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Abstract: 

Fluid mud is found in many areas, including coastal areas and river estuaries. The typical 

characteristics of overlaying waves interacting with muddy beds are mud mass transport and 

high wave attenuation (dissipation). In this study, an Incompressible Smoothed Particle 

Hydrodynamics (ISPH) method has been developed to simulate the interaction of wavesand 

non-Newtonian mud. A modified inter-particle average technique was used to solve the 

discontinuity through the interface. An iterative method was applied to update viscous force and 

to fulfill the requirement of the full incompressibility of the fluid. An improved formulation of 

viscous force terms, a new interface, and free-surface treatments have been presented. Some 

hydrodynamic tests were performed to verify the model by comparing the simulated results with 

analytical solutions. Several wave-mud simulations were carried out to investigate  mass 

transport velocities and wave attenuation in the mud layer under the different wave and mud 

characteristics. To validate the results, the simulated results were compared with the laboratory 

measurements. The new modifications improve the force transferred from the surface wave into 

the fluid mud and enhance the simulated results in terms of the position of the particles, 

dissipation rate, and mud mass transport velocity. An intense gradient in the mass transport 

velocity is found at the water-mud interface. 

 

1. Introduction 

Fluid mud is found in many areas, including coastal areas 

and river estuaries. Fluid mud events are a serious threat to 

navigation safety because they can cause extreme siltation 

and complicate dredging and decrease in nautical depth [1, 

2]. The typical characteristics of wave-mud interaction are 

the attenuation (dissipation) of the wave and the transport of 

mass in the bed layer. The attenuation of waves that 

propagate over muddy beds is significant for designing 

nearshore structures and for protective measures affairs on 

muddy coasts because, in these regions, the wave energy 

diminishes considerably so that nearly no wave breaking 

takes place.  
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Moreover, siltation and contaminant transport induced by 

the interaction of waves and mud are of great environmental 

and engineering importance [3]. The overlaying waves 

oscillate the mud particles in the fluid-mud layer, resulting 

in a steady current inside the fluid-mud layer, known as mud 

mass transport. While the magnitude of this current is small, 

it forms a large part of the total sediment transport. Several 

studies have investigated the wave-mud interaction during 

the past decades. Most of these studies were analytical and 

experimental [4-12]. Sakakiyama and Bijker [4] performed 

experiments using the water-kaolinite mixture which 

behaved like a Bingham fluid, to display surface wave 

attenuation and mass transport. The rheology of kaolinite 

and Hendijan mud was studied by Soltanpour and Samsami 

[5] to show the effect of mud on the dissipation of surface 

water waves. They found out that the rheological properties 

of mud are strongly site-specific. Hsu et al. [6] investigated 

mud transport induced by using an Electromagnetic Current 

Meter to measure particle velocity inside the fluid mud. 

Under the low-energy conditions, the wave nonlinearity was 

amplified due to non-Newtonian rheology. Soltanpour et al. 
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[7] investigated wave dissipation and mud mass transport 

using ECM sensors in laboratory experiments.  Shamsnia et 

al. [8] reviewed the literature investigating the wave-mud 

interactions and also compared their outputs with the 

available laboratory data of experiments. They also 

proposed a new model in the case of wave-mud and wave–

current–mud interactions. Soltanpour et al. [9] studied a 

solitary wave-mud interaction by means of sets of laboratory 

tests. They measured time series of the velocity in the water 

and mud layers, as well as free-surface evolutions. At higher 

values of the mud water content ratio, the time shifts 

decrease between the peak velocities in the mud and water 

layers. Quesada et al. [10] studied analytically the damping 

of long linear waves propagating on a thin mud layer, with 

viscoelastic behavior using the well-known Maxwell 

rheological model. Kamrooz et al. [11] provided a 

straightforward analytical solution to wave-current-mud 

interaction by considering the mean shear stress effects in 

the water layer in contrast to the abundance of experimental 

and analytical research, very few numerical models  have 

been presented in the literature concerning the simulation of 

the wave and mud interaction. A 2DV numerical model 

based on an ALE description was developed by Hejazi et al. 

[12] for the simulation of wave propagation over Newtonian 

mud layers.  

SPH, as the most advanced member of Lagrangian methods, 

is a great alternative to simulate complex flow problems due 

to some distinct preferences. For example, it remarkably 

simplifies the tracking of free-surface and interface particles, 

as well as moving boundaries. It also enables modeling the 

large deformations in flows, facilitates the combination of 

interfacial forces into momentum equations, and does not 

need a mesh to calculate partial differential terms in 

governing equations [13]. Therefore, SPH methods can 

overcome limitations related to mesh-based methods and 

provide accurate results in the simulation of free-surface and 

interface problems. In problems that deal with several 

different fluids, due to the difference in their density and 

viscosity, a discontinuity occurs at the interface, which 

requires special consideration in calculating the derivatives 

[14]. Several studies have been carried out on multiphase 

flows. Hu and Adams [15, 16] proposed an inter-particle 

averaged value method in the multiphase SPH methods. The 

new method was capable of handling the discontinuity 

across the interface. However, they assumed that the 

interface was exactly between the two particles of two 

different fluids. This assumption disregards the real particle 

distance from the interface and obtains the inter-particle 

pressure based on the weighted average according to their 

densities. In practice, most of the time, the interface is not 

placed exactly between the two particles and this issue 

makes some errors. Therefore, it is necessary to estimate the 

distance of the two particles from the exact interface. Also, 

this method has not been developed for free problems, which 

needs to extract relations for the free surface. 

In sediment transport and coastal engineering problems, 

Granular material approaches have been applied newly [17-

21]. Continuum approaches have also been employed in 

which the granular materials are considered a fluid body and 

the laboratory experiments determine the effects of these 

materials on the parameters of the fluid rheological models. 

Some researchers found out in their laboratory studies that 

bed sediments have the Bingham plastic behavior [1, 6]. This 

rheological model has been recently used for the mud bed in 

simulating the wave and mud interaction [3, 22-24].  

Hejazi et al. [3] presented a modified ISPH model with a 

new kernel function for simulating the interaction between 

waves and fluid mud. They used Bingham's model to 

describe the behavior of mud. This simple model, which 

preserves the basic behavior of mud, facilitates the 

application of SPH method [3]. Many relations for 

calculating shear stress have been presented in the literature. 

However, there is a need an alternative approach to 

calculating shear stress. 

In the present study, to solve the problem of discontinuity 

through the interface in the simulation of the wave and non-

Newtonian mud interaction, an ISPH method based on an 

enhanced inter-particle average was developed in which 

mud was considered as a continuum body. An iterative 

method has been employed to fulfill the requirement of the 

full incompressibility of ISPH. Free-surface relations were 

derived, and a modified interface treatment was proposed. 

The ISPH formulation of the shear stress in the governing 

equations was discussed in detail and an improved method 

was offered. Some hydrodynamic tests were carried out to 

verify the simulation by comparing them with the analytical 

solutions. The mud mass transport velocity and the 

attenuation of waves passing over the mud layer were 

predicted and a comparison was made with the results 

obtained from the related experiments and theoretical 

solutions reported in the literature.  

2. Solution method 

The 2D governing equations for incompressible flow are 

expressed as [16, 25]: 

1 D
. 0

D
U

t




       (1) 

D 1 1 1
.

D
s

U
P g f

t


  



        (2) 

where  denotes the density, t is time, U  is the vector of 

velocity, P is the pressure, g is the vector of gravitational 
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acceleration,


  is the tensor of viscous force and 
sf is the 

surface stress expressed as [13]: 

.s

C
f C

C

 
      

  (3) 

where   is the surface-tension coefficient and C  is the 

color index, which ranges between 0 and 1 [16]. The particle 

density can be obtained from 
i i im   which conserves 

mass exactly, 
im is the particle mass and the particle number 

density 
i  is almost the inverse of the particle volume. The 

subscript i is the particle on which the calculation is 

performed. The vital equation by which the other 

formulation of the inter-particle averaged value method can 

be derived is the gradient of a scalar function defined as [16]: 

2 2

1 1 ij

ij iji i ij i ij ij

iji jj j

W
A

r
    

 

  
    

   
  e  e  

2 2

1 1 ij

ij

iji j

W
A

r

  
  
    

 

(4) 

where W denotes the kernel function.  

The ij is the inter-particle average, which is often an 

arithmetic mean 
2

i j 
, and ije is the unit vector from 

particle i to neighboring particle j and ij i j ij ijr r r r   e . 

Accordingly, discretization of second-order derivative 

(Laplacian) is written as: 

where ij i j    . A projection method was utilized in 

solving the governing equations to fulfill the requirement of 

the full incompressibility of ISPH. For detailed information 

on implementing this method, the readers can refer to [3, 16]. 

To solve the problem of discontinuity of density and 

viscosity across the interface, Hu and Adams [15, 16] 

supposed that the interface is situated exactly in the middle 

of two particles belonging to the two different fluids A and 

B and accordingly discretize discretized the pressure 

gradient as: 

1 i j j i

ij iji

i i jj

P P
P A

m

 


 


 

 e  (6) 

where the inter-particle pressure becomes: 

j i i j

m

i j

P P
P

 

 





 (7) 

And the inter-particle velocity can be written as: 

i i j j

m

i j

v v
v






 

 
 (8) 

where v  is velocity and   is viscosity. For the two particles 

belonging to the same fluid, the inter-particle pressure and 

velocity become 
2

i j

m

P P
P


  and 

2

i j

m

v v
v


  

respectively. The Poisson operator is discretized as: 

 . 2
ij ij

ii
ij i jj

A P
P

r
 

 
  

  (9) 

The discretization form of the Poisson equation will be: 

* *2 1
.

ij ij i i j j

ij ij

ij i j i jj j

A P v v
A

r t

 
 
    

 
 

   
=  e  (10) 

The right side of equation (10) is based on the divergence-

free equation, and the superscript (*) denotes the 

intermediate step. In this study, the Sparse-Gauss–Seidel 

(SGS) solver, which is an iterative technique, using a 

successive over-relaxation (SOR) accelerator was employed 

to solve the pressure Poisson equation for finding particle 

pressure. The factor of relaxation varies from 1.85 to 1.96. 

The convergence condition to stop the iterative process was 

1 6max 10n nP P    where 
1nP 
 and 

nP  are the 

Successive pressure in the iterative process.  The great 

benefit of this technique is that there is no need to create a 

huge 2D matrix for the pressure Poisson equations, and 

subsequently, a small amount of computer memory is 

occupied so that even a simple PC can handle simulation 

with a large number of particles. To determine the time step, 

the following constraints must be satisfied: 

The first constraint is related to the maximum movement of 

particles and viscous diffusion determines the second 

constraint on the time step. maxU  denotes the maximum 

velocity of particles in the computation and 
0L is the initial 

spacing of particles.   , usually in the order of 0.1, is the 

coefficient depending on the particle arrangement and the 

type of the Kernel function. To fulfill the requirement of the 

complete incompressibility of the fluid, the corrected 

position and velocities of particles are considered as 

intermediate values again, and an iterative process is made 

to obtain P  and U , the pressure and velocity 

increments, to correct the new pressure and velocity 

(equation 12). the following equations, the subscripts  In

show the iteration number.  

 

.
ij

i i ij

ijj

A
r

  


   (5) 

2

0 0min 0.1 ,
/max

L L
t

U

 

 
   

 
 (11) 
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



  

  


  

 
(12) 

Two correction factors were used for velocity in the model 

to rearrange the position of the particles after correction 

steps. The first correction factor, or XSPH correction, 

proposed by Monaghan [26] is added to the velocity of the 

particles to keep the particles more regular and to prevent 

the penetration of particles into each other, especially in 

high-speed flow. The corrected velocity of particles 

conserves the linear and angular momentum [26]. Another 

method to control particle regulation is the particle collision 

technique. This method is defined as follows [27]:    

2

( . )
(1 )

ij ij iji

i i R

i j
ij

u r rm
v u C

m m r
  


 (13) 

where 
RC  ranges between 0 and 1, indicating non-elastic and 

elastic collision, respectively. 
iv and 

iu  stand for the 

velocity with and without modification of the particle 

collision respectively. The summation of all neighboring 

particles situated in the collision distance (
00.75iC L ) is 

gained by equation 14.   

2

( . )
(1 )

i

ij ij iji

i i R

i jb C ij

u r rm
v u C

m m r

  
  (14) 

3. Boundary conditions  

In this section, three types of boundary conditions have been 

presented which are the free-surface, the interface and the 

wall boundary conditions. For the simulation of free-surface 

flows, it is necessary to use suitable formulations for the 

free-surface particles. In the studies carried out by Hu and 

Adams [15, 16], the inter-particle averaged values were used 

for multiphase problems involving interfaces in confined 

containers, but no treatment was provided for the free-

surface problems. Furthermore, the existing relations for the 

interface were obtained based on the assumption that the 

imaginary interface was located in the middle of two 

particles belonging to the two different fluids, which 

requires that the effects of particles close to the actual 

interface are equal to the effect of the further ones. The 

appropriate relationships are presented in this section to 

address the two mentioned shortcomings. 

 

3.1 Free-surface treatment with modification 

Similar to formulations used for free-surface treatment in the 

ISPH model proposed by [3, 28], here, the formulations are 

derived for the inter-particle averaged method. Figure 1 

shows a typical free-surface particle. The particles that meet 

the following criteria are treated as free-surface particles: 

*

0    (15) 

where  = constant (= 0.9 to 0.98 in this study). Since inside 

the support domain, the neighboring particles for each free-

surface particle are deficient, the particle density decreases 

over the free-surface boundary, consequently causing a false 

pressure gradient. The condition of zero pressure is applied 

to the free-surface particles.  The gradient of pressure among 

the free-surface particles, inner particle (i) and mirror 

particle (m) (Figure 1) is derived as: 

1 2
si si si si i si

i is i i

P
= A P e = A P e

ρ m m

 
 
 

   (16) 

 

Fig. 1: Schematic diagram for free-surface formulation 

using virtual mirror particles 

 

Similarly, the Poisson equation of pressure is expressed as: 

2
. ( ) 2 si s

is

si i si

A P
P

r
 

 
  

  (17) 

The factor of free-surface curvature for the gradient and 

Poisson of pressure are applied as [3]:  

2
ij -std

j

si i sis

i iij

j

W

P ρ = A P e
m W







 (18) 

2
. ( ) 2

ij std

j si s
is

iij si i s

j

W
A P

P
W r

 
 



  







 
(19) 

3.2 Modification in the interface relation 

In this study, it is assumed that there is a sharp interface 

between the water and mud layers and there is no 

considerable mixing between water and mud. As mentioned, 

the imaginary interface was located just in the middle of two 

particles in fluids A and B. As seen in Figure 2, this 

assumption neglects the actual distance of the particle from 

the interface position and it obtains the inter-particle 

pressure based on the weighted average according to their 

densities (Equation 7). In practice, most of the time, the 

interface is not placed exactly between the two particles, and 

this issue makes some errors. Therefore, it is necessary to 
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estimate the distance of the two particles from the exact 

interface. In order to locate the interface, a color function is 

used and it is assumed that the interface has a negligible 

curve. This assumption comes from the fact that the height 

of the internal wave is a small fraction of the surface wave 

height and can be considered a flat line in this study.  

 

Fig. 2: A sketch of interface boundary condition for 

calculation of pressure gradient 

The following coefficients are assigned for the particles of 

two fluids:  

1,  in fluid A

0,  in fluid B
iC


 


 (20) 

The color function is defined as the following relation:  

i ij
j

i

ij
j

C W

C
W





 (21) 

If d and d' denote the distance of particles i and j from the 

actual interface, respectively, the ratio of the distances of d 

and d' is expressed as: 

0.5

0.5

j

i

Cd
k

d C


 


 (22) 

The estimation of the ratio of the distances has been 

obtained from Figure 3.  

 

Fig. 3: A sketch of the interface for the calculation of color 

function and estimation of the distance ratio 

 

Applying the coefficient on the equation of pressure gradient 

and pressure Poisson equation, the new equations are 

modified as: 

1 i j j i

ij iji

i i jj

k P P
P ρ A e

m k

 

 


 

  (23) 

. ( ) (1 )
ij ij

ii

ij i jj

A P
P k

r k
 

 
   

  (24) 

The inter-particle averaged pressure is modified to:  

i j j i

m

i j

k P P
P

k






 

 
 (25) 

The inter-particle-averaged velocity is also expressed as:  

i i j j

m

i j

k v v
v

k






 

 
   (26) 

These formulations can partly deal with the problem raised 

in the large density ratio, in which denser fluid has less effect 

on lighter fluid as reported by Chen et al. [29]. However, due 

to the low-density ratio of the two fluids, this problem does 

not arise in the current model. 

 

3.3 Boundary condition of the wall 

In this study, the Neumann boundary condition was set to 

the wall particles. To set the wall boundary condition, a row 

of stationary particles was employed as a solid boundary, 

and two rows of fixed artificial particles were placed on the 

outer side of the solid boundary. In the pressure Poisson 

equation, only the boundary particles took part and the 

artificial particles were used to provide sufficient particles 

and apply a repulsive force on the approaching particles.  

4. ISPH Kernel function 

Several popular kernel functions have been checked, such as 

cubic spline, hyperbolic, double cosine, Wendland, and the 

new hybrid proposed by Hejazi et al. [3], and the proposed 

hybrid kernel function was chosen in the present model, 

mainly because it showed long-lasting stability in the 

simulations. The hybrid kernel function is expressed as: 

( , )  ( , ) (1 ) ( , )Hybrid S HW r h W r h W r h     (27) 

 where  SW is the cubic spline, HW  is the hyperbolic kernel 

function and,   is a coefficient varying from 0 to 0.2, and  

h  is the smoothing length. The radius of the support domain 

is 2h  beyond which the value of the kernel function 

becomes zero. 
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5. Rheological equations 

The water was regarded as Newtonian fluid in the present 

study, but a non-Newtonian fluid with the rheological model 

of Bingham is used for representing the mud behavior as 

follows: 

 

0

( )

y

y

B y

  


   



 



 


 (28) 

where   is the shear strain rate tensor, y  is Bingham yield 

stress, 
B  is the Bingham viscosity.   stands for the 

magnitude of shear stress and   is the magnitude of shear 

strain rate expressed as: 

2 2 2

2 2
u w u w

x z z x


        
        

        
 (29) 

The partial strain rates in equation (29) are derived from the 

finite difference method. For example, 
u

x




 and 

u

z




  are 

defined as:  

The equation (32) describes the viscosity force in SPH [30]. 

If the neighboring particle is a water particle, the viscous 

force is applied using the constant viscosity; otherwise, the 

Bingham model is used to calculate the inconstant viscosity. 

2

:

1

8 21
.

( ) 1

2

j j

i ij

i ji j

i j

u u w

m x z x
W

u w w

z x z




  

     
  

         
      

  
    


 

(32) 

In the form of the inter-particle averaged method, this 

equation is rewritten as: 

:

1

2 21
. .

1

2

ij

ij

ii j

i j

u u w

A x z x
e

m u w w

z x z






     
  

        
     

  
    

  
(33) 

where
1

i jk

k






 
 and when the two particles belong to the 

same fluid it becomes a simple average
2

i j

 

 . 

The downside of the mentioned viscosity function model 

(Bingham model) is that the viscosity is discontinuous at the 

lower strain rate, and one must impose a large value instead 

of the infinity, which may cause a numerical instability in 

the lower shear strain rate region and cannot be used straight 

in the numerical simulation. To handle this discontinuity, the 

relationship provided by Papanastasiou [31] is used, which 

relates continuously the changes of shear stress to the strain 

rates as follows: 

 1 e
m

B y


   


    (34) 

where m adjusts the exponential growth of shear stress so 

that in m=0, the behavior of Newtonian fluid and in m larger 

than 500, the behavior of Bingham’s fluid can be simulated 

ideally (Figure 4(a)). A correction matrix L is just multiplied 

by the viscosity term in order to guarantee the conservation 

of linear and angular momentum [32]. 

 

1

b

i a ab b a

bb

m
L W r r





 
     
 
  

 

(35) 

5.1 New approach in calculation of shear stress 

In the ISPH method, since all the neighboring particles 

inside the support domain take part in the calculation of the 

shear stress for the central particle i, it would be better to 

simultaneously calculate the effect of all neighboring 

particles (j) within the support domain of  on determining 

the magnitude of shear rates (Figure 4 (b) (II)). Because the 

pairwise calculation of the shear rates magnitude of the 

particle i with each j particle (Figure 4 (b) (I)) and then the 

calculation of shear stress of the particle i cannot solely 

indicate the moving situation of particle i and it is necessary 

that the accumulated effects of neighboring particles on the 

central particle are considered and then the effect of each 

neighboring particle is calculated separately proportional to 

the values of its strain tensor. For example, the longitudinal 

and transverse strain rates in the equation of total   are 

calculated as follows: 

1 1

k k

ij ij i j i j

i ij ij ij ijj j

u r u u x xu

x r x r r
 

      
    

        
   

(36) 

 

1 1

k k

ij ij i j i j

i ij ij ij ijj j

w r w w z zw

z r z r r
 

      
    

        
   

 

(37) 

 
(a) 

i j i j

i ij ij

u u x xu u r

x r x r r

   
   

  
   (30) 

i j i j

i ij ij

u u z zu u r

z r z r r

   
   

  
 

(31) 
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(b) 

Fig. 4: (a): Papanastasiou model with different m (b) two 

approaches for calculation of the magnitude of shear rate 

(I): pairwise calculation and (II): simultaneously 

calculation of all particles inside the support domain 

An alternative method for defining the equations 36 and 37 

is obtained from velocity gradient definition in SPH as: 

 

 

.

.

j ij

j i

j iji j

j ij

j i

j iji j

m Wu
u u

x x

m Ww
w w

z z






 

 


 

 





 

 

(38) 

 

 

(39) 

The following relation is expressed to describe the viscosity 

force in ISPH. If the neighboring particle is a water particle, 

the viscous force is calculated using the constant viscosity (

 ) otherwise, the Bingham-Papanastasiou model is used 

with inconstant viscosity ( BP ). 

 

 

2

   or     1
. 8 . .

( )

1 exp( )

j BP j

j i ijij

i ji j

y

BP B

m W

m

 
 

  


  









 
   
 
 

   


 (40) 

 

6. Model verification  

For hydrodynamic verification of the present ISPH model, 

the simulation of the sinusoidal and solitary wave 

propagation was compared with the analytical results. In 

another numerical test, static water-mud layers were 

simulated to investigate the performance of the modified 

treatments. This model was written using Fortran 

programming language. The program was run using a laptop 

with RAM 16 GB and an Intel(R) Core (TM) i7-4720HQ 

CPU @ 2.60 GHz. 

 

6.1 Sinusoidal and solitary wave propagation 

The first test to validate the current model was the simulation 

of sine wave propagation. This simulation was conducted in 

a domain of 10 m length, with a wave generator at the 

entrance of the domain and a wave absorber at the end of it. 

The water depth was 0.2 m, the wave height was 4 cm, and 

the wave period was 0.87 s. The second test for the model’s 

validity was the simulation of solitary wave propagation 

over a constant water depth. The wave amplitude was 3 cm 

and the water depth was adopted 10 cm. The analytical 

solution for the wave profile has been presented by 

Boussinesq [33] as: 

2

3

3
( , )  sec [ ( )]

4

a
x t a h x ct

d
    (41) 

where   is water surface elevation, a  is wave amplitude, 

d  is water depth and )(( adgc  is the solitary wave 

celerity. The horizontal velocity underneath the wave profile 

is given by: 

   
d

g
u    (42) 

The analytical solution for the wave profile ( ) can be 

derived from the following equation [34]: 

Where k is the wave number equal to  2 L , L is the wave 

length,   is the frequency of wave  2 T , T=wave 

period. Figure 5 displays the simulated results of both wave 

propagations compared with the analytical solutions. 

 
           (a) 

 
       (b) 

Fig. 5: Simulated results (circles) of (a) sinusoidal and (b) 

solitary wave propagations in comparison with the 

analytical solutions (solid lines) 

 

6.2 Still water and mud layers 

To evaluate the impact of the modified treatments on the 

interface and free-surface simulation, the simulation of a still 

water-mud system was carried out. Since the primary 

purpose of the study is to demonstrate wave attenuating over 

a muddy bed, still water-mud tests are essential. They 

confirm that the free-surface variations due to the errors, that 

may occur in the computations, have negligible effects on 

free-surface particles in the present numerical results. 

 

 cos
2

H
kx t    (43) 
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Furthermore, the ability of the model in the hydrostatic-

pressure prediction is examined. A confined domain with a 

length of 1m, overlying water layer depth of 0.1 m, and mud 

layer depth of 0.1 m were adopted for this test. Water and 

mud density were equal to 1000 kg/m³ and 1240 kg/m³, 

respectively. Figure 6 shows the position of particles for the 

still water-mud test at time 10s for both cases with and 

without the modified treatments. As can be seen in the 

figure, the modifications made have improved the position 

of the particles and their fluctuations have decreased. 

 
(a) 

 
(b) 

Fig. 6: Simulation of a still water-mud system,  Position of 

the flow particles (blue circles), boundary particles (red 

circles), mud particles (brown circles), and artificial 

particles (black circles) at t=10s; (a) without modification, 

(b) with modification 

The pressure contours (kPa) in the simulation of the still 

water-mud system at t=10s are shown in Figure 7 for both 

cases with and without the modified treatments. As seen in 

this figure, the corrections made have reduced the distortion 

of the pressure contour lines, and as a result, the accuracy of 

the simulation has increased. 

 
(a) 

 
(b) 

Fig. 7: pressure contours (kPa) in the simulation of the still 

water-mud system at t=10s; (a) without modified 

treatments, (b) with modified treatments 

Since the primary test of wave-mud interaction takes 10-15 

s, the still water-mud test was also simulated in this range. 

The variations of free-surface and interface particles are 

calculated by RMSE using equation (44).  

2(0.5 )

RMSE n

z

n






  
(44) 

where z is the height, and n is the total number of the 

particles considered as water surface and interface particles. 

Table 1 presents several errors made in the simulation of the 

still water-mud system with and without modifications. The 

errors associated with the density and pressure of particles 

were calculated using the analytical solutions. According to 

Table 1, the use of modified treatments has reduced the free-

surface and interface fluctuations and also improved the 

simulated pressure of mud particles.  

Table 1: Errors made in the simulation of a still water-mud 

system with and without the modifications 

Interface 

treatment 

position errors 

Free 

surface (m) 

Interface 

(m) 

All 

particles 

(m) 

Before 0.00033 0.00006 0.0003 

After 0.00033 0.00004 0.00025 

 Density and pressure errors 

Interface 

treatment 

Density 

water 

(%) 

Density 

mud 

(%) 

Pressure 

of bed (%) 

Before 0.75 0.151 0.02 

After 0.70 0.13 0.01 

 

7. Wave and mud interaction 

To investigate the model’s capability in the simulation of 

waves interacting with mud, a wave propagation over non-

Newtonian mud was simulated. A schematic diagram of the 

water and mud layers in the simulation of wave-mud 

interaction is displayed in Figure 8. The sinusoidal waves 

were produced using a piston wave maker at the inlet of a 

flume with a length of 10 m [3]. To prevent the adverse 

effects of wave reflection from the flume end, an exponential 

function was used as a numerical wave absorber in this area. 

The water depth used in the present study varied from 0.2 to 

0.3 m, and the mud depth varied from 0.06 to 0.11 m. The 

time step and the initial particle spacing were equal to 0.001s 

and 0.01 m, respectively. The whole number of particles 

varied from 30000 to 40000 depending on the depth of water 

and mud layers. The water was regarded as Newtonian fluid, 

and the non-Newtonian fluid with the Bingham plastic 

model was adopted for mud rheology [3]. The water 

viscosity and density were set to 10-6 m2/s and 1000 kg/m3 

respectively. Several simulations have been carried out to 
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make comparisons with the experimental results of [4-7]. 

The rheological parameters for each mud were obtained 

from the rheometric tests reported in their studies.  

 
Fig. 8: Schematic diagram of water and mud layers in the 

simulation of wave and mud interaction 

Snapshots of wave and mud interaction, along with pressure 

contours, are shown at different times in Figure 9. In this 

figure, when the wave propagates over the mud layer, the 

wave height decreases, but the wave length increases. The 

contours of pressure display the maximum values within the 

mud layer, particularly near the bottom under the wave crest.  

 

 

 

 
Fig. 9: Snapshots of simulated wave-mud interaction and 

contours of pressure  (Pa) at different times; H=4 cm and 

mud density=1240 kg/m3 

 

8. Results and discussion 

8.1 Attenuation of wave 

The wave height (H) along the muddy bed (x) is related to 

the initial wave height (H0) and dissipation rate of the wave 

(attenuation coefficient) ( ik ) as follows [35]:  

0
ik x

H H e


   (45) 

Using equation 45, the dissipation rate is determined by 

calculating the slope of the line best fitted to the data 

belonging to the highest points of the wave crests. Table 2 

shows the results of the dissipation rate for the present model 

with approaches I (conventional pairwise calculation of the 

shear rates magnitude of the particle i with each j particle) 

and II (calculate simultaneously the effect of all neighboring 

particles (j) inside the support domain) in the calculation of 

shear stress as mentioned in section 5.1 and their comparison 

with the experimental results of Sakakiyama and Bijker (SB) 

[4]. Although both approaches give acceptable results, the 

relative errors of the new approach (II) are less than those of 

approach (I) indicating the positive effect of the new 

formulation on the calculation of shear stress. It seems that 

the approach (I) overestimates the shear stress and results in 

more wave attenuation in comparison to the approach (II). 

Figure 10 shows the predicted dissipation rate of two waves 

with and without the interface treatment compared with the 

experimental results. The predicted values of both cases 

agree well with the measured ones. However, the modified 

interface treatment enhances the simulation, resulting in 

better results than without the modified treatment. It seems 

that the modification in the formulations of shear stress and 

interface treatment together makes a better transfer of force 

and energy from the surface wave into the muddy bed and 

also handles the discontinuity in the pressure gradient across 

the interface. The investigation of the simulated attenuation 

rates indicates there was little overestimation compared to 

the measurements. This can be attributed to the intrinsic 

characteristic of the SPH method that causes some inbuilt 

dissipation. 

8.2 Mud mass transport velocities  

Experimental results demonstrate that the mud transport 

inside the mud layer is more dominant than the transport of 

suspended mud in the water layer under wave actions [36]. 

Tracking the position of each particle at any time can be easy 

due to the Lagrangian and particle-based properties of SPH. 

A comparison between the simulated (the current model and  

the model reported by Hejazi et al. [3]) and the measurement 

of mud mass transport velocity [7] over the mud layer depth 

is provided in Figure 11. The present simulated values agree 

well with the measurements conducted by Soltanpour et al. 

[7] both in magnitude and distribution of the mud mass 

transport velocity in comparison to the results of [3]. 

However, there are some discrepancies between the two 

results that may be attributed to the use of simplified 

rheology for mud in the numerical model. Wave height 

strongly affects the mud mass transport velocity. For 

example, a growth of 2 cm in the wave height causes the 

mass transport velocity to increase twice. Therefore, 
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Consistent with the experimental results, it may be stated 

that mass transport velocity is related to wave height having 

power higher than 2 [4]. As wave height increases, it exerts 

a comparatively larger driving force to move mud, resulting 

in a larger mud mass transport velocity. Both the present 

numerical and experimental [7] results show non-uniform 

mud mass transport velocity over depth, contrary to results 

of Sakakiyama and Bijker [4]. 

 

Table 2: wave attenuation coefficient (ki); the ISPH model with both approaches compared with the experimental results and 

the corresponding relative errors [4] 

  

  

(a) (b) 

  
(c) (d) 

Fig. 10: Wave dissipation rates; model results compared with measurements [4], (a, b) H0=4 cm, Wave Period =1s, Mud 

density=1370 kg/m3; (c, d) H0=3.2 cm, Wave Period ≈0.8s Mud density=1300 kg/m3; (a, c) without modification, (b, d) 

with modification in interface 

 

 

 

Fig. 11: Comparisons between the experimental [7] 

(almond shapes), present simulated results (red lines) and 

the model of Hejazi et al. [3] (dashed lines) of mud mass 

transport velocity; a) T=1.1 s, H=5 cm; b), T=1.1 s, H=7.0 

cm, mud density=1300 kg/m3 

Figure 12 displays the simulated mud mass transport 

velocities at the water and mud interface with respect to the 

different heights of the free-surface waves for three wave 

periods compared with the laboratory results [4]. Consistent 

with the experimental data, it is distinct that longer waves or 

higher periods, and higher wave heights cause larger mass 

transport velocities. 

 
Fig.12:  Relationship between mud mass transport velocity, 

wave heights, and periods at the interface; comparison of 

the ISPH model (circles) with experimental results [4] 

(diamonds) 

Test 

no. 
Wave and mud properties (1 m)ik  

RE (%) of (1 m)ik  

H0 

(cm) 

T 

(s) 
3(kg m )

ρ
 

Experimental Numerical 

[4] approach I approach II approach I 

approach II 

 

 

1 4 1.0 1370 0.183 0.191 0.189 4.3 3.3 

2 3.2 0.8 1300 0.068 0.080 0.078 17.6 14.7 

3 3.2 1.0 1300 0.084 0.086 0.085 2.4 1.2 

4 2.8 ~0.8 1240 0.031 0.034 0.034 9.7 9.7 

5 2.8 ~0.7 1300 0.068 0.0725 0.072 6.6 5.9 

6 ~2 0.7 1300 ~0.1 0.109 0.108 9.0 8.0 

(b) 

(a) 
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9. Conclusions  

In this study, the ISPH model of Hejazi et al. [3] was 

developed using the interparticle average method in the 

entire domain. Free surface relationships were extracted for 

this method. Correction coefficients were presented for the 

relations between water and soil interface, which increase 

the accuracy of the interface position. Also, a new approach 

in calculating shear stress was presented. The simulation of 

sinusoidal and solitary wave propagation showed good 

agreement with the analytical solutions.  The attenuation of 

wave height passing over the mud layer and the velocity of 

mud mass transport have been investigated. The 

modifications made increased the accuracy of the results of 

the current modified ISPH model compared to the model of 

Hejazi et al. [3].  The main results are as follows: 

1. The iterative projection method used in the current 

model increased the accuracy of both the velocity and 

density of the particles due to enforcing full 

incompressibility.  

2. The simulated results showed that wave lengthens, and 

wave height decreases over the mud layer. 

3. Over the muddy layer, as the density of mud increases, 

the dissipation rate of the wave also increases. 

4. The results showed  that the magnitude of mass 

transport velocities depends significantly on both wave 

height and period. 

5. The results showed  a direct relationship between wave 

attenuation and mud mass transport.  T his indicates that 

high mass transport requires high energy consumption.   

6.  The mud mass transport velocity near the interface 

showed a relatively great difference from within the mud 

layer. 

7. The use of the modifications in the new ISPH improved 

the force and energy transfer from the surface wave into 

the fluid mud, and it enhanced the simulated results in 

terms of the particle position, pressure field, dissipation 

rate, and mud mass transport velocity.  

8. Although the present numerical model demonstrated 

acceptable simulated results, it has some restrictions, such 

as being 2D, using the simple Bingham rheological model, 

and considering mud as a fluid. Due to the environmental 

and structural significance of the mass transport and wave 

attenuation resulting from the wave mud interaction, it 

would be better to simulate nonlinear waves with other 

rheological models and different bed geometries with the 

robust ISPH model. The incorporation of a turbulence 

model and considering mud as a granular material, as well 

as the extension of the present model to 3D, can enhance 

the model’s capabilities.   
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