a 280-meter office tower and investigated ambient 

vibrations in a smaller building using SSI methods. This 

research has shown that the SSI procedure is a powerful tool 
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that works well for ambient and forced vibration testing, with 

some limitations[8]. Babak Moaveni et al. extracted the 

modal characteristics of a full-scale 7-story reinforced 

concrete building slice simulated on a seismic table with 

several output-only and input-output methods using SSI 

algorithms. Based on the results, the modal parameters 

identified in various ways are consistent. This suggests that 

the estimated modal parameters are likely a close 

approximation of the actual modal parameters of the building 

specimen[9]. 

However, one of the main challenges with SSI methods is 

their reliance on user-defined parameters, such as the number 

of block rows and columns in the Hankel matrix, the system's 

order, and the validation process for representative 

quantities[10, 11]. Priori et al. reduced the modal 

characteristic estimation error in SSI data by analyzing the 

noises in the past and future subspaces of the Hankel matrix. 

They presented the asymmetric dimensions of the matrix for 

this purpose. The method suggested has been effectively 

executed on seismic data obtained from a 4-story steel frame 

structure in a laboratory and environmental data collected 

from San Camillo de Lellis Hospital in Italy[12]. Li et al. 

conducted a parametric study on the SSI-COV method for 

concrete dams using Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) clustering. Through 

this study, they could extract the optimum user-defined 

parameters, such as the number of block rows and columns 

of the Hankel matrix. The proposed method was tested and 

validated using two finite element models of the Dagangshan 

dam and environmental data from the Xiluodu dam[13]. 

This research aims to determine the optimum size for the 

Hankel's matrix to identify the dynamic characteristics of RC 

building through process inversion. First, the optimal 

dimensions of the matrix with minimal noise errors are 

determined by analyzing the condition number of the Hankel 

matrix. Next, the models are filtered to remove modes caused 

by numerical instabilities resulting from over-determination 

in the system. Finally, selecting structural modes involves 

utilizing DBSCAN clustering and confirming the shape 

modes' complexity. The algorithm was tested on a numerical 

model of a 2D concrete frame and used to analyze ambient 

vibration data from a 6-story building. The resulting modal 

characteristics were used to update the building's numerical 

model. 

 

2. Methodology 

The structural modal properties, including modal 

frequencies, damping ratios, and shape modes, are accurately 

determined using SI techniques in our proposed strategy. 

However, the accuracy of the estimated system is mainly 

dependent on user-defined parameters, such as the 

dimensions of the Hankel matrix and the order of the 

predicted system. Critical structural modes can be omitted 

due to insufficient system information by a Hankel matrix 

with small dimensions. Conversely, a large matrix can 

increase computational costs and lead to estimated biases of 

physical poles through splitting phenomena and 

mathematical modes. Additionally, the order of the system is 

crucial in system identification, as numerical instability can 

be caused, and mathematical poles can be resulted in the 

model by overestimating the order. Therefore, a crucial 

aspect of SI algorithms is correctly selecting user-defined 

parameters. 

This research presents a four-step method to ensure the 

reliability of identified systems. The steps are displayed in 

Figure 1 and include: 1) Using weight matrices based on 

CCA and CVA to extract state matrices via the SI algorithm. 

2) Extracting the optimal dimensions of the Hankel matrix to 

avoid the magnification of noise effects in estimated 

systems. 3) Employ clustering analysis to eliminate noise 

modes and filter out mathematical modes, thereby mitigating 

the impact of numerical instabilities in estimated systems. 4) 

Selecting representative modal quantities by clustering the 

result of damping ratios and verifying their proportionality 

assumption. 

 

2.1 Stochastic Subspace Identification 

Innovation state space formulation works for all linear and 

time-invariant modal identification techniques: [14]:  

𝑥𝑘+1 = A𝑥𝑘 + 𝜔𝑘    (1.a) 

𝑦𝑘 = C𝑥𝑘 + 𝜗𝑘     (1.b) 

data, A ∈ ℝ𝑛×𝑛 and C ∈ ℝ𝑚×𝑛 are the system matrices, and  

where 𝑥 ∈ ℝ𝑛 is a discrete stochastic vector sampled in ∆𝑡 

intervals, 𝑦 ∈ ℝ𝑚 denotes a vector of measured or output 

𝜔𝑘 ∈ ℝ𝑛 and  𝜗𝑘 ∈ ℝ𝑚 represent the zero-mean white noise 

with the following covariance matrices [15]: 

𝐸 {[
𝜔𝑘

𝜗𝑘
] [𝜔𝑘

𝑇 𝜗𝑘
𝑇]} = [

Q S

S𝑇 R
] δ𝑝𝑞      (2) 

where 𝐸{… } shows the mathematical expectation, δ𝑝𝑞 is the 

Kronecker delta, Q ∈ ℝ𝑛×𝑛 denotes a definite non-negative 

matrix, and R ∈ ℝm×m represents a definite positive matrix. 

If 𝑦𝑡 ∈ ℝ𝑚×𝑠  are the measured data in the ambient vibration 

test, the data space can be defined as a Hankel matrix [16]: 
 

H =

[
 
 
 
 
 
 
 
𝑦0             𝑦1    … 𝑦𝑁−1      
𝑦1             𝑦2    … 𝑦𝑁                
⋮                  ⋮   ⋱ ⋮        
𝑦𝑘−1         𝑦𝑘    … 𝑦𝑘+𝑁−1
𝑦𝑘        𝑦𝑘+1 … 𝑦𝑘+𝑁         
𝑦𝑘+1 𝑦𝑘+2      … 𝑦𝑘+𝑁+1

⋮ ⋮ ⋱ ⋮ 
𝑦2𝑘−1 𝑦2𝑘 … 𝑦𝑁+2𝑘−2 ]

 
 
 
 
 
 
 

   

                                   =   (
Y𝑝∈ℝ𝑘.𝑚×𝑗

Y𝑓∈ℝ𝑘.𝑚×𝑗) ∈ ℝ𝑖×𝑗  (3) 
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Fig. 1: Flowchart of propped Method

By selecting moment k as the present, Y𝑝 is defined as the 

past subspace while Y𝑓 stands for the future subspace. The 

prediction space (�̂� ∈ ℝ𝑘.𝑚×𝑁) can be calculated by the 

conditional mean of future space over the past space [17]. 

�̂� = �̂�{Y𝑓|Y𝑝} = HT−
−1Y𝑝                        (4) 

where T−and T+ are the covariance of past and future 

matrices, respectively. To reduce the computational noise 

and better detect the true modes, Equation5 is multiplied by 

the weight matrices of W1 and W2. 

P = W1𝑋 ̂W2         (5) 

where P ∈ ℝ𝑘.𝑚×𝑘.𝑚, W1 ∈ ℝ𝑘.𝑚×𝑘.𝑚,  and W2 ∈ ℝ𝑁×𝑘.𝑚. 

Depending on the applied functions for W1 and W2, different 

algorithms can be defined for stochastic subspace methods.  

This study employs two algorithms, namely Canonical 

Correlation Analysis (CCA) and Conventional Variable 

Analysis (CVA), to identify the system. SSI-CVA helps 

detect modes with significant energy differences, making it 

ideal for identifying weak excitation modes. The SSI-CCA 
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extracts orthonormal basis vectors from the data space to find 

the optimum space. This technique estimates mode ranges 

that are highly correlated with the measured data and 

minimize the impact of noise on the identified system. Refer 

to Table 1 for the weighting matrices associated with both 

methods. 

According to the Kalman filter, the matrix of P can be 

decomposed into the observability matrix (𝐎𝑘) and the state 

vector (�̂�k) as follows: 

P = [

C
CA
⋮

CA𝑘−1

] [�̂�𝑘 �̂�𝑘+1 … �̂�𝑘+𝑁−1] = O𝑘�̂�𝑘    (6) 

Table1: Weight matrices of stochastic subspace algorithms 

𝐖2 𝐖1 Method 

I𝑁×𝑘𝑚 T+
−1/2

 CVA 

T+
−𝑇/2

 T−
−1/2 CCA 

For this purpose, using the singular values decomposition 

method, we have: 

P = UΣV𝑇 ≈ ÛΣ̂V̂𝑇         (7) 

where U ∈ ℝ𝑘.𝑚×𝑘.𝑚 and V ∈ ℝ𝑘.𝑚×𝑘.𝑚 are orthogonal 

matrices (UU𝑇 = I𝑘.𝑚 , VV𝑇 = I𝑘.𝑚), and Σ ∈ ℝ𝑘.𝑚×𝑘.𝑚 

represents the diagonal matrices of the eigenvalues. Σ̂ ∈

ℝ𝑛×𝑛 can be obtained by ignoring the small values of Σ so 

that the dimension of the system (n) will be equivalent to the 

order of Σ̂. Finally, by comparing Eqs. (8) and (9), the state 

vector can be obtained as follows: 

O𝑘 = ÛΣ̂1/2         (8) 

�̂�𝑘 = Σ̂1/2�̂�𝑇         (9) 

The system matrix, A, can be calculated using Equation (2.8) 

by removing the first block on the left and the last block on 

the right as follows: 

O𝑘(2: 𝑘)A = O𝑘(1: 𝑘 − 1)                                (10) 

The observation matrix, C, is also the first block of the 

observability matrix: 

C = O𝑘(1: 1)       (11) 

The modal analysis begins by eigenvalues decomposition of 

the system matrix as follows [18]: 

A = 𝜓[𝜇𝑖]𝜓
−1       (12) 

𝜆𝑖
𝑐 =

𝑙𝑛 (𝜇𝑖)

𝛥𝑡
        (13) 

where 𝜓 and 𝜇𝑖 are the vectors of the eigenvalues and the 

singular values of the system matrix, respectively and  𝜆𝑖
𝑐  

represents the continuous-time poles of the system matrix. 

The continuous-time poles are of the complex form 

containing the frequency (𝑓𝑖) and damping ratio (𝜉𝑖) of the 

system as follow: 

𝜔𝑖 = |𝜆𝑖
𝑐|        (14) 

𝑓𝑖 =
𝜔𝑖

2𝜋
         (15) 

𝜉𝑖 =
𝑅𝑒{𝜆𝑖

𝑐}

|𝜆𝑖
𝑐|

        (16) 

Finally, the mode shapes at the sensor installation location 

can be obtained from Equation (17): 

𝛷 = CΨ         (17) 

 

2.2. Optimum dimension of Hankel Matrix  

The effective parameters of the Hankel matrix include the 

number of block rows (i) and its columns (j) which are related 

to each other as follows [19]: 

𝑗 + 𝑖 − 1 ≤ 𝑠        (18) 

where 𝑠 is the sampled data count. Hankel matrix has two 

sub-matrices: past and future[13]. According to stochastic 

subspace theory, the dimensions of future and past 

submatrices must be greater or equal to the order of the 

system [5]: 

𝑘.𝑚 ≥ 𝑛        (19) 

To ensure the coverage of all system frequencies, especially 

in high ductility structures, in addition to Equation (19), the 

following conditions are proposed for the minimum 

dimension of the system  [20, 21]: 

𝑘 ≥  𝛽        (20) 

where 𝛽 =
𝑓𝑠

2𝑓𝑜
 is the lower bound of parameter k, 𝑓𝑜 and 𝑓𝑠 is 

the lowest frequency and the data sampling frequency, 

respectively. 

In practice due to the limited length of the gathered data, QR 

[22] or LQ [23] decomposition is used to estimate the Hankel 

matrix, thus, the maximum value of parameter j can be 

obtained as: 

𝑗 ≤ 2𝑘𝑚       (21) 

Comparing Eqs (18) and (21), the upper bound of parameter 

k, can be determined by: 

𝑘 ≤
𝑠+1

2(𝑚+1)
       (22) 

After determining the range of parameter k, the number of 

block rows of the Hankel matrix is determined from the 

relationship𝑖 = 2𝑘. Also, the parameter 𝑗 is typically chosen 

according to Equation (18), once the value of 𝑖 is selected.  

Large 𝑖 values improve system information handling but 

increase computational effort. However, they can cause 

inaccuracies and numerical hypothetical modes in the 

presence of measurement noise. The occurrence of numerical 

error in the identified systems can be tracked by the 

transmission of the matrix P from invertible to non-

invertible. For this, the condition number of matrix P, which 

is the ratio between the maximum (σ1) and minimum (σ𝑚) 

singular values of matrix P can be used: 

�̅�𝑚 =
|𝜎1|

|𝜎𝑚|
       (23) 

The number of singular values between the maximum 

absolute value and the minimum acceptable singular value 

indicates the amount of available information, so selecting 

the appropriate number of block rows and corresponding 

condition number can ensure numerical stability. Conducting 
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a sensitivity analysis on the number of block rows i helps 

determine the optimal value for numerical stability [24]. 

 

2.3. System order estimation 

As previously mentioned, determining the system's actual 

order is crucial in system identification. This is accomplished 

using two tools:  

a) Stabilization diagram (SD): Real-order (n) extraction is 

one of the most important parts of system identification. In 

practice, uncertainties due to environmental noise and 

measurement, as well as the improper selection of the 

dimensions of the Hankel matrix, introduce unstable and 

computational poles in the system. To detect the real poles, 

all the dynamic characteristics of the poles, including 

frequency and damping percentage, are extracted from the 

order of 𝑛𝑚𝑖𝑚  to 𝑛𝑚𝑎𝑥 . The pole satisfying the following 

conditions is considered stable and plotted in a SD [25]: 

𝑓𝑖
𝑛−𝑓𝑖

𝑛−1

𝑓𝑖
𝑛−1 < 0.01     ,    

𝜉𝑖
𝑛−𝜉𝑖

𝑛−1

𝜉𝑖
𝑛−1 < 0.05     (24) 

Therefore, limiting model order n within the range of 

[𝑛𝑚𝑖𝑛 𝑛𝑚𝑎𝑥] is essential to generate a clear and high-

quality stabilization diagram. To find the 𝑛𝑚𝑖𝑛, the concept 

of system identification, which is based on fitting of an 

assumed mathematical model to the measurements in order 

to extract the unknown model parameters, is used. 

The 𝑛𝑚𝑖𝑛is determined by adapting the measured data to an 

assumed mathematical model. For this purpose, the variance 

accounting for (VAF) criterion was used [26]: 

𝑉𝐴𝐹 = 𝑀𝑎𝑥 (0, (1 −
1

𝑁
∑ (𝑦𝑘−𝑦�̂�)𝑁

𝑘=1

2

1

𝑁
∑ (𝑦𝑘)𝑁

𝑘=1

2 ) × 100%)    (25) 

where 𝑦𝑘 and 𝑦�̂�  are the measured data and estimated values, 

respectively. The closer this criterion to 100, the lower the 

prediction error and the more accurate the model. The order 

at which VAF begins converging provides an estimate of the 

number of the real poles of the systemic which can be used 

as an estimation of 𝑛𝑚𝑖𝑛in SD. 

When the number of orders in the system gets too high, the 

matrix P's condition number increases towards infinity. This 

makes it impossible to invert, leading to substantial errors in 

the solution due to numerical inaccuracies and magnified 

errors, and is known as an ill-conditioned matrix. However, 

this issue can be controlled by only keeping the most 

significant singular values. As a result, the maximum order 

of the system (𝑛𝑚𝑎𝑥) in the SD is restricted to the rank of 

P[18, 27]. To determine 𝑛𝑚𝑎𝑥, one method is to examine the 

�̅�𝑚 diagram and locate its inflection point. Nonetheless, in 

practical engineering, finding this inflection point can be 

challenging. The inflection point is hard for finding for 

practice engineering. Therefore, Ref. [20]'s energy indicator 

is employed to calculate  𝑛𝑚𝑎𝑥. Definition of energy 

indicator:   

𝐸𝐼 =
∑ 𝜎𝑖

2𝑚
𝑖=1

∑ 𝜎𝑖
2𝑛𝑜

𝑖=1

       (26) 

where 𝜎𝑖 is the i-th singular value of the matrix Hn.  Nmax 

is determined as the lowest integer such that  𝐼 > 99 %.  

b) Clustering analysis of the frequency and damping ratio 

(F/D pairs): To ensure accuracy and eliminate spurious 

modes, an outlier removal process may be conducted during 

or after the clustering stage. During the clustering stage, the 

stable modes are categorized into sets (clusters) that only 

have modal parameter estimates for the same structural 

mode.  In this research, the DBSCAN procedure was utilized 

for clustering. The DBSCAN algorithm relies on two critical 

parameters, namely 𝑀𝑖𝑛𝑝𝑡𝑠, and 휀. 𝑀𝑖𝑛𝑝𝑡𝑠 Determines the 

minimum number of points needed in a cluster, while and 휀 

sets the maximum radius for a neighborhood around a point. 

When dealing with larger datasets or those with high noise 

levels, it is recommended to use larger values  𝑜𝑓 𝑀𝑖𝑛𝑝𝑡𝑠 to 

create more significant clusters. On the other hand, selecting 

an improper value for and 휀 can lead to a significant portion 

of data being left unclustered. To calculate Minpts, an 

empirical relationship using 𝑙𝑛(𝑛𝑝) is used, where 𝑛𝑝 

represents the total number of stable poles. As for 휀, it is 

determined by the knee point of the 𝑘-distance diagram, 

where 𝑘 = 𝑀𝑖𝑛𝑝𝑡𝑠. Based on Trunchi's studies for 

buildings, using 휀 = 0.01in research is suggested. 

 

2.4. Selection of modal representative quantities 

The coefficient of variation (CV) δ of the clusters identified 

by DBSCAN is used to select the representative modal 

properties [28, 29]: 

𝛿 =
∑

σJ

μJ

Z
J=1

Z
          (27) 

where Z represents the total number of identified clusters; 𝜎𝐽 

and 𝜇𝐽 are the variance and mean of the J-th cluster, 

respectively.  
It is important to note that damping ratios have a higher CV 

than other modal characteristics. Therefore, more emphasis 

will be placed on the damping ratios in choosing 

representative quantities. Choosing modes with lower CV 

damping is generally preferred when comparing clusters 

within the same frequency range. 

After selecting representative clusters, the proportionality 

assumption of damping is used to validate them, which is 

acceptable for buildings. To assess this assumption, all shape 

mode components are plotted in a complex plot, where a 

horizontal plot represents a real-value mode, and a vertical 

plot represents a complex mode. The complexity of modes is 

then determined based on the modal complexity factor 

(MCF) criterion [30]: 

𝑀𝐶𝐹𝑟 = 1 −
(𝑆𝑥𝑥−𝑆𝑦𝑦)+4𝑆𝑦𝑦

2

(𝑆𝑥𝑥+𝑆𝑦𝑦)
2                    (28) 
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{

𝑆𝑥𝑥 = 𝑅𝑒{𝜓𝑟}
𝑇𝑅𝑒{𝜓𝑟}

𝑆𝑦𝑦 = 𝐼𝑚{𝜓𝑟}
𝑇𝐼𝑚{𝜓𝑟}

𝑆𝑥𝑦 = 𝑅𝑒{𝜓𝑟}
𝑇𝐼𝑚{𝜓𝑟}

    

where 𝑅𝑒{𝜓𝑟} and 𝐼𝑚{𝜓𝑟} are the real and imaginary parts 

of the modal vector, respectively. MCF value is between 0 

and 1; for real-value modes, this value should be close to 

zero. 

 

3. Validation of proposed method 

To test the effectiveness of the suggested approach, we 

constructed a 2D concrete frame with two close and weak 

modes (regular and irregular mass and stiffness distribution, 

respectively) subjected to the Electro earthquake's 

acceleration. The equation that governs the dynamics of 

moving systems is differential and can be written as[31, 32]: 

�̈�(𝑡) + 2𝜔𝑖𝜉𝑖�̇�(𝑡) + 𝜔𝑖
2𝑈(𝑡) = −{

𝑚1

𝑚2

𝑚3

} 𝐿𝑖�̈�𝑔(𝑡)      (29) 

where �̈�𝑔(𝑡) is recorded acceleration of ground motion 

during El-Centro earthquake, M and K are the mass and 

stiffness matrices of the structure, respectively, defined as 

follows:  

M = 𝑚 [
1 0 0
0 1 0
0 0 1

]   K = 𝑘 [
4 −1 0

−1 2 −1
0 −1 3

]      (30) 

where m=10 ton and k=1200 𝐾𝑁/𝑚. Also, Cauchy damping 

has been adopted for both models. The exact values of modal 

characteristics for the considered case studies are presented 

in Table 2. 

Using the Modal analysis technique in the Simulink 

MATLAB module, the 3-DOF system was modeled and 

analyzed (Fig2). The Fourth-order Runge-Kutta method was 

used to determine the damped response of the system. The 

time increment was modified to match the recording interval 

of 60 seconds and the sampling rate of 100 Hz. For example, 

the acceleration record of mass two can be found in Figure 

3. 

According to the frequency of the first mode (1.856 Hz) and 

the length of the data (6000), the minimum dimension is 

chosen as β ≈ 27 based on Equation (20). From Equation 

(23), the maximum system dimension is 𝑘𝑚𝑎𝑥 ≈ 750. First, 

the  

Table 2: The modal features of 3-DOF systems determined by the 

numerical model. 

Damping (%) Frequency (Hz) Mode No. 

5.00 1.856 1 

3.00 3.190 2 

2.00 3.711 3 

 

 
Fig. 2: Simulink model of the analytical 3DOF system[32]. 

 
Fig. 3: Acceleration record of system 3DOF at mass 2 location 

under El-Centro excitation. 

 

 
Fig. 4: Variations of energy indicator vs. the number of singular 

values of the matrix P. 
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maximum order (𝑁𝑚𝑎𝑥
𝑖 ) for each value of k from β  to 15β is 

calculated. For example, Figure 4 illustrates the extraction 

of 𝑁𝑚𝑎𝑥for the 5β in SSI-CCA and SSI-CVA. 

Once the 𝑁𝑚𝑎𝑥
𝑖  value has been determined, the �̅�𝑚 values are 

evaluated for each and plotted in Figure 5. From the fifth 

cycle onwards, it is clear that there is minimal variation in 

�̅�𝑚  for both methods. This indicates that the numerical 

stability of the models has been achieved, and any errors 

caused by noise have been minimized. Therefore, the modal 

characteristics for 𝑖 = 5𝛽 are extracted in both methods.  

The first step to identifying the system is to check the 

predicted systems' estimation error with the VAF criterion. 

Figure 6 demonstrates that both methods reached 100% 

convergence from the sixth order (𝑁𝑚𝑖𝑛). Using EI in Figure 

5, 𝑁𝑚𝑎𝑥  for the fifth cycle was obtained for both methods, 

which was 24. 

 SD has been plotted to the 60th order (highlighted in red) to 

examine the impact of numerical instabilities. In Figs 7 and 

8, both methods identified three modal frequencies 

when 𝑛 < 𝑁𝑚𝑎𝑥 . However, SSI-CVA had more than 5% 

tolerance damping ratios due to noise errors, resulting in 

only stable modal frequencies. To conduct a thorough 

examination of this matter, a clustering analysis of the 

frequency and damping ratio (F/D) pair is utilized.  

Comparing SSI-CVA to SSI-CCA, the first modal damping 

ratio was 1.94% and 3.86%, respectively, with an estimation 

error of over double in SSI-CCA. SSI-CCA also had a 28% 

and 7% estimation error for the second and third damping  

 
Fig. 5: Condition number vs. i of analytical 3-DoF system for El-

Centro case. 

 
Fig. 6: Variability of average VAF vs. System order for 3-DoF 

system 

-ratios, while SSI-CVA had a 39% estimation error for both 

modes. Figs 7b and 8b illustrate these findings.  

The CV of damping rations and the complexity of the shape 

modes are reanalyzed for a more thorough investigation into 

the reasons for errors in estimating damping ratios. 

According to Figure 9, the CV for damping ratios in SSI-

CCA is not significant. However, in SSI-CVA, this value 

ranges between 4% and 8%. The increase in these values 

indicates a greater dispersion of damping ratios in CVA, 

leading to an increase in estimation errors. Although the CV 

in SSI-CCA is minimal, the damping ratio estimation error 

is notably high, particularly in the first mode. Analyzing the 

mode shapes' complexity depicted in Figure 10 can provide 

insight into this problem. The first mode has the highest 

level of complexity in both approaches, with CVA and CCA 

having 27% and 13.4%, respectively. Also, the third mode 

of CCA corresponds to the lowest MCF value, and its 

estimation error is minimal. So, using MCF and CV criteria 

together can be reliable for validating identified modal 

characteristics. If the value of n exceeds 𝑁𝑚𝑎𝑥 , the SSI-CCA 

exhibits a modal frequency of 4.01 Hz in SD, as depicted in 

Figure 7. This mode's CV is considerably higher than other 

modes, and its complexity exceeds 40%, indicating that it is 

non-structural. Essentially, this mode results from numerical 

noise amplification due to the over-determination and ill-

conditioning of the matrix P. Table 3 displays a summary of 

the system identification results

  
(a)   (b)  

Fig. 7: Parameter identification results of 3-DoF system from El-Centro earthquake excitation based on SSI-CCA (a) Stability diagram (Red 

circle in the diagrams represent fully-stabilized solutions, green stars indicate only Frequency stable solutions.) and (b) Clustering diagrams 

of F/D pairs for 𝑘 = 5𝛽. 
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(a)   (b)  

Fig. 8: Parameter identification results of 3-DoF system from El-Centro earthquake excitation based on SSI-CVA. (a) Stability diagram 

(Red circle in the diagrams represent fully-stabilized solutions, green stars indicate only Frequency stable solutions.) and (b) Clustering 

diagrams of F/D pairs for 3-DoF for 𝑘 = 5𝛽. 

  
Fig. 9: CV of damping of 3-DoF system from El-Centro 

earthquake excitation for  𝑘 = 5𝛽. 

Fig. 10: Modal complexity factor of 3-DoF system from El-Centro 

earthquake excitation for  𝑘 = 5𝛽. 

 

Table 3: Results of system identification of 3-DoF system for 𝑖 = 5 𝛽. 
 

CV (%)   MCF (%)   Damping (%)   Frequency (Hz) Mode 

CVA CCA CVA CCA CVA CCA CVA CCA No. 

3.53 0.18 27.03 13.52 1.94 3.56 1.864 1.863 1 

7.98 0.06 13.01 1.75 1.81 3.86 3.267 3.212 2 

5.14 0.00 0.22 0.08 2.77 1.809 3.655 3.65 3 

4. In-situ test   

4.1. Description of the structure 

In this research, a residential building in Ardabil City, Iran, 

has undergone environmental vibration testing (Figure 11). 

This reinforced concrete building, one of Iran's most 

common structures, is 12 x 9.6 square meters. As shown in 

Figure 12, the building's plan is irregular due to its columns 

and roof slab arrangement. The height of the building from 

the ground level is 19.90 meters. The story height is 3.20 

meters, except for the first floor, which measures 3 meters. 

The building's flooring system consists of joists and blocks 

covered by a layer of lightweight concrete designed to 

embed and conceal the pipes. The interior partition walls are 

constructed using hollow clay bricks, while the exterior 

walls comprise a layer of hollow clay bricks inside and stone 

outside. The building began construction in 2021 and is 

expected to be completed by winter 2023. 

The FEM of the foundation and building was developed 

using the computer program SAP 2000 version 14.2.2. This 

program can perform linear, non-linear, static, and dynamic 

analyses of three-dimensional structural modeling [9]. The 

aim was to utilize the program to determine the fundamental 

 

Fig. 11: View of tested six-story building. 
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Fig. 12: Plan of Second Floor with Sensor Placement for tasted 

six-story building. 

frequencies and corresponding mode shapes of the structure 

based on its physical properties. The FEM model comprises 

5221 shell elements and 693 frame elements. The properties 

of the reinforced concrete structure, assumed to be 

homogeneous and isotropic, are listed in Table 4 for the 

structural simulation. The building was designed by the 

American Institute concrete design code (ACI318-99). 
Figure 13 displays the structure's shape mods and 

corresponding first five modal frequencies. 

 

4.2. Ambient vibration tests 

On June 14, 2023, a sunny and calm day, an environmental 

vibration test was conducted on the building. The 

irregularity of the building's plan necessitated a specific 

arrangement of the sensors. So, to effectively extract the 

torsional modes of the structure, 12 accelerometers were 

used (Figure 14).  The first through fifth floors were 

equipped with two accelerometers diagonally placed in the 

N-W and S-E directions, while the foundation level and sixth 

floor had one sensor in the N-W direction (Figure 12). After 

installing all the sensors, the test was conducted for 25 

minutes. A truck mixer enhanced the structure's vibration 

and excited higher modes.  

Table 4: Material properties of reinforced concrete 

Material properties Concrete Steel 

Modulus of Elasticity (Gpa) 27 200 

Compressive Strength (Mpa) 25 - 

Yield stress (Mpa) - 240 

Poisson’s ratio (%) 0.2 0.3 

 

 

Fig. 14: Ambient vibration instruments. 

 

 
Fig. 13: 3D representation of the first five shape modes of tasted six-story building. 

It kept moving back and forth near the building. 

Additionally, the design of multiple speed bumps near the 

structure resulted in more robust vibrations. Accelerometers 

simultaneously record data in three directions: North-South, 

West-East, and vertical, with a sampling time interval of 

0.005 seconds. Based on Figure 15, the maximum response 

during the 9–11-minute period was recorded (highlighted in 

red) and was used to identify the structural system. The 

system identification process was simultaneously conducted 

for the N-S and W-E directions. 

Based on the numerical model findings, the weighting 

matrices for SSI-CCA were selected to identify the building 

system with different values of the parameter i. Finite 

element analysis reveals that the lowest frequency, f0, is 4.38 

Hz. Therefore, the minimum 𝑘 value guarantees that one 

cycle of the lowest frequency is 23, as per Equation (20). To 

select the desired values of parameter k, in the first step, 

𝑁𝑚𝑎𝑥  is evaluated for each k value from 𝛽 to 15𝛽 using EI, 

and then the corresponding �̅�𝑚values are plotted in Figure 

16. The diagram includes variations of �̅�𝑚 versus i to 
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provide a more detailed analysis. When the 𝑘 value is 

increased, it becomes evident that the inversion problem 

transitions from ill-conditioned to well-posed. Additionally, 

the plot shows that for𝑘 > 6𝛽 (denoted by the blue area), the 

changes of �̅�𝑚 are minimized, indicating that a high-quality 

model should be achieved. It is essential to remember that 

when the 𝑖 parameter increases too much after the 

convergence of �̅�𝑚, it leads to an increased truncated error 

of SVD. To ensure high-quality models, it is necessary to 

check the initial 𝑖 values related to the convergence of �̅�𝑚. 
In order to achieve the desired model, the proposed method 

extracts the modal characteristics of the system equivalent 

to 𝑘 = 6𝛽, 7𝛽 and 8𝛽. A method for working with 𝑘 = 7𝛽 

will now be presented based on nearly identical outcomes. 

After the CCA algorithm was conducted, the VAF diagram 

was created to display the estimated error of the identified 

system's response to the measured responses. As shown in 

Figure 17, 86% convergence was reached by the VAF from 

order 42 (displayed in blue).  
 According the FEM results, it was determined that the 

initial five modes of the structure were present within the 

frequency range of [0-25] Hz. Consequently, the SD was 

plotted within this range to identify and extract stable poles. 
The 𝑁𝑚𝑖𝑛 in SD is set to 42 based on VAF, and the 𝑁𝑚𝑎𝑥  is 

set to 118, according to EI. It should be noted that 𝑁𝑚𝑎𝑥  was 

varied from 118 to 160 (marked in red) to show the 

numerical instability effects of the identified models. 

To distinguish the structural modes from the spurious ones, 

the DBSCAN cluster analysis was implemented. Figure 19 

Figure 18 displays the natural frequencies identified by the 

SD, with the n range varying from 42 to 160. The 

frequencies identified varied based on the model order n.  

 
Fig. 15: Acceleration recorded during the ambient vibration test 

of the six-story building excited by a track mixer. 

 

 
Fig. 16: Condition number vs. k of three-dimensional building for 

ambient vibration case. 

   
Fig. 17: Variability of average VAF vs. System order for three-

dimensional building from ambient vibration. 

 
Fig18: Stability diagram (Red circle in the diagrams represent 

fully-stabilized solutions, green stars indicate only Frequency 

stable solutions.) of three-dimensional building from ambient 

vibration for 𝑘 = 7𝛽 in SSI-CCA. 

When n was less than 118, seven modes were identified. 

However, when n exceeded 118, an additional four modes 

were observed in the SD, which can be attributed to the 

splitting phenomenon. Further research will be studied in the 

following. 

To distinguish the structural modes from the spurious ones, 

the DBSCAN cluster analysis is implemented. Figure 19 

displays the clustering diagrams for the frequency and 

damping ratio (F/D pairs). For 𝑛 < 118, seven modes were 

identified, but the frequencies 10.73 and 17.63 Hz are not 

grouped into clusters based on their damping ratios. So, 

these frequencies are considered outlier. The damping ratios' 

CV and mode shapes' complexity were analyzed to validate 

and determine the structural characteristics. The identified 

clusters' CV values are shown in Figure 20, which indicates 

that all five structure clusters have a CV of less than 0.5%. 

Moreover, the first three modes have zero complexity, which 

confirms that they are the actual values. Then, the 

complexity of the frequency of 12.43 and 15.22 Hz is also 

less than 20%, significantly lower than the complexity of the 

four modes in the out-of-rank region (𝑛 > 118). It has been 

observed that the MCF of the modal shapes identified in 

n>118 is over 50%. This indicates that these modes may be 

classified as non-physical due to the numerical uncertainty 

of the predicted model. In Figs 13 and 21, we can see the 
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shape modes obtained from FEM and CCA, respectively. 

The first two modes correspond to the transition modes in 

the X and Y directions, while the third mode is torsion, 

which the proposed algorithm accurately extracted. Table 5 

displays the system identification results summarized. 

 As seen in Table 5, the first two fundamental frequencies of 

the structure differ by more than 30% from the FEM values. 

This discrepancy is primarily due to the quality of materials, 

mainly concrete, implementation difficulties, and errors in 

estimating modal specifications. We developed a FEM model 

of the structure and foundation system for spectral dynamic 

analysis to address this issue. Upon reviewing the technical 

documents of the building, we discovered that the quality of 

the concrete was a significant concern. Initially, its 

compressive strength was assumed to be 25 MPa. However,  

after examining the average resistance of other samples, we 

found that the average compressive strength was between 20 

and 21 MPa. Additionally, the construction site is located 

near Shorabil Lake, where the soil is saturated, unlike other 

areas of the city, which must be noted in the geotechnical 

report. After making changes in the FEM, as shown in Figure 

23 and Table 5, the error in estimating two fundamental 

frequencies of the structure decreased from 35% and 30% to 

16% and 12%, respectively. Moreover, three other modal 

frequencies of the building matched with the results of 

environmental vibration tests with minimal error. The design 

engineers and building supervisors were provided a summary 

of the analysis results to facilitate their preparations. 

  

Table 5: Identified modal properties of tasted six-story building 

for optimum case of 𝒊 = 𝟕𝜷. 

Finite Element SSI-CCA 

Frequency (Hz) Damping 

(%) 

Frequency 

(Hz) Updated Initial 

3.75 (16%) 4.38 (35%) 2.59 3.23 

4.14 (12%) 4.83 (32%) 3.89 3.64 

5.47 (5%) 6.13 (6%) 2.25 5.78 

12.96 (4%) 15.09 (21%) 2.53 12.43 

15.33 (0%) 17.83 (17%) 2.00 15.22 

 
Fig. 19: Clustering diagrams of F/D pairs for three-dimensional 

building from ambient vibration for 𝑘 = 7𝛽 in SSI-CCA 

 

 
Fig. 20: CV of damping of three-dimensional building from 

ambient vibration for  𝑘 = 5𝛽. 

 
Fig. 21: MCF of three-dimensional building from ambient 

vibration for  𝑘 = 7𝛽. 

 
Fig. 22: First Five Shape Modes Identified through SSI-CCA for 

tasted Six-Story Building 

 

 
Fig. 23: Comparison of Modal Frequencies from SSI-CCA and 

Numerical Models. 

 

8. Conclusion 

This paper introduces a process based SSI that allows for the 

estimation of a structural system's modal parameters with 

minimal input from the user. The ambient vibration data 

collected from an irregularly planned RC residential building 
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was tested by our method. The identification phase of the 

process can be initiated by providing the required parameter 

ranges. During the initial identification stage, SSI utilizes two 

algorithms: SSI-CVA and SSI-CCA. These algorithms rely 

on two crucial parameters for accuracy - the number of block 

rows and system order. To optimize the number of block 

rows, an inverse process is applied. At the same time, the 

maximum and minimum order of the system is determined 

through the Hankel matrix rank and system estimation error 

control, respectively. The identified optimal system is 

analyzed using DBSCAN clustering to extract the 

characteristics of the structural model. Afterward, 

representative quantities are selected by examining the 

complexity of the modal shapes of the clustered 

characteristics. 

Increasing the value of i leads to more stable 

frequency/damping ratio pairs, resulting in an increased 

number of cycles for each mode. However, an excessive 

increase in i raises the calculation costs and increases the 

SVD trashed error. The presented inversion process is 

designed to prevent the amplification of the effects caused by 

ill-conditioning of the systems while increasing i to provide 

the desired dimensions. The proposed method for validating 

the structural modal characteristics has succeeded in both 

algorithms. In the numerical model of the two-dimensional 

concrete frame, the modal appeared due to the 

overdetermination of the system was well distinguished by 

the lack of clustering. Additionally, the MCF criterion 

effectively revealed the high uncertainty of each of the 

mathematical modes clustered by examining the complexity 

of their mode shape. The Energy indication criterion filtered 

out the effects of numerical instabilities from the systems. 

The SSI-CCA algorithm proved more effective than SSI-

CVA, resulting in better outcomes. Therefore, it was utilized 

to identify the 6-story residential building system. Despite the 

noise and computational modes, the proposed approach 

successfully identified the first five modal frequencies of the 

structure, with the first three modal shapes being real-valued. 

Based on the real values of the first two modes, it was 

discovered that they differed by over 35% from the modal 

characteristics of FEM. Technical documents were reviewed, 

and FEM was updated using the compressive strength of the 

concrete and the soil saturation. This led to a decrease in the 

difference between the first two modes to less than 15%, 

while the frequencies of the other three modes matched over 

95% with the updated FEM output. The findings indicate that 

the suggested approach is versatile and can be implemented 

with any identification method, not just the two algorithms 

examined in this research. 
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