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Abstract: 

This paper investigates future changes in annual mean precipitation and air temperature across 

the Volga River basin, which serve as significant drivers of climate-induced changes in the 

Volga River's discharge, the primary input to the Caspian Sea. The thirteen Global Climate 

Models (GCMs) outputs under four Shared Socioeconomic Pathways (SSPs) scenarios (SSP1–

2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5) from the sixth phase of Coupled Model 

Intercomparison Project (CMIP6) were used for this study. In the historical period (1950-2014), 

using comprehensive rating metrics and Taylor diagram, the GCMs are ranked according to 

their ability to capture the temporal and spatial variability of precipitation and air temperature. 

The Multi-Model Ensemble (MME) is generated, and bias-correction techniques are utilized to 

reduce the uncertainties and correct the biases in CMIP6 outputs. Bias-correction techniques 

were assessed during the historical period and an average of appropriate methods were utilized 

for future projections (2015-2100). In the 21st century, future projections show that the Volga 

River basin could mainly experience a temperature increase of 0.4°C to 7.5°C, alongside a 

precipitation rise of 0.7% to 37%, depending on the scenarios considered. A comparison of 

future projections with an observational dataset from 2015 to 2017 indicates that the SSP2–4.5 

is a more likely scenario to represent the future climate of the Volga River basin.

 

1. Introduction 

Recently, the study of climate change's impact on 

temperature and precipitation and its consequences for the 

human environment has gained prominence as a vital 

research area (1–3). Changes in main climate parameters 

like precipitation, temperature, and evapotranspiration 

significantly affect the basin's runoff  (4). Accurately 

predicting future precipitation and air temperature changes 

is vital for managing climate-related risks through 

adaptation and mitigation strategies. General Circulation 

Models (GCMs) are essential for understanding and 

studying the consequences of past, current, and future 

climate change (5).  
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Despite several improvements that have been made in the 

latest sixth phase of the Coupled Model Intercomparison 

Project (CMIP6), significant uncertainties and biases still 

exist in GCMs' historical and future simulations (6). 

Uncertainties and biases in GCMs stem from their low 

resolutions, parameterization schemes, boundary conditions, 

carbon cycles representations, and the insufficient 

theoretical understanding of the Earth's climate (7). Some 

techniques including bias correction, appropriate GCM 

selection, and the generation of multi-model ensembles 

(MME) have been employed to reduce these biases and 

uncertainties (Mishra et al., 2020; Raju and Kumar, 2020). 

Recently, MMEs of GCMs have become the preferred 

approach over single GCMs for improving future 

projections (10). 

The Volga region is a vital area for Russia's population and 

economy, warming 2.5 times faster than the global average, 

as assessed by Roshydromet (11). Climate variations in this 

region impact living conditions and activities, notably 

affecting water flow. The Volga's flow accounts for 80% of 

the Caspian Sea's water inflow (12). Changes in the climate 
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within its basin and its discharge cause significant 

fluctuations in the Caspian Sea level. 

Studies on the future changes in the Volga River basin's 

precipitation and temperature are limited. Nesterenko et al. 

(2023) analyzed annual air temperature and precipitation 

changes over the Volga and Urals basins, using 

observational data from 1887 to 2020. They found that over 

this period, the average annual air temperature has increased 

1.8°C, with winter temperatures rising 2.3°C and summer 

temperatures rising 1°C. Additionally, during this period, 

annual precipitation in forest and steppe zones increased by 

an average of 55 mm, primarily due to heightened winter 

precipitation. Analyzing river gauge data, Georgiadi et al. 

(2019) discovered that during the current climate warming 

period (since 1981), there was a 3.4% increase in annual 

runoff compared to the reference period (1930-1980). 

Changes in the Volga River runoff was also assessed using 

CMIP5-GCMs under RCP2.61 and RCP8.5 future scenarios. 

The analysis indicates that from 2010 to 2039, the Volga 

River annual runoff may slightly increase compared to the 

1960-1990 period, with an estimated rise of 2-10% 

depending on the scenario (15). Kalugin (2022) used the 

precipitation and temperature outputs of two CMIP5-GCMs, 

including GFDL-ESM2M and MIROC5, over the Volga 

River basin to assess climate change impacts on the Volga 

River runoff in the 21st century. Kalugin (2022) reported 

that in the projected global warming scenarios of 1.5°C and 

2°C by 2045 and 2064, the Volga basin could experience 

mean annual air temperature increases of 2.5 °C and 3.4 °C, 

respectively. Annual precipitation in the Volga basin 

increases by 8% at 1.5 °C global warming and averages 11% 

at 2 °C global warming. Although precipitation has 

increased, their simulated annual Volga runoff has reduced 

by 10-11% in both scenarios compared to the levels from 

1970-1999. This result suggests that evaporation will play a 

more significant role in the Volga basin's water balance.  
The limitations of previous studies include the limited 

utilization of GCMs and climate change scenarios, the lack 

of evaluation models and the construction of multi-model 

ensembles, and the absence of GCM bias correction. To 

address the limitations of previous studies, this study aims 

to investigate the projected changes in precipitation and air 

temperature in the Volga River basin using CMIP6-GCMs 

under different climate change scenarios. First the ability of 

CMIP6-GCMs to simulate spatial and temporal variabilities 

in temperature and precipitation is evaluated during the 

historical period (1950-2014). Then, a subset of appropriate 

GCMs is utilized to produce a multi-model ensemble for 

precipitation and temperature. The multi-model ensemble is 

corrected for bias using efficient techniques based on spatial 

and temporal evaluation. Future changes in air temperature 

                                                 
1 Representative Concentration Pathway 

and precipitation are investigated by analyzing the corrected 

multi-model ensemble in the near (2020-2046), mid (2047-

2073), and far (2074-2100) periods relative to the reference 

period (1988-2014). 

This paper is organized as follows: Section 2 presents the 

study area and data, Section 3 outlines the methodology, and 

Section 4 summarizes the results and discussions. 

 

2. Study Area and Data 

2.1 Volga River Basin 

The Volga River is Europe's largest river by basin area 

(1,360,000 km2), length (3530 km), and annual water 

volume (250 km3). It is situated within the geographic 

coordinates of 48◦ to 62◦ N and 32◦ to 60◦ E (Fig. 1 (a)). The 

river's source is located at an elevation of 228 m above sea 

level, while its mouth, where it flows into the Caspian Sea, 

is 28 m below sea level (16).  

The Volga River provides 80% of the water budget input to 

the Caspian Sea (12). Precipitation and temperature 

variations within the Volga River basin substantially impact 

its discharge, leading to the Caspian Sea level fluctuations. 

The Volga River basin encompasses some climate regions 

according to the Köppen Climate Classification (17). Its 

primary climate is continental, with a small area in the 

basin's southern part having an arid climate (Fig. 1(a)). The 

Volga basin has an average annual air temperature of 3.4°C 

and receives an annual precipitation of 567 mm, calculated 

from the GHCN2 observational dataset from 1950 to 2014. 

Fig. 1 (b,c) displays the spatial distribution of annual mean 

air temperature and precipitation. 

 

2.2 Climate models and observational dataset 

The data from GCMs, covering historical simulations (1850 

to 2014) and future scenarios (2015 to 2100), is sourced 

from the latest phase of the Coupled Model Intercomparison 

Project, CMIP6 (18). CMIP6's future projections include 

Shared Socioeconomic Pathways (SSPs) as well as specific 

targets for radiative forcing by the end of the 21st century 

(O'Neill et al., 2016). The study employs a range of 

scenarios, namely SSP1-2.6, SSP2-4.5, SSP3-7.0, and 

SSP5-8.5. Each scenario represents distinct combinations of 

radiative forcing and development pathways. SSP1-2.6 

portrays a future characterized by low levels of forcing and 

a commitment to sustainable development. SSP2-4.5 

reflects a moderate forcing scenario with a middle-of-the-

road development trajectory. SSP3-7.0 represents a scenario 

with medium-to-high-end levels of forcing, accompanied by 

regional rivalry. Lastly, SSP5-8.5 illustrates a high-end 

forcing scenario driven by fossil fuel-dependent 

2 Global Historical Climate Network 



 
S. Hoseini et al.                                                                               Numerical Methods in Civil Engineering, 8-2 (2024) 36-47 

3 

 

development. Descriptions of the models used in this study 

are presented in Table 1. Model selection depends on data 

availability for scenarios and the historical period in the 

Volga River basin. CMIP6 data is obtained from the Earth 

System Grid Federation (ESGF) website at https://esgf-

node.llnl.gov/search/cmip6 (last access date: 2023/10/1). 

Many GCMs comprise various ensembles based on different 

realizations, initialization methods, and model physics. The 

mean of all available ensembles is calculated for each 

climate model.  

To assess GCM simulations, gridded datasets with suitable 

homogenization and interpolation are typically preferred due 

to the limitations arising from the spatial non-uniformity in 

station observations (20). In this study, historical 

simulations of CMIP6-GCMs are assessed using the Global 

Historical Climate Network (GHCN) dataset (21) at a spatial 

resolution of 0.5°×0.5°. The prior studies have demonstrated 

the performance of air temperature and precipitation of the 

GHCN datasets in evaluating CMIP6-GCMs (e.g., Muche et 

al., 2020; S. Wang et al., 2022; Liang-Liang et al., 2022). 

The GHCN dataset can be accessed at 

https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.h

tml#detail (last access date: 2023/10/1). 

 
(a) 

 
(b) 

 
(c) 

Fig. 1: (a) The location of the Volga River basin and  its climate 

classes based on the Köppen Climate Classification, (b) observed 

annual mean air temperature (°C), and (c) precipitation (mm) 

during 1950-2014 

 

3. Methodology 

This study developed a bias-corrected dataset of 

precipitation and air temperature over the Volga River basin, 

using output from 13 CMIP6-GCMs under four scenarios 

(SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5) for both 

the historical (1950–2014) and future periods (2015–2100). 

The study involves ranking the GCMs based on performance 

and implementing bias correction techniques. To address 

significant sources of uncertainty, including the choice of 

climate models and bias correction methods, all available 

CMIP6 models and a variety of bias correction techniques 

are utilized. This ranking process leads to the forming a 

multi-model ensemble comprising the most reliable models. 

Bias correction techniques are then applied to reduce biases. 

The initial step involves interpolating the GCM outputs to a 

0.5 * 0.5 grid resolution to align with the spatial resolution 

of GHCN observational dataset grids. Subsequently, 

historical CMIP6 model outputs for precipitation and 

temperature are assessed against observational reference 

data, in terms of temporal and spatial assessments. Temporal 

evaluation is performed by the comprehensive rating metrics 

(25), which ranks models based on criteria such as 

Correlation Coefficients (CC), Mean Absolute Errors 

(MAE), bias, Root Mean Square Errors (RMSE), and 

Standard Deviations (SD). Spatial assessment employs 

Taylor diagrams (26) to assess CC, SD, and centered Root 

Mean Square Difference (RMSD). In the final step, models 

that effectively reproduce both temporal and spatial patterns 

are selected for generating the multi-model ensemble 

(MME). The study additionally applies and evaluates bias 

correction methods, adopting the mean of the outputs from 

the most effective techniques, referred to as 

"mean_methods," for utilization in future projections. The 

corrected temperature and precipitation projections are 

examined to investigate the influence of climate change on 

the Volga River basin, which is valuable for future 

assessments of Volga River discharge in light of climate 

change. Details of the suggested approaches are explained in 

the following sections. 

https://esgf-node.llnl.gov/search/cmip6
https://esgf-node.llnl.gov/search/cmip6
https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html#detail
https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html#detail
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Table 1: Description of CMIP6 models used in this study 

Model Key References  

Horizontal 

Resolution 

(lat. × lon.) 

BCC-CSM2-MR (27) 1.125°  ×  1.125° 

CanESM5 (28) 2.8°  ×  2.8° 

CESM2 (29) 1.4°  ×  1.4° 

CNRM-CM6-1 (30) 1.4°  ×  1.4° 

CNRM-ESM2-1 (31) 1.4°  ×  1.4° 

FGOALS–g3 (32) 2.8°  ×  2.8° 

GISS-E2-1-G (33) 1.125°  ×  1.125° 

HadGEM3–GC31–LL (34) 1.875°  ×  2.5° 

IPSL–CM6A–LR (35) 1.26°  ×  2.5° 

MIROC6 (36) 1.25°  ×  1.875° 

MIROC-ES2L (37) 2.25°  ×  2° 

MRI-ESM2-0 (38) 1.25°  ×  0.94° 

NorESM2–LM (39) 2.5°  ×  2° 

 

2.1 Bias-correction Techniques 

GCMs often produce biased results due to their coarse 

spatial resolutions. These biases require correction before 

utilizing climate projections in impact studies (40). This 

study employs the MeteoLab toolbox 

(https://meteo.unican.es/trac/MLToolbox (last access date: 

2022/07/21)), encompassing both scaling-based correction 

and distribution-based correction methods. Scaling-based 

methods include the delta method, which adjusts future 

period simulations based on historical period differences, 

and the scaling method, which involves multiplying or 

adding scaling factors derived from the mean differences 

between observations and simulations in the reference 

period. 

Quantile mapping methods (QM) are commonly used, as 

they can match all statistical moments of GCM outputs with 

observational data. These methods map the Cumulative 

Distribution Functions (CDFs) of GCM outputs from the 

historical period to those of observations. For future climate 

scenarios, the CDFs are computed based on GCM outputs 

from the historical period, considering GCM scenarios for 

the future. The corrected values for future periods are then 

extracted from the CDFs of the observations. Details of the 

eQM and aQM methods are elaborated in Amengual et al. 

(2012). The parametric quantile mapping method, gpQM, is 

based on a Gamma Generalized Pareto Distribution (GPD). 

Additionally, the isimip method, developed by Hempel et al. 

(2013) within the ISI-MIP project, preserves the change 

signal and can be applied to various variables, considering 

dependencies between some of them. 

 

2.1 Comprehensive Rating Metrics (MR) and Taylor 

diagram 

To determine the top-performing GCMs, a comprehensive 

assessment index named RM (as described by Jiang et al., 

2015) is employed. This index considers all statistical 

metrics in evaluation of GCM performance. The RM is 

characterized as: 

𝑀𝑅 = 1 −
1

𝑚𝑛
∑ 𝑟𝑎𝑛𝑘𝑖

𝑛

𝑖=1

 

where m is the number of models, and n is the number of 

indices. A closer value of MR to 1 indicates a greater 

simulation skill.  

GCMs are evaluated in capturing the historical precipitation 

(or temperature) spatial patterns using the Taylor diagram 

(26). This diagram serves as a means to compare GCMs with 

observed data, employing spatial metrics such as spatial CC, 

RMSD, and SD. Spatial CC quantifies the alignment of 

phase between two datasets, while spatial RMSD signifies 

the level of agreement in amplitude. A perfect simulation 

would entail an RMSD of 0, a spatial correlation near 1, and 

a spatial SD close to the observational data. 

 

4. Results and Discussions 

4.1 Evaluation of CMIP6-GCMs Performance and 

Generating Multi-Model Ensemble  

To assess the performance of CMIP6 models, the GCM 

outputs are individually compared with reference data at 

each grid cell. Skill metrics, including CC, RMSE, bias, and 

SD, are then spatially averaged across the domain. 

Considering all skill metrics, a comprehensive rating index 

(MR) evaluates the models. Figure 2 (a) and (b) depict the 

statistical indices for precipitation and air temperature. In 

Figure 2 (a), it is evident that all CMIP6-GCMs exhibit a 

poor CC (< 0.4) in precipitation simulation. Most CMIP6 

models show a positive spatially averaged bias in 

precipitation simulation, with FGOALS-g3 being the only 

exception, displaying a negative bias. MRI-ESM2-0 stands 

out among CMIP6-GCMs with the highest bias and RMSE 

of 21 and 34 mm, respectively. The standard deviation is 

computed relative to the reference data (SDrelative = SDmodel – 

SDref), with MIROC6 offering the lowest SDrelative values, 

around -1. In Figure 3(a), CMIP6-GCMs are ranked based 

on their ability to simulate the temporal variability of the 

Volga River basin's precipitation using skill metrics and the 

MR criterion. As stated in the research conducted by Ahmed 

et al., 2020, the best performance of Multi-Model Ensembles 

(MMEs) is attained when approximately half of the highest-

ranked GCMs are incorporated. The six top-ranked GCMs 

for simulating monthly precipitation evolution over the 

Volga River basin are CEM2, CanESM5, MIROC-ES2L, 

CNRM-CM6-1, HadGEM3-GC31-LL, and IPSL-CM6A-

LR. 

Figure 4 (a) depicts the Taylor diagram illustrating CMIP6-

GCM performance in simulating spatial variability of 

monthly precipitation. The time-averaged GCM 

https://meteo.unican.es/trac/MLToolbox
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precipitation at each cell from 1950 to 2014 is compared 

with the reference data. Most models demonstrate spatial CC 

values ranging from 0.6 to 0.85, except for GISS-E2-1-G, 

which exhibits a CC of 0.3. The RMSD for the majority of 

models falls between 4-7 mm, while GISS-E2-1-G shows a 

higher RMSD of 10 mm. The SDrelative for most models is 

below 8 mm, but CNRM-CM6-1, CNRM-ESM2-1, and 

GISS-E2-1-G have SDrelative values between 8-10 mm. The 

Taylor diagram reveals that the six top-ranked GCMs for 

simulating temporal precipitation variability (Figure 3(a)) 

also capture spatial precipitation patterns over the Volga 

River basin well. A multi-model ensemble is generated by 

averaging these selected models to reduce individual model 

uncertainties. 

Regarding temporal variability in air temperature, all 

CMIP6-GCMs exhibit high CC values exceeding 0.9 but 

display significant biases in air temperature (Figure 2(b)). 

Most CMIP6 models show a positive spatially averaged bias 

in simulating air temperature. However, BCC-CSM2-MR, 

FGOALS-g3, GISS-E2-1-G, HadGEM3-GC31-LL, and 

MIROC-ES2L demonstrate a negative bias in air 

temperature simulation, with HadGEM3-GC31-LL having 

the highest bias at approximately 3.8 °C. FGOALS-g3 

shows the highest RMSE value, which is 5.6 °C. CanESM5, 

CNRM-ESM2-1, and CNRM-CM6-1 have SDrelative values 

close to zero. According to Figure 3(b), the six top-ranked 

GCMs in simulating temporal variability of air temperature 

are CanESM5, CNRM-CM6-1, CNRM-ESM2-1, MIROC6, 

IPSL-CM6A-LR, and CEM2 (Figure 3(b)). The Taylor 

diagram in Figure 4(b) illustrates that most models exhibit 

spatial CCs within the range of 0.8 to 0.9, and the RMSD for 

most models is around 1°C. The SDrelative for all models falls 

between 1.5 °C and 2.5 °C, with FGOALS-g3 showing a 

slightly higher SDrelative, nearing 3 °C. The Taylor diagram 

indicates that the top six GCMs for simulating temporal air 

temperature variability (Figure 4 (b)) demonstrate 

proficiency in reproducing spatial air temperature patterns 

over the Volga River basin. The multi-model ensemble for 

temperature is generated by averaging these selected models 

to reduce individual model uncertainties. 

 
(a) 

 
(b) 

Fig. 2: Stem plot of spatially averaged statistical indices showing each CMIP6 models performance in simulating monthly precipitation 

(a) and air temperature (b) over the Volga River basin for the historical period (1950-2014 
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(a) (b) 

Fig. 3: CMIP6 models rank in the simulation temporal variability of monthly precipitation (a) and air temperature (b) over the Volga River 

basin based on comprehensive rating metrics (MR) 

 

  
(a) (b) 

Fig. 4: Taylor diagrams for monthly precipitation (a) and air temperature (b) over the Volga River basin comparing each of the CMIP6 

models with the reference data for the historical period (1950–2014). The radial coordinate is the magnitude of the SDrelative (indicated by 

solid black arcs). The concentric green semi-circles denote RMSD values. The angular coordinate shows the CC (indicated by dashed blue 

lines). 

4.1 Evaluation Bias-correction Methods 

Based on Figure 5 (a), it can be observed that the raw multi-

model ensemble showed positive biases, leading to an 

overestimation of precipitation simulation. However, all the 

bias-correction methods proved to be effective in reducing 

these biases. The isimip and scaling methods performed well 

in terms of CC, RMSE, and MAE, although they exhibited 

lower performance in SDrelative. On the other hand, methods 

such as delta, eQM, aQM, and gpQM performed better in 

SDrelative when compared to other indices. The 

mean_methods, which is an average of all the method 

outputs (aQM, delta, eQM, gpQM, isimip, and scaling), 

significantly improved bias and SDrelative values, as 

demonstrated in Figure 5 (a). Additionally, these 

improvements extended to the spatial bias distribution over 

the Volga River basin, as depicted in Figure 5. Corrected 

precipitation via mean_methods also demonstrates 

improved spatial variability, as seen in Figure 4 (a). 

According to Figure 5 (b), the raw multi-model ensemble 

displays positive biases, leading to an overestimated air 

temperature. Regarding temporal variability, all bias-

correction methods, except for gpQM, significantly reduce 

RMSE, bias, MAE, and SDrelative. Spatially averaged CCs 

remain close to 1 across all methods. Thus, excluding 

gpQM, mean_methods is calculated by averaging the 

outputs of other methods (i.e., aQM, delta, eQM, scaling, 

and isimip). The spatial distribution of bias illustrates that 

employing mean_methods for bias-correction has decreased 

bias within the domain (Figure 7). Corrected air temperature 

via mean_methods also demonstrates improved spatial 

variability, as seen in Figure 4 (b). 
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Fig. 5: Barchart of spatially averaged statistical indices showing each bias-correction methods performance in correcting monthly 

precipitation (a) and air temperature (b) over the Volga river basin for the historical period (1950-2014) 

 

 
Fig. 6: Spatial maps of bias (mm) for simulating monthly precipitation over the study area (1950–2014) 

 
Fig. 7: Spatial maps of bias for simulating monthly air temperature over the study area (1950–2014) 

 

4.1 Future Projections of Precipitation and Air 

Temperature 

This study provides bias-corrected monthly precipitation   

and air temperature projections for the Volga River basin at 

a 0.5° resolution. These projections cover both historical 

(1950-2014) and future (2015-2100) time frames. The 

projected changes in annual mean precipitation and air 

temperature are presented over three temporal intervals: near 

future (2020-2046), mid future (2047-2073), and far future 
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(2074-2100), in comparison to the reference period (1988-

2014). This result encompasses four different climate 

change scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-

8.5. 

Figure 8 (a) depicts the time series of annual mean 

precipitation for the Volga River basin in the near, mid, and 

far future. This illustration reveals that by 2100, the annual 

mean precipitation in the Volga River basin is projected to 

rise to 476 mm under SSP1-2.6, 581 mm under SSP2-4.5, 

610 mm under SSP3-7.0, and 610 mm under SSP5-8.5. 

The box plots in Figure 8 (b) show that between 2015 and 

2100, the majority of precipitation changes (between 

quartiles 1 and 3) for the SSP1-2.6, SSP2-4.5, SSP3-7.0, and 

SSP5-8.5 scenarios are positive. 

This result indicates that, in the future, under all climate 

change scenarios, precipitation over the Volga River basin 

will increase. 

As shown in Figure 8 (b), in the near future, the increase in 

precipitation under SSP1-2.6 is greater than SSP5-8.5, and 

SSP5-8.5 exceeds scenarios SSP2-4.5 and SSP3-7.0. During 

2020-2046, the spatially averaged annual mean precipitation 

is projected to increase by an average 8.1%, 5.2 %, 5.1 %, 

and 6.9 % under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and 

SSP5-8.5 compared to the reference period respectively.  

In the mid future, the increase in precipitation relative to the 

reference period is highest under SSP3-7.0, SSP2-4.5, SSP1-

2.6, and SSP5-8.5, with average values of 13.1%, 13.8%, 

14.4%, and 12.1%, respectively. During 2074-2100, the 

most substantial average increase in precipitation compared 

to the reference period is noted in SSP1-2.6, SSP2-4.5, 

SSP3-7.0, and SSP5-8.5, with values of 14%, 22%, 25%, 

and 29.3%, respectively. 

 
Fig. 8: (a) Time series and of spatially averaged annual mean precipitation over the Volga River basin, and (b) box plots of changes in annual 

mean precipitation over the CS in the near, mid, and far future relative to the historical data in the reference period under the SSP1-2.6, 

SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. 

Figure 9 (a) displays a time series of spatially averaged 

annual mean air temperature over the Volga River basin for 

the near, mid, and far future under four different scenarios, 

along with historical data. In Figure 9 (a), it is evident that 

air temperature rises under all four scenarios over time. 

Specifically, by 2100, the annual mean air temperature for 

the Volga River basin is projected to increase to 5.9 °C under 

SSP1-2.6, 7.4 °C under SSP2-4.5, 9.3 °C under SSP3-7.0, 

and 10.9 °C under SSP5-8.5. 

In the near future (2020-2046), SSP1-2.6 stands out with a 

slightly higher average annual mean air temperature 

compared to the other scenarios, while the remaining 

scenarios exhibit similar changes. As shown in Figure 9 (b), 

during this period, the spatially averaged annual mean air 

temperature is projected to increase by average 2 °C for 

SSP1-2.6 and approximately 1.7 °C for SSP2-4.5, SSP3-7.0, 

and SSP5-8.5 when compared to the reference period. 

Moving into the mid future (2047-2073), there is a 

noticeable upward trend in air temperature changes, 

particularly evident in the first quartile, median, third 

quartile, and the mean across the scenarios from SSP1-2.6 to 

SSP5-8.5. During this period, the average increase in annual 

mean air temperature relative to the reference period is 2.8 

°C for SSP1-2.6, 3.1 °C for SSP2-4.5, 3.4 °C for SSP3-7.0, 

and 3.9 °C for SSP5-8.5. 

In the far future (2074-2100), the boxplot illustrates an even 

more pronounced increase in temperature, especially in all 

quartiles, and mean for the scenarios from SSP1-2.6 to 

SSP5-8.5. During this period, the average increase in annual 

mean air temperature relative to the reference period is 3 °C 

for SSP1-2.6, 4.2 °C for SSP2-4.5, 5.5 °C for SSP3-7.0, and 

6.7 °C for SSP5-8.5. 

To determine which climate scenario is closer to current 

conditions, the bias-corrected MMEs are compared with the 
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observational dataset for four scenarios. Since the GHCN 

dataset is available until the end of 2017, this comparison is 

conducted for 36 month period from the beginning of 2015 

to the end of 2017 for precipitation and air temperature in 

the Volga River basin (Figure 10). The MR criterion is 

employed to assess the impact of three indices 

simultaneously: CC, MAE, and bias. According to Figure 

10, SSP2–4.5 shows the highest MR value for precipitation, 

while both SSP1–2.6 and SSP2–4.5 have higher MR indices 

for temperature. Consequently, it can be inferred that SSP2–

4.5 is the more likely scenario to represent the future climate 

of the Volga River basin. 

 
Fig. 9: (a) Time series of spatially averaged annual mean air temperature over the Volga River basin, and (b) box plots of changes in annual 

mean air temperature over the CS in the near, mid, and far future relative to the historical data in the reference period under the SSP1-2.6, 

SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. 

 
Fig. 6: Stem plot of statistical indices showing the agreement of each CMIP6 scenario with the precipitation (a) and air temperature (b) 

observational datasets over a 36-month period from 2015 to 2017.

5. Summary and Conclusion 

This paper has presented future changes in precipitation and 

air temperature projections across the Volga River Basin 

using 13 CMIP6-GCM under SSP1–2.6, SSP2–4.5, SSP3–

7.0, and SSP5–8.5 scenarios. This study offers valuable 

insights for future research on assessing the impact of 

climate change on the Volga River discharge, a major input 

of the Caspian Sea's water budget. These findings can inform 

decision-makers in developing mitigation and adaptation 

strategies. 

Based on this research, the multi-model ensemble of the 

selected GCMs outperformed the individual models. 

Moreover, the statistical bias-correction techniques 

effectively reduced the uncertainties and corrected the biases 

in the CMIP6-GCMs. According to the evaluation metrics, 

corrected outputs were much more consistent with the 

observations compared to the raw outputs from GCMs. All 

bias-correction techniques (aQM, delta, eQM, gpQM, 
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isimip, and scaling) successfully reduced biases in the 

precipitation simulations. Regarding temperature, all 

methods employed in this paper, except for gpQM, 

effectively reduced bias. The isimip method effectively 

increases CC but underperforms in SDrelative. 
 

The bias-corrected projections from the mean ensemble 

CMIP6-GCMs suggest the following range of changes 

(between quartiles 1 and 3) in precipitation and temperature 

changes in the Volga River basin: 

The annual mean precipitation in the Volga River basin may 

increase between 0.7 to 15% during 2020-2046, depending 

on the scenario. Annual mean temperature changes in this 

period indicate warming in the Volga River basin, with 

projected air temperature increases ranging from 1°C to 2.2 

°C, based on the scenario. The projected mean precipitation 

and temperature changes for the mid-term future (2047-

2073) suggest that the Volga River basin may experience 

increased precipitation (5.6-21.4%) and higher temperatures 

(2.6°C to 4.4°C), depending on the scenario. Far future 

projections suggest that the Volga River basin could 

experience an annual mean precipitation increase of up to 

37% and warming with annual mean temperature increases 

ranging from 2.8 °C to 7.6°C under different scenarios. 

Increased air temperature leads to higher evaporation rates 

from the Volga River basin surface. If precipitation does not 

compensate for this increase, the Volga River discharge is 

likely to decrease in most scenarios. 

While this study has addressed some uncertainties related to 

precipitation and air temperature projections in the Volga 

River basin, such as the choice of GCMs and bias correction 

methods, there are additional sources and methods that can 

further enhance the accuracy of the results. It is possible to 

conduct separate assessments and selection of GCMs for the 

different climate classes within the Volga River basin. 

Selecting a gridded observational dataset can be thoroughly 

accomplished by evaluating several station-based data and 

choosing the most suitable one for the Volga River basin. 

Future studies can incorporate these additional sources and 

methods to enhance the accuracy of precipitation and air 

temperature projections in the Volga River basin. Moreover, 

investigating future actual and potential evaporation over the 

Volga River basin is beneficial because it serves as an input 

for river-runoff models used to simulate future Volga River 

discharge. 
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