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Abstract: 

Tehran's water consumption (TWC) is rising as a result of rapid population growth, climate 

change, and precipitation decline. As water resources of Tehran are also affected by a variety 

of factors, the water supply scheme becomes so complicated and it is necessary to consider the 

complexity and dynamics interactions in water supply system before any decision making. In 

this study, Karaj reservoir as an important surface water resource of Tehran’s water supply 

system was modeled through system dynamics (SD) approach for prediction of Karaj Dam share 

in Tehran water supply. The SD model was implemented in AnyLogic software using the 

historical data from April 2006 to March 2022, and the stock and flows and dynamics variables 

were predicted for April 2023 to March 2023. The novelty of this research is the development 

of SD model of Karaj Dam to simulate its relationships and interactions for prediction of Karaj 

Dam share in Tehran water supply in 2023. In this regard, the TWC and Karaj Dam inflow were 

predicted by using SARIMA(1,0,0)(0,1,1)12 model for April 2023 to March 2023. Finally, to 

assess the precision of the results obtained from the SARIMA and SD models, the criteria of 

coefficient of determination (R2), Error percentage (E%), and Nash–Sutcliffe model efficiency 

coefficient (NS%) was calculated. The results showed that the Karaj Dam inflow will be 

decreased during April 2023 to March 2023 due to the precipitation decline, consequently the 

Karaj Dam reservoir volume will be reduced and for this reason less water can be harvested 

from Karaj Dam reservoir for different applications. Therefore, it is clear that in the future we 

will have faced the challenge of water supply in Tehran. 

1. Introduction 

As a consequence of population growth, climate change, and 

urbanization, global water scarcity is one of the most 

important challenges to sustainable development in the 

world, especially in arid and semi-arid regions [1,2]. The 

largest and capital city of Iran, Tehran, is situated in semi- 

arid areas and is experiencing both water shortage and rapid 

population growth [3,4]. The population of Tehran in 2022 

was 9’381’546 person, while in 2021, it was 9’259’000 

person, which represented an annual change of 1.32%. By 
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the latest revision of the UN World Urbanization Prospects, 

Tehran’s population is predicted 9’729’742 person in 2025 

[5], which caused challenges in Tehran’s water supply due 

to its rapid population growth, climate change, and 

precipitation decline. All these challenges lead to an increase 

in the importance of considering the complexity and 

dynamics interactions in water resource systems and also 

regarding the importance of forecasting the water resources' 

behavior.  

One of the popular methods to investigate the multiple 

interactions of water resource system components and deal 

with the system's complexity is the system dynamics (SD) 

method [6]. SD modeling as a powerful management tool, is 

used to consider the feedback loop processes of the water 

system by converting the whole water system into the 

interconnected flows and stocks for simulating the water 
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resource systems [7,8]. To make strategic decisions, SD can 

therefore assist water managers in recognizing troubling 

trends, understanding their main causes, and assessing the 

most effective management practices [9,10]. As such, SD 

modeling attracted the attention of scientists and has become 

popular for water resource system analysis, hence several 

studies investigated the application of SD modeling in water 

resource management [6,9]. Abdolvandi et al. (2013) used 

the SD approach for modeling of Taleghan dam and 

groundwater resources to perform a comprehensive 

operational model that could be applied to similar conditions 

in the world [11]. Li et al. (2018) modeled the water resource 

of Zhengzhou, China including four subsystems as 

population, water supply, water demand, and economics 

through the SD approach, which provided future information 

of water distribution and water system cost to make optimal 

allocation [12]. Bakhshianlamouki et al. (2020) evaluated 

the effects of Urmia Lake Basin restoration proceeding 

through the SD model by considering climate change, return 

flow increment, and transferring the inter-basin water. The 

results show Urmia Lake Basin was susceptible to climate 

change [13]. Nozari et al. (2021) applied the SD model, to 

model the surface water allocation and control system 

operation of Dez Reservoir in Iran. The obtained results 

represented the high precision of the SD model in modeling 

the performance of Dez Reservoir behavior [7]. Also 

Babolhakami et al. (2023) implemented the same SD 

approach for analyzing water consumption of Gelevard Dam 

[14]. 

Tehran’s water demand is supplied by surface and 

groundwater resources. Surface water resources are 

comprising, Lar, Karaj, Taleghan, Latian, and Mamlou 

Dams, and the Tehran-Karaj aquifer is its groundwater 

resource [3]. According to the water shortage in Tehran, 

studying the surface water resources of Tehran is necessary 

to calculate and estimate water supply resources capacity. In 

this respect, accurate prediction of dam inflow, provides 

information for reservoir operation strategies and generally 

for surface water resource planning systems. One of the 

methods applied for predicting is a time series modeling 

[15].  

For a single time series, univariate Box–Jenkins methods 

such as autoregressive (AR), moving average (MA), 

autoregressive moving average (ARMA), autoregressive 

integrated moving average (ARIMA), seasonal 

autoregressive integrated moving average (SARIMA) were 

used to analyze and predict the observed data without 

considering the other variables [15,16]. The SARIMA 

model has the benefit of accounting for any seasonality 

patterns, making it more powerful than ARIMA, but it has 

some limitations as requiring at least 50 historical 

observations, and accurate prediction over a short period 

[17,18].  

Several studies have been undertaken on predicting of time 

series through ARMA ARIMA, and SARIMA modeling. In 

this regard, Valipour et al. (2013) applied ARMA and 

SARIMA models to forecast monthly Dez dam reservoir 

inflow by using 42 years of historical data. The obtained 

results indicated that the SARIMA model had better 

efficiency than the ARMA model [19]. Wang et al. (2015) 

studied the effect of coupling ensemble empirical mode 

decomposition (EEMD) with ARIMA, to enhance the 

annual runoff prediction precision. Based on the results 

EEMD could be effectively enhanced the ARIMA model 

precision to predict the time series of annual runoff [20]. 

Adnan et al. (2017) applied ARIMA model to forecast the 

Astore River monthly flow. Based on common statistical 

efficiency assessment measures such as root mean square 

error, they concluded that ARIMA performed better results 

[21]. Tadesse et al. (2017) looked into how well the 

SARIMA model performed to forecast the monthly flow of 

Waterval River, South Africa. They found a good similarity 

between observed and SARIMA-modelled data [15]. 

Almanjahie et al. (2017) applied five SARIMA models to 

predict household water consumption in Saudi Arabia. The 

predicted values represented well harmony with its historical 

time series, which provided an approximative perspective on 

water consumption for decision-makers [22]. Aghelpour and 

Varshavian (2020) forecasted the Zilakirud River flow in 

Iran, through artificial intelligence and stochastic models. 

The results indicated that among the stochastic models, 

ARIMA, and among artificial intelligence, the Group 

Method of Data Handling had the best precision and 

performance in prediction [23]. Wang et al. (2021) 

compared the SARIMA and artificial neural network (ANN) 

models to forecast surface water quality time series as pH, 

dissolved oxygen (DO), chemical oxygen demand (COD), 

and ammonia nitrogen (NH3-N). The results showed that 

due to the nonlinear and complicated nature of the data in 

the water quality time series, the SARIMA model could not 

be analyzed in these time series as well [24]. As well as in 

the other study, Imran et al. (2023), achieved that the ANN 

model obtained more accurate results than the SARIMA 

model for analyzing and forecasting the flood events in Swat 

River Basin [16].  

Generally, urban water supply systems include different 

parts with complicated relationships and interactions which 

can even change through the time and under different 

conditions. Therefore, by simulating this system through SD 

approach, the importance of spatial and temporal changes 

and variabilities are taken into account. In this study, Karaj 

Reservoir as one of the main surface water resources of 

Tehran, was modeled through SD approach by using 

AnyLogic software. The novelty of this research is the 

development of a system dynamics model of Karaj Dam to 

simulate its relationships and interactions for prediction of 
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Karaj Dam share in Tehran water supply in 2023, to assist 

water managers in recognizing future trends, probable 

challenges, and assessing the management practices to 

choose the most effective one.  

 

2. Case Study 

Karaj Dam is one of the main surface water resources of 

Tehran, which supplies 25% of Tehran’s water demand. It is 

located on the Karaj River, northwest of Tehran City, at 

geographical coordinates of 51°5’E, 23°57’N; 23 km from 

the city of Karaj [25]. The Total characteristics of Karaj Dam 

are represented in Table 1. 

Table 1: Total characteristics of Karaj Dam 

River Karaj 

Main Water Supply Goal 
Agricultural Water Supply, 

Tehran’s Water Supply 

Total Capacity 205 MCM 

Water Supply for the 

Treatment Plant 

Jalalie, Kan, and number 6 

Treatment plant 

Minimum volume 60 MCM 

 

3. Methodology 

In this study, Karaj reservoir as an important surface water 

resource of Tehran’s water supply system was modeled 

through system dynamics (SD) approach for prediction of 

Karaj Dam share in Tehran water supply. In this regard the 

required data was prepared from the National Water and 

Wastewater Engineering Company of Iran, then the TWC 

and Karaj Dam inflow was predicted by SARIMA models. 

The SD model was implemented by using the historical data 

from April 2006 to March 2022, and the results of SARIMA 

models. The precision of the model and the formulas 

obtained from the data were checked with the given criteria 

in Table 2. It is worth noting that the closer values of 

coefficient of determination (R2) and Nash Sutcliffe model 

efficiency coefficient (NS) to one, and closer values of Error 

(E%) to 0, indicate the higher precision of the model. 

Table 2: The model precision criteria  

𝐑𝟐 =
(∑ 𝐗𝐩𝐢𝐗𝐦𝐢)

𝐧
𝟏

𝟐

∑ 𝐗𝐩𝐢
𝟐    ∑ 𝐗𝐦𝐢

𝟐𝐧
𝟏

𝐧
𝟏

 Coefficient of determination 

%𝐄 =
∑ 𝐗𝐦𝐢 − 𝐗𝐩𝐢

𝐧
𝟏

∑ 𝐗𝐦𝐢
𝐧
𝟏

 Error 

𝐍𝐒

= 𝟏 −
∑ (𝐗𝐦𝐢 − 𝐗𝐩𝐢)

𝟐𝐧
𝟏

∑ (𝐗𝐩𝐢 − 𝐗𝐩)𝟐𝐧
𝟏

 

Nash Sutcliffe model efficiency 

coefficient 

𝐗𝐩= the average of the 

observed values 

N = the number of data. 

Xp =estimated values of the model 

Xm =observed values, 

 

3.1 Data Preparation 

The data of Karaj dam consisting of inflow, outflow, 

evaporation, household water supply, agricultural, and 

TWC, prepared from the National Water and Wastewater 

Engineering Company of Iran. The data was from April 

2006- March 2022 . 

Since evaporation is low in Karaj dam in the last few years, 

in this study it is considered the monthly average of April 

2006- March 2022 for the SD model (Table 3). 

Table 3: Average monthly evaporation of Karaj Dam in April 

2006- March 2022 (MCM) 

Month Evap Month Evap 
April 0.16 October 0.27 
May 0.31 November 0.11 
June 0.49 December 0.05 
July 0.58 January 0.02 

August 0.58 February 0.01 
September 0.45 March 0.06 

 

3.2 System Dynamics (SD) 

Urban water supply systems include different parts with 

various relationships and interactions which should be 

simulated to use in the design, operation, and management 

of the urban water supply system. Rarely are these 

relationships and interactions in water supply systems taken 

into account using a dynamics approach, and usually, the 

models were used in, were explicit in the relationships 

among significant parameters, and the importance of spatial 

and temporal dynamics was not regarded [26–29]. SD is a 

problem-solving approach to evaluate the physical and 

behavioral of the systems, which is based on feedback loops 

and interaction between stocks and flows. The state of the 

system is described by stock variables, and the stock 

variables changes are described by flow variables [14]. In 

this study, the SD model of Karaj Dam was applied via 

AnyLogic V8.7.7 software as shown in Figure 1. 

The volume of water in Karaj Dam is an integrated stock, 

which can be calculated as Equation 1. 

d(Karaj Dam)

dt
= 

Karaj Inflow − overflow Karaj − EvapKaraj − KarajOut 
+V0(98 MCM) (1) 

Overflow Karaj = 
Karaj Dam volume − Total capacity of Karaj Dam 

To estimate the volume of Karaj Dam share in Tehran water 

supply, a linear regression (Eq 2-3) was formed between the 

reservoir volume, Tehran’s water consumption, and the 

volume of Karaj Dam share in Tehran water supply. It is 

worth mentioning that the R2 coefficients value for Equation 

2 and Equation 3 are equal to 0.7 and 0.5, respectively. 

 KJK1 = 

 KJK1_A1   
− (KJK1_A2 × Tehran Water Consumption)
+ (KJK1_A3 × KarajDam)        

Tim𝑒 < 24 (2) 
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KJK2 = 𝑇𝑖𝑚𝑒 ≥ 24 (3) 
 KJK2_A1   
− (KJK2_A2 × Tehran Water Consumption)
+ (KJK2_A3 × KarajDam)        

where  

Tehran_Water_Consumption =TWC per capita × Population 

KJK1_A1 = 9.3 

KJK1_A2 =0.094 

KJK1_A3 =0.023 

KJK2_A1 =46.48 

KJK2_A2 =0.18 

KJK2_A3 =0.002 

To estimate the agricultural water supply from Karaj Dam 

as shown in Equation 4, a linear regression was applied 

between agricultural water supply as a dependent variable 

and volume reservoir and Karaj Dam inflow as independent 

variables. The value of the R2 coefficient for Equation 4 is 

equal to 0.76. 

Karaj_Agricultural= 

KJK_Agri1+(KJK_Agri2×KarajInflow)+ 

(KJK_Agri3×KarajDam)) 

(4) 

where. 

KJK_Agri1 =-27.4 

KJK_Agri2 =0.47 

KJK_Agri3 =0.14 

 

3.1 SARIMA Modelling 

In this study, to predict the TWC per capita and Karaj Dam 

inflow, the SARIMA model was used, also in recent 

researches, it was applied to predict short-term water 

demand [17]. SARIMA model is a linear regression model 

that incorporates both seasonal and non-seasonal time series 

components. The main condition of using time series 

analysis such as ARMA, ARIMA, and SARIMA models are 

data stationarity and homogenous, having no trend, and 

following the normal distribution [22,24,30]. To check the 

data stationarity the Augmented Dickie-Fuller statistical test 

(ADF) was used. The null hypothesis of ADF test is the non-

stationarity of the time series, when the p-value is lower than 

0.05, the null hypothesis is rejected [15]. To check the 

homogeneity and trend of the time series data, Pettit and 

Mann-Kendall tests was used, which their null hypothesis is 

that the time series data are homogeneous and have no trend. 

The p-value larger than 0.05 is a confirmation of the null 

hypothesis [15]. The normality of the data was checked 

using the Anderson-Darling test. The null hypothesis of the 

normality test is normality of the data distribution, which is 

confirmed due to the p-value being larger than 0.05 ] 31]. 

The SARIMA model is denoted by SARIMA (p, d, q) (P, D, 

Q)s where p, d, and q are respectively represented non-

seasonal autoregressive (AR) term, non-seasonal differences 

term, and non-seasonal moving average term (MA). Also, P, 

D, and Q are respectively represented the seasonal AR term, 

seasonal differences term, and seasonal MA term [15,32]. 

The SARIMA model is defined in Equation 5 [15]. 

Φ(BS) φ(B)(1 –  BS)D (1 –  B)d yt =  Θ(BS) θ(B)εt (5) 

where 

φ, Φ = AR coefficients for the non-seasonal and seasonal 

component 

θ, Θ= MA coefficients for the non-seasonal and seasonal 

component 

B= backward operator 

(1–BS)D = Dth, a seasonal difference of season s 

(1 – B)d = dth, non-seasonal difference 

εt = a distributed independent random variable 

The autocorrelation function (ACF) and partial 

autocorrelation function (PACF) curves were employed as 

useful tools to verify stationarity, identify the SARIMA 

model structures, and specify the order of p, P, q, and Q 

[22,24]. Repetitive procedures by applying different orders 

were examined and the best model was chosen via the least 

value of the Akaike Information Criterion (AIC) indicator 

[33]. The goodness of the fitted model must be looked into 

after selecting the best model. The diagnostic check was 

done by the p-values of the modified Ljung-Box test, as well 

as examining the residuals main characteristics 

Fig. 1: SD Model of Karaj Dam 
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(independence, randomness, normal distribution, and 

constant variance) by using the ACF and PACF plots, 

Anderson-Darling test, and Run Test [21,32,34,35]. Finally 

after selecting the best SARIMA models, the precision of the 

models have been investigated by the R squared, error 

percentage, and Nash Sutcliffe (NS) efficiency coefficient. 

4. Results 

4.1 TWC Per Capita Prediction 

First, Pettit and Mann-Kendall tests were used to examine 

the homogeneity and trend of the time series data of water 

consumption per capita in Tehran. The p-values obtained 

from the statistical tests are given in Table 4. According to 

the null hypothesis in Pettitt's test, the p-value of 0.4 

confirmed the homogeneity of TWC per capita. Similarly, 

according to the result of the Mann-Kendall test, the p-value 

of 0.31 that is larger than 0.05, the null hypothesis of the 

Mann-Kendall test is approved and the data have no trend. 

Table 4: P-values of statistical tests of TWC per capita time 

series  

Pettitt's 

Test 

Mann-

Kendall 

Tests 

Augmented 

Dickey-Fuller 

Test 

Anderson-

Darling 

normality test 

0.4 0.31 0.03 0.0005 

According to Table 4, the p-value of the ADF test is equal to 

0.03, which indicated the stationarity of the time series. 

After checking the homogeneity, trend, and stationarity in 

the time series data, the normality of the data was checked 

using the Anderson-Darling test. Given that the p-value of 

Anderson-Darling test for TWC per capita time series was 

lower than 0.05, data do not follow the normal distribution, 

hence according to the principle of normality of the data, in 

analyzing and predicting time series, normalizing the time 

series is necessary. To normalize the time series some 

transformation functions were checked as shown in Table 5. 

Due to the higher p-value of Anderson-Darling test (p-

value>0.05), Johnson Transformation function was selected 

as the best transformation functions to normalize data by 

following Equation 6. 

Table 5: Transformation identification for TWC per capita 

Transformation P-Value 

Normal <0.005 

Box-Cox Transformation 0.045 

Lognormal 0.022 

Exponential <0.003 

Gamma 0.047 

Johnson Transformation 0.372 

Johnson transformation function = 

−7.02 + 3.56 × Ln( X − 4.2) 
(6) 

In Equation 6, X is TWC per capita. 

After Johnson Transformation, the results show that, the p-

value (0.372) is larger than 0.05 and the null hypothesis of 

the Anderson-Darling test is rejected and the transformed 

data follows the normal distribution. Finally, all the essential 

requirements of the time series for analyzing and forecasting 

time series have been met. To prepare the data for SARIMA 

modeling, the transformed data was standardized, and then 

the proper model was fitted for the modified series . 

ACF and PACF plots were used to specify ARIMA(p, d, q) 

(P, D, Q)s values. The observed mean monthly TWC per 

capita was shown to be stationary by the Mann-Kendall test, 

so there is no need for non-seasonal differencing (d = 0), but 

seasonal differencing is necessary for seasonal stationarity 

because the significant spikes were seen in ACF plots every 

12 months as sine wave, which approved that the observed 

mean monthly TWC per capita was seasonally 

nonstationary. Seasonal differencing (D = 1) of the observed 

TWC per capita data was performed to make time series 

seasonal stationary. 

  
(a) (b) 

Fig. 2: a) ACF and b) PACF  for observed data of TWC per capita 
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(a) (b) 

Fig. 3: a) ACF, and b) PACF for first order seasonal differencing and de-seasonal observed data of TWC per capita 

For more consideration, SARIMA (p, 0, q) (P, 1, Q)12 

models were proposed. The parameters of these models (p, 

q, P, and Q) were determined based on the characteristics of 

de-seasonalized ACF and PACF plots (Figure 3).  

Based on Figure 3a the ACF plot of the seasonally 

differentiated time series is geometric decayed and has 

significant spikes at 1st, 2nd, 3rd, and 4th lags, and after the 

4th lag, the confidence interval of the ACF plot cuts off and 

placed in the ACF confidence interval. So for the moving 

average parameter (MA) (non-seasonal component), the 

order was proposed, q=0-4. As well as, in Figure 3a, the 

ACF plot has also a negative significant spike at 12th lags 

and cuts off the ACF confidence interval in 12th lag. Then 

the ACF spikes were decayed after 24th lag, and they were 

within ACF confidence interval, so for seasonal moving 

average (SMA) values, the order was proposed Q=1. In the 

same way, for the non-seasonal parameter, the PACF plot of 

(Figure 3b) the seasonally differentiated time series has 

significant spikes at 1st lag, and the confidence interval of 

the PACF plot cuts off, therefore the value of autoregressive 

(AR) parameter was suggested p=1. As well as in Figure 3b, 

the PACF plot has significant spikes at 12st lag, and then it 

was placed in the confidence interval after the 12th lags, so 

the seasonal autoregressive (SAR) parameters were 

proposed P=1. Thereupon, based on the given conditions 9 

SARIMA models were identified for further evaluation as 

represented in Table 6.  

The models shown in Table 6 were fitted to the time series 

of TWC per capita, and the SARIMA(1,0,0)(0,1,1)12 model 

was chosen as the best model based on the AIC's (Akaike 

Information Criterion) lowest value. 

The diagnostic checking is obtained by the selected model's 

residual analysis. The modified Ljung-Box test was used for 

goodness of fit test investigating and checking the residuals' 

independence. The independence of the residuals is 

confirmed by the results of the modified Ljung-Box test in 

  
(a) (b) 

Fig.  4: a) ACF, and b) PACF of residuals for TWC per capita model 

Table 6: Optional SARIMA models for TWC per capita 

Model Selection 

Model (d = 0, D = 1) AIC 

p = 1, q = 0, P = 0, Q = 1* 273.8 

p = 1, q = 1, P = 0, Q = 1 285.7 

p = 1, q = 2, P = 0, Q = 1 301.9 

p = 1, q = 0, P = 1, Q = 1 304 

p = 1, q = 1, P = 1, Q = 1 315.4 

p = 1, q = 4, P = 0, Q = 1 325.3 

p = 1, q = 3, P = 0, Q = 1 336.1 

p = 1, q = 4, P = 1, Q = 1 339.7 

p = 1, q = 3, P = 1, Q = 1 351.5 

 

Table 7: The results of the modified Ljung-Box test of TWC per 

capita model 

Lag 12 24 36 48 

Chi-Square 13.99 30.40 42.15 46.39 
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P-Value 0.17 0.1 0.16 0.45 

Table 7, by considering that the p-value is larger than 0.05 

for all delays. Based on the ACF and PACF residual plots 

which are shown in Figure 5, all residual values, have no 

significant autocorrelation . 

The diagnostic checking is obtained by the selected model's 

residual analysis. The modified Ljung-Box test was used for 

goodness of fit test investigating and checking the residuals' 

independence. The independence of the residuals is 

confirmed by the results of the modified Ljung-Box test in 

Table 7, by considering that the p-value is larger than 0.05 

for all delays. Based on the ACF and PACF residual plots 

which are shown in Figure 5, all residual values, have no 

significant autocorrelation. 

The p-value of Anderson-Darling test for TWC per capita 

residuals was obtained 0.1, which approves that the residuals 

are normally distributed at α = 0.05. The normal probability 

and histogram plots in Figure 4a-b are a confirmation of the 

residuals normality distribution too. 

Figure 5c shows the residuals versus fitted value plot, which 

approve the assumption that the residuals have constant 

variance. The points in Figure 5c randomly fall on both sides 

of zero and lack any discernible patterns, demonstrating the 

constant variance of residuals. Also, the randomness of the 

residuals is confirmed by Run Test approval due to the p-

value larger than 0.05 . 

According to the investigations carried out, the precision of 

the SARIMA(1,0,0)(0,1,1)12 model was confirmed and the 

R2, E%, and NS efficiency coefficient were used to check 

the precision of the model (Table 8) . 

Table 8: Precision criteria for TWC per capita model 

R2 0.98 
E% 1.2 
NS 0.8 

Finally, to predict the future data of TWC per capita for 12 

months in 2023, SARIMA(1,0,0)(0,1,1)12 model was used. 

Figure 6 is shown the comparison of the observed and 

modeled data. 

4.2 Karaj Dam Inflow Prediction 

The results of necessary statistical tests for the Karaj Dam 

inflow time series are represented in Table 9. Based on the 

p-values > 0.05 of Pettitt's and Mann-Kendall's tests, the 

homogeneity and trendlessness of the Karaj Dam inflow 

time series are confirmed. As well as, the p-value of 

  

(a) (b) 

  
(a) (b) 

 
Fig. 5: a)Normal probability plot, b) Histogram plot, c) Residuals versus fitted value plot, d) RUN-test plot of residuals for TWC per 

capita model 
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Fig. 6: Observed and SARIMA model output of TWC per capita 

 

the ADF test is 0.007, which rejects the null hypothesis of 

the test that the data is non-stationary. Moreover, the result 

of the Anderson-Darling test shows that the Karaj dam 

inflow time series does not follow the normal distribution. 

So to normalize the time series some transformation 

functions were checked as shown in Table 10. Due to the 

higher p-value of Anderson-Darling test (p-value>0.05), 

Box-Cox Transformation function was selected as the best 

transformation functions to normalize data.  

Table 9: P-values of statistical tests of Karaj Dam inflow time 

series 

Time 

series 

Pettitt's 

Test 

Mann-

Kendall Tests 

ADF 

Test 

Anderson-

Darling test 

Original 0.63 0.3 0.007 0.0001 

Table 10. Transformation identification for Karaj Dam inflow 

Transformation P-Value 

Normal <0.005 

Box-Cox Transformation 0.155 

Lognormal 0.002 

Exponential 0.001 

Gamma 0.03 

Johnson Transformation 0.01 

After Box-Cox Transformation, the results show that, the p-

value of Anderson-Darling test is 0.115, which shows the 

transformed data follows the normal distribution. 

The ACF and PACF plots of the observed data of Karaj Dam 

inflow are represented in Figure 7. The ACF plot shows a 

seasonal oscillation occurs every 12 months. By focusing on 

the ACF of observed data, a slow decrescent trend is seen in 

the ACF spikes at seasonal lags (12th, 24th, 36th) where s = 

12. It displays a nonstationary characteristic and proposes 

fist-order seasonal difference. The ACF and PACF plots of 

differentiated time series are represented in Figure 8. 

According to Figure 8a, the ACF plot of the seasonally 

differentiated Karaj Dam inflow time series has significant 

spikes at 1st, and 2nd lags, and after 2nd lag the spiked placed 

in the ACF confidence interval. So the moving average 

parameter order (MA) (non-seasonal component), was 

proposed q=0-2. As well as, in Figure 8a, the ACF plot has 

also a negative significant spike at 12th lags and cuts off the 

ACF confidence interval in 12th lag. Then the ACF spikes 

were decayed after 24th lag, and they were within ACF 

confidence interval, so for seasonal moving average (SMA) 

values, the order was proposed Q=1.

  

(a) (b) 
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Fig. 7: a) ACF, and b) PACF observed data of Karaj dam inflow 

  
(a) (b) 

Fig. 8: a) ACF, and b) PACF for first order seasonal differencing and de-seasonal observed data of Karaj dam inflow 

In the same way, for the non-seasonal parameter, the PACF 

plot of (Figure 8b) the seasonally differentiated time series 

has significant spikes at 1st lag, and the confidence interval 

of the PACF plot cuts off, therefore the value of 

autoregressive (AR) parameter was suggested p=1. As well 

as in Figure 8b, the PACF plot has significant spikes at 12th 

and 24the lag, and then it was placed in the confidence 

interval after the 36th lags, so the seasonal autoregressive 

(SAR) parameters were proposed P=0-2. Thereupon, based 

on the given conditions 9 SARIMA models were identified 

for further evaluation as represented in Table 11. 

Table 11: Optional SARIMA models for Karaj dam inflow 

Model Selection 

Model (d = 0, D = 1) AIC 

p = 1, q = 0, P = 0, Q = 1* 210.701 

p = 1, q = 0, P = 1, Q = 1 235.091 

p = 1, q = 2, P = 0, Q = 1 239.336 

p = 1, q = 0, P = 2, Q = 1 249.731 

p = 1, q = 2, P = 1, Q = 1 277.813 

p = 1, q = 1, P = 0, Q = 1 288.694 

p = 1, q = 2, P = 2, Q = 1 307.221 

p = 1, q = 1, P = 1, Q = 1 380.557 

p = 1, q = 1, P = 2, Q = 1 421.22 

The SARIMA(1,0,0)(0,1,1)12 model has the lowest value of 

AIC, hence it was selected as the best model for Karaj Dam 

inflow. The modified Ljung-Box test was used for goodness 

of fit test investigating and checking the independence of the 

residuals due to all lags p-values>0.05. It means that the 

approval of the null hypothesis of no autocorrelation of the 

residuals was successful; Additionally, based on the ACF 

and PACF residual plots which are shown in Figure 9, all 

residual values, have no significant autocorrelation. 

Table 12: The results of the modified Ljung-Box test of the 

Karaj Dam inflow 

Lag 12 24 36 48 

Chi-Square 20.76 30.59 42.32 56.03 

P-Value 0.103 0.12 0.15 0.16 

To test the normality of the residuals, Anderson Darling's 

test was used along with the normal probability plot and 

histogram of residuals. Anderson Darling's test p-value was 

obtained 0.12, which indicates the normality of the residual, 

as also Figure 10a-b is a confirmation of residual normality 

distribution. Moreover, the variance of the residuals is 

constant given the residuals versus fitted value plot (Figure 

10c), and also the randomness of the residuals is confirmed 

by Run Test approval due to the p-value greater than 0.05 

(Figure 10d).  

According to the investigations carried out, the precision of 

the SARIMA(1,0,0)(0,1,1)12 model was confirmed and the 

R2, E%, and NS efficiency coefficient were used to check 

the precision of the model in Table 13. 

https://www.powerthesaurus.org/in_the_same_way/synonyms
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(a) (b) 

Fig. 9: a) ACF, and b) PACF of residuals for Karaj Dam inflow 

 

distribution. Moreover, the variance of the residuals is 

constant given the residuals versus fitted value plot (Figure 

10c), and also the randomness of the residuals is confirmed 

by Run Test approval due to the p-value greater than 0.05 

(Figure 10d).  

According to the investigations carried out, the precision of 

the SARIMA(1,0,0)(0,1,1)12 model was confirmed and the 

R2, E%, and NS efficiency coefficient were used to check 

the precision of the model in Table 13. 

Table 13. Precision criteria for Karaj Dam inflow 

R2 0.93 
E% 0.6 
NS 0.95 

Finally, to predict the future data of Karaj Dam inflow for 

12 months in 2023, SARIMA(1,0,0)(0,1,1)12 model was 

used. Figure 11 is shown the comparison of the observed and 

modeled data of Karaj Dam inflow

 

  
(a) (b) 

  
(c) (d) 

 



 
Z. Sheikholeslami et al.                                                                     Numerical Methods in Civil Engineering, 8-2 (2024) 22-35 

11 

 

Fig. 10: a)Normal probability plot, b) Histogram plot, c) Residuals versus fitted value plot, d) RUN-test plot of residuals for Karaj Dam 

inflow 

 
Fig. 11: Observed and SARIMA model output of Karaj Dam inflow 

 

4.3 Model Calibration 

Model calibration should be done before predictive analysis. 

The simulation results are compared with real historical data 

to verify their agreement so that the reliability of model 

parameters and model accuracy can be judged. The 

simulation results of Karaj Dam Reservoir Volume, Karaj 

Dam household water supply, Karaj Outflow are compared 

with the actual data from National Water and Wastewater 

Engineering Company of Iran. Present SD Model has 

several parameters to tune it makes sense to use the built-in 

optimizer to search for the best combination. The objective 

in this case is to minimize the difference between the 

observed simulation output and historic data. The simulation 

length for this study is from 2006 to 2023, a total of 17 years. 

The total simulation period is divided into three stages: the 

model calibration stage, which runs from 2006 to 2016 

(Time: 0-131), the model validation stage, which runs from 

2017-2022 (Time: 132-203) and the model prediction stage, 

which runs from 2022 to 2023 (Time: 204-215). The goal of 

model calibration is to obtain reasonable parameter values 

by comparing model output to historical data. The 

simulation is based on a monthly time step (i.e. the water 

balance is computed monthly) and it is focused on the 

simulation of Karaj Dam water supply for Tehran. Table 13 

lists the model parameters that are adjusted to match the 

simulation results to the historical data. Based on optimized 

parameters in Table 14 the model calibrated, the model 

validation was checked ,and the calibrated model predicted 

the Karaj Dam Reservoir Volume, Karaj Dam household 

water supply, Karaj Outflow in 2022-2023. 

Table 14: The Range of model parameter changes for calibration 

purposes 

Model Parameter Dimension Min Max Optimized 

KarajDam_ 

Minimum_Storage 
MCM 54 66 61.5 

KJK2_A1 

- 

8.4 10.2 9.5 

KJK2_A2 0.08 0.10 0.09 

KJK2_A3 0.021 0.025 0.022 

KJK1_A1 41.8 51.1 44.5 

KJK1_A2 0.16 0.20 0.175 

KJK1_A3 0.0018 0.0022 0.002 

KJK_Agri1 -24.6 -30.14 -26.5 

KJK_Agri2 0.42 0.52 0.461 

KJK_Agri3 0.13 0.154 0.143 

 

4.4 SD Model Results 

The model focuses on the systematic analysis of the Karaj 

Dam water supply system, and based on water balance 

principles and compares water demand and water supply. It 

runs over a time scale of 17 years, accounting for the 

evolution of the Karaj Dam water supply system from April 

2006 to March 2023. The main objectives of Karaj Dam 

modeling through SD approach are analyzing and 

predicting, Karaj Dam share in Tehran's water supply as well 

as the volume and outflow of the Karaj Dam reservoir until 

2023. 

Figure 12 is shown the observed and calibrated model output 

of the Karaj Dam reservoir volume, which indicated that the 

Karaj Dam Reservoir volume will be reduced from April 

2023 to March 2023, which the main reason is the reduction 

of Karaj Dam inflow besides the increment of TWC per 

capita. On the other hand, according to Figure 13, the Karaj 

Dam share in Tehran's water supply has not significantly 

increased, and it will be provided at the same level as it was 
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in the years 2021 and 2022, thereupon the effective factor in 

the reduction of Karaj Dam Reservoir volume is Karaj Dam 

inflow. Figure 14 represents the comparison of the Observed 

and calibrated model output of Karaj Dam Outflow. It shows 

that the Karaj Dam Outflow will be reduced from April 2023 

to March 2023 due to the reduction of agricultural usage. 

Based on Eq 5 agricultural usage of Karaj Dam has more 

dependence on Karaj Dam inflow due to its higher 

coefficient value. The precision criteria of the calibrated 

models is represented in Table 14. 

Table 15. Precision criteria for Karaj Dam SD model  

(April 2006 to March 2022) 

Model R2 E% NS% 

Reservoir volume 0.9 3.8 0.88 

Karaj Dam share in Tehran's water supply 0.85 0.7 0.81 

Karaj dam outflow 0.96 0.6 0.87 

 

5. CONCLUSIONS 

In this study, Karaj Dam reservoir as the main surface water 

resource of Tehran’s water supply was modeled in 

AnyLogic software through the SD approach by using the 

historical data from April 2006 to March 2022 to predict the 

Karaj Dam share in Tehran's water supply for April 2023 to 

March 2023. At first, TWC was modeled by the SARIMA 

model. As a result, among the suggested models, 

SARIMA(1,0,0)(0,1,1)12 was chosen for TWC prediction, 

which had the lowest value of AIC. Similar to TWC, Karaj 

Dam inflow was also modeled with SARIMA models, which 

the same model, SARIMA(1,0,0)(0,1,1)12 was obtained for 

Karaj Dam inflow prediction. The diagnostic check was 

done for the residuals of the SARIMA models for TWC and 

Karaj Dam inflow. The results of the SARIMA models were 

applied as the input data of the Karaj Dam SD model for the 

simulation of the Karaj Dam water supply system from April 

2006 to March 2023. Finally, to evaluate the precision of the 

results obtained from the SD model, the criteria of R2, E%, 

and NS were calculated. The SD model results represented 

that the reservoir volume of Karaj Dam will be decreased 

from April 2023 to March 2023 because of the Karaj Dam 

inflow reduction, consequently the priority usage of Karaj 

Dam as the household water supply is provided as before, 

but the agricultural usage is reduced due to the dependence 

of agricultural water allocation to Karaj Dam inflow.

 
Figure 12. Observed and calibrated AnyLogic model output of Karaj Dam Reservoir Volume 
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Figure 13. Observed and calibrated AnyLogic model output of Karaj Dam household water supply 

 
Figure 14. Observed and calibrated AnyLogic model output of Karaj Outflow 
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