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Abstract: 

Here, the meshless method with the finite difference method has been used to discretize the 

governing equations of the seepage phenomenon from under the dam in the steady and transient 

flow. The seepage problem was solved by considering the 6656 triangular mesh and 3449 nodes 

by the Finite Element Method and was used for validation. The radial basis function method 

(RBF) was considered one of the methodological methods to solve the seepage problem by 

considering several points. The results showed that by increasing the number of points, the 

accuracy of the solution increases, and the error decreases. The results of statistical indicators 

in the RBF method are reduced compared to the Finite Element Method. The results showed the 

proximity of the initial approximations to the original answer. The shape factor of the base 

function depends on the geometry and the governing equation, so the exact shape factor was 

used for the steady and transient state. In the transient condition, with the water level behind 

the dam remaining constant, the water head below the dam also reaches a constant value over 

time. The calculation of statistical indicators showed that the solution by the RBF method has 

acceptable accuracy. 

1. Introduction 

Solving the equation governing the phenomenon of seepage 

is one of the most proposed and complex problems in 

hydraulics, and various numerical methods to solve this 

equation, such as the Finite Difference Method [1], Finite 

Element Method [2], Boundary Element Method [3] and 

Finite Volume Method [4] presented. The common feature 

of these methods is that the solution area and boundaries 

must be networked first, and the problem-solving operation 

is done through networking. The results obtained in these 

methods are highly dependent on the mesh and related 

computational networks [5-7]. This factor prevents using 

these methods in two or three-dimensional problems or  
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nonlinear engineering problems with a complex and 

irregular study area. In recent years, the development of the 

meshless method has eliminated the weakness of mesh 

dependence. In this method, numerical approximations for 

solving differential equations are performed not based on 

elements and the relationships between them but based on a 

set of points. The primary purpose of meshless methods is to 

remove part of the traditional structure in mesh-dependent 

methods. The main idea of meshless methods is to 

approximate the whole field of the problem with only points. 

Different meshless methods have been developed, each with 

advantages and disadvantages. Among the various methods, 

the radial basis functions method is more prevalent among 

researchers due to its univariate nature. Among the reasons 

for the popularity of the RBF meshless method are the 

following [8]: 

1- There is no need to discretize the solution area or 

boundaries. 

2- Overlap of the solution area or boundaries is not required. 

3- In some problems, convergence has a high speed. 
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4. Since RBF univariate functions depend only on the 

distances between points, it is suitable for solving 

multidimensional problems, and additional information, 

such as internal conditions, can be reduced (or added) at each 

modeling step. 

5. The coding of meshless methods is relatively simple 

compared to other methods. 

6- Compared to other methods, the answer is faster. 

The basic idea of meshless methods in solving problems 

related to astrophysics by Gingold and Monaghan [9] is that 

the discretization of equations does not have boundary 

conditions due to the infinity of the solution region. The first 

time, Kansa [10] used the Multi Quadratic (MQ) 

approximation to solve elliptic, parabolic, and hyperbolic 

equations. Boztosun, et al. [11] solved the adduction-

diffusion equation using the RBF Collection Method 

(RBFCM) and compared the results with the Finite 

Difference Method. This study showed that the RBF method 

responds faster than the Finite Difference Method. Sarler, et 

al. [12] solved the Darcy natural convection problem under 

porous conditions using the RBFCM method, compared the 

results with the results of the Finite Volume Method, and 

observed a good agreement between the two methods. 

Durmus et al. [13] used the meshless method with the radial 

basis function to solve the transfer-diffusion equation and 

reported the excellent agreement of the results of this 

method with the results of the Boundary Element and Finite 

Difference Methods. Nourani and Mousavi [14] modeled the 

groundwater level by combining the two methods of 

artificial intelligence, ANN and ANFIS, and the meshless 

method. Their research showed that the RBF-ANFIS method 

gives more accurate results than the RBF-ANN method. 

Hashemi and Hatam [15] used the RBF method based on the 

Quadratic Differential method (RBF-DQ) to analyze the 

non-continuous seepage under the dam and compared the 

results with other methods, such as the finite element 

method. Their results showed that the solution by the RBF-

DQ method is more accurate. 

The present study investigates seepage from under the dam 

using the RBF meshless numerical method. Hashemi and 

Hatam [15] and Ouria et al. [16] research data have been 

used for the solution in this study. A review of previous 

research showed that, so far, no study has been done on 

seepage under the dam using the RBF meshless method in 

the steady flow state. The results were validated by the Finite 

Element Method and Local BF-DQ method. Also, the shape 

factor is one of the most critical parameters in the RBF 

meshless method. This study introduces the appropriate 

shape factor for the seepage problem for the number of 

different points. Also, the effect of density and the number 

of points on the accuracy of solving the problem was 

investigated. The selection of the appropriate base function 

in the RBF meshless method is closely related to the quality 

of problem-solving. Therefore, different base functions were 

considered as the base function in the RBF method, and the 

most appropriate function was introduced to describe the 

seepage phenomenon. In the present study, the goal is to 

numerically solve the steady and transient flow state 

equation or the Laplace equation, which uses the integration 

of the RBF meshless method and the Forward Finite 

Difference for spatio-temporal modeling of the seepage 

phenomenon under the dam. Another goal of this study is to 

draw the equipotential lines under the dam using the 

minimum points and with appropriate accuracy with the 

meshless method. 

2. Materials and Methods 

Richards first proposed the partial differential equation of 

water motion in a porous environment by combining the two 

equations of continuity and Darcy. The Richards equation 

for the two-dimensional state is in the form of Equation 1 

[17]: 

r x r y

w
w s

h h
k k k k

x x y y

dS dh
S S n

dp dt

     
+   

      

 
= + 
 

 (1) 

Where x and y are horizontal and vertical directions, 

respectively, kx and ky are hydraulic conductivity in the 

direction of x and y, respectively, kr is the relative 

permeability (in the saturation zone is equal to one), Sw is the 

water saturation ratio, Ss is the special maintenance, n is the 

porosity, h is the hydraulic head, and p is the pressure head. 

For saturated regions, the amount of hydraulic conductivity 

is considered constant in two directions, so Equation 1 can 

be written as Equation 2 [18]: 

2 2

2 2x y s

h h h
k k S

tx y

  
+ =

 
 (2) 

Considering homogeneous and homologous soils (kx = ky), 

Equation 2 can be rewritten as Equation 3 [19]: 

2 2

2 2

SSh h h

k tx y

  
+ =

 
 (3) 

For the steady flow, Equation 3 is written as Equation 4, 

which is the same as Laplace Equation [19]: 

2 2
2

2 2
0 0

h h
h

x y

 
+ =  =

 
 (4) 

RBFs are univariate functions that are suitable for solving 

complex and multidimensional problems. In solving the 
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problem by RBF method, Equation 5 is established in the 

computational area with internal points Ω and boundary 

points ∂Ω: 

Lh f in

Bh g in

= 

=   

(5) 

B and L are the differential operators at the interior and 

boundary points of the computational area, respectively. The 

approximate solution of Equation 5 in the RBF mesh method 

can be estimated as Equation 6: 

( )
1

N
h c

i i r
i



= 

=

 (6) 

Where φi is the radial basis function or shape function that 

is always a function of the distance between points, ci 

unknown coefficients, N is the total number of nodes (some 

on the border and some inside the solution area) that are 

optionally and randomly selected from the computational 

area without mesh creating. 

Important basic functions used in the RBF meshless method 

include Multi-Quadratic, Gaussian, Poly-harmonic, Conical, 

Inverse multi-quadratic, and Inverse quadratic. These shape 

functions are shown in Equations 7 to 12, respectively. 

( ) ( )2 2 2

r
r



 = +  (7) 

( )

2r

r
e  −=

 
(8) 

( ) log
n

r
r r =  (9) 

( )
n

r
r =

 (10) 

( ) ( )2 2 21
r

r


 = +
 
 
 

 (11) 

( ) ( )( )2 2
1

r
r = +  

(12) 

In the above functions, r is the distance between points, α, β, 

and n are the values obtained by calibration. In the Conical 

function, the value of α should be considered a natural odd 

number, and in the Poly-harmonic function, the value of α 

should be considered a natural even number. Any real 

number can be taken in the Multi Quadratic function for α. 

For calibration, different values for α, β, and n are 

considered, then the problem is solved with those values, 

and the result obtained is validated by analytical or 

laboratory results or the result of a valid numerical method, 

and the error value is calculated. The value for which the 

error decreases is the optimal value for α, β, and n. 

This study applies the head and its specific gravity while 

defining the upstream initial conditions. Also, in defining the 

boundary conditions for the areas through which water does 

not pass, the closed flow boundary condition is defined in 

the software. 

In the present study, the MQ function is used to solve the 

equation governing the seepage phenomenon, and then the 

correctness of this function will be checked and proved. 

Assuming β=1 in the Multi Quadratic (MQ) base function to 

analyze seepage under a concrete dam for a two-dimensional 

state, Equation 13 can be written: 

( ) ( ) ( )
2 2

2
,

1

N
h x y c x x y y

j j j
j

= − + − +

=

 (13) 

Equation 13 is written for all points on the boundaries and 

inside the computational area to solve the problem by the 

RBF method. Therefore, the number of points considered on 

the boundaries and inside the computational area, equation, 

and unknown are obtained. By solving in matrix form, a 

matrix for c will be obtained. Therefore, solving the problem 

involves calibrating the optimal α (shape factor) and finding 

the corresponding matrix c with the optimal α. The 

following schematics were considered (Figure 1) to explain 

the governing equations in the computational area and 

boundaries: 

 

Fig. 1: Schematic diagram of computational area and boundary 

and internal points 

In Figure 1, the expressions marked on the computational 

area of the boundary and internal points are hU and hD, 

respectively: water head upstream and downstream of the 

concrete dam, i = 1,…, KI: number of points on the Dirichlet  

boundary with the value of the head hU, I = KI,…, KII: 

Number of points located on the Dirichlet  boundary with the 

value of the head hD, i = KII,…, KIII: Number of points 

located on the Newman boundary in the vertical direction, i 

= KIII,…, KIV: Number of points Located on the Newman 

boundary along the horizon and i = KIV,…, N: are the number 

of points located within the computational area. 
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Equations 3 and 4 govern the seepage phenomenon in 

transient and steady flow. By placing Equation 13 in 

Equation 4, Equation 14 is obtained: 

( ) ( )

( ) ( )

2 22 2

1

2

2 22 2

1

2
0

N

j j j

j

N

j j j

j

c x x y y

x

c x x y y

y





=

=

 − + − +



 − + − +

+ =


 
 
 

 
 
 




 

(14) 

The combination of the RBF meshless method and the 

Forward Finite Difference method is implicitly used to solve 

the problem in a transient flow state. 

12 2

1

2 2

2 2

1 1

2 2

( )

( ) 0

n n

n i i

s

n n n

i i

s

h hk h h

S x y t

k h h
t h h

S x y

+

+

+ +

− 
 + =

  

 
   + + − =

 

 (15) 

Equation 16 is obtained by placing Equation 13 in Equation 

15. 

( ) ( )
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j
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n
N

c x x y yj j j
j
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N
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j
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

+
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=
+


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=



+
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=
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=
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 
 
  
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 
 
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 
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 
 
 

 

(16) 

For Newman boundaries in the vertical direction, the value 

of the variable vertical gradient, the water head, is zero, 

according to Equation 17. 

 

0
h

x


=


 (17) 

Equation 18 is obtained by substituting Equation 13 in 

Equation 17: 

( ) ( )
2 2

2

1
0

N

j j j

j

c x x y y

x


=

 
 − + − + 
 

=




 

(18) 

For Newman boundaries along the horizon, the value of the 

vertical gradient of the variable, which is the water head, is 

zero, as in Equation 19. 

0
h

y


=


 (19) 

By placing Equation 13 in Equation 19 for a point, Equation 

20 is obtained. 

( ) ( )
2 2 2

1
0

N
c x x y yj j j

j

y


 
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 
 
 

 − + − +
=

=


 

(20) 

For the Dirichlet boundaries, Equation 13 is equal to the 

water head upstream and downstream, respectively, 

according to Equations 21 and 22: 

( ) ( )
2 2

2

1

N

j j j U

j

c x x y y h
=

− + − + =
 

(21) 

( ) ( )
2 2

2

1

N

j j j D

j

c x x y y h
=

− + − + =
 

(22) 

Equation 23 is obtained by combining equations to achieve 

the matrix form of equations. 
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By considering the different shape factors, different matrices 

of c are obtained. The results are validated for different 

shape factors (α) using a valid method. The factor of shape 

for which the error resulting from the validation is minimal 

is considered the optimal shape factor. After calibrating α 

and obtaining the corresponding c matrix, the water head can 

be calculated at any point. To evaluate the results obtained 

using the RBF meshless method, the root mean square error 

(RMSE), the relative root mean square error (RRMSE), the 

determination coefficient (R2) and the absolute error (AE) 

with Equations 24, 25, 26, and 27 were used, respectively 

[20-23]. 

2

1

( )
n

FEM RBF
h h

RMSE
n

−

=


 

(24) 

2

1

( )
n

FEM RBF

FEM

h h

h
RRMSE

n

−

=


 

(25) 

( )
2

2

2

2

1
FEM RBF

RBF

FEM

h h
R

h
h

n

−
= −

−






 
(26) 

FEM RBF
AE h h= −  (27) 

In these relations, n is the number of data, hFEM is the water 

head in the Finite Element Method, and hRBF is the water 

head in the RBF meshless method. 

3. Results and Discussions 

Here, research data of Hashemi and Hatam [15] have been 

used to investigate the phenomenon of seepage under the 

dam. In the present study, the computational area is shown 

in Figure 2. The water head is 0.5 m upstream and then 

increases to 1.5 m with a uniform rate. The water head 

downstream is constant and equal to zero. The length of the 

calculation area is 3.6 meters, and its width is 1.2 meters. 

The values of hydraulic conductivity (k), special 

maintenance (SS), and soil type are taken 1.7×10-4 m/s, 

0.00001 m-1, and silt, respectively. 

 

Fig. 2: Schematic diagram of the computational area of the 

seepage problem 

In Figure 2, the boundaries of the solution area and the 

governing equations are as follows: 

Boundaries No. 1: Permeable boundaries with Dirichlet 

boundary conditions with the condition Uh h= at upstream 

and Dh h=  at downstream. 

Boundaries No. 2: Impermeable boundaries with Newman 

boundary condition with condition 0
h

y


=


. 

Boundaries No. 3: Impermeable Boundaries with Newman 

boundary condition with condition 0
h

x


=


. 

Area No. 4: Within the computational area with relation

2 2

2 2

h h h

tx y

  
+ =

 
 . 

The results of the Finite Element Method with programming 

in MATLAB and Plaxis software were used to validate the 

RBF meshless method. Plaxis is an advanced finite element 

software used to analyze deformation and stability. This 

research considers the value of 10kN/m2 for the specific 

water weight. A water head value is applied to the upstream 

slope to model water flow. A Closed flow boundary blocks 

areas where water does not pass. To calculate the flow, 

selecting the Water pressures option from the Generate 

menu will reveal the Water pressure generation window. In 

this window, information, including output flow rate, pore 

pressure, equipotential lines, and flow rate, is obtained by 

selecting the Groundwater calculation option. In solving 

Finite Elements, 6656 triangular elements and 3449 nodes 

are used. The equipotential lines drawn by the Finite 

Element Method in the Partial Differential Equation 

Toolbox are shown in Figure 3. 

 

Fig. 3: Finite element method of equipotential lines 

 

One of the critical features of the RBF meshless method is 

the possibility of solving the problem with very few points 

as an initial approximation. The problem of Figure 2 is 

solved once by considering 6 points, of which 3 points are 
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inside the computational area and 3 points are on the 

borders, and then the number of points is increased to 15 (12 

border points, 3 inside points), 28 (18 border points, 10 

inside points), 45 (24 border points, 21 inside points), 91 (36 

border points, 55 inside points) and 133 (48 border points, 

85 inside points) points and the results were evaluated. 

By adopting different values for α, the matrices of c are 

obtained, and then by selecting α or the same optimal shape 

factor through validation, the water head can be obtained at 

any desired point. The error diagram of the RBF method 

compared to the Finite Element Method is shown in Figure 

4. 

 
Fig. 4: RBF method error compared to Finite Element Method for 

different shapes factors (α). 

 
 

6 points, α = 0.85, RMSE = 0.0004 m 15 points, α = 1.56, RMSE = 0.0419 m 

 

 

 

28 points, α = 0.92, RMSE = 0. 0.0854 m 45 points, α = 0.28, RMSE = 0. 0.0275 m 

 

 

 

91 points, α = 0.5, RMSE = 0. 0.0135 m 133 points, α = 0.52, RMSE = 0. 0.0108 m 

Fig. 5: Equipotential lines below the dam with an increasing number of points. 
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For α = 0.85, the calculation error is minimized by 6 points 

compared to the Finite Element Method. Similarly, the 

optimal shape factor for all points was found, and the 

equipotential lines below the dam were drawn in Figure 5 

respectively. 

It can be seen that considering the 6 points, the general shape 

of all drawn equipotential lines is not suitable despite having 

a small error, and the potential lines are not perpendicular to 

the boundaries. On the other hand, the dimensions of the 

computational area are not covered. The equipotential lines 

below the dam must correspond to the shape of the lines 

drawn by the Finite Element Method. The RMSE obtained 

in problem-solving with 6 points is close to zero, but the 

shape of the contours is not appropriate. Therefore, it can be 

said that the number of 6 points cannot indicate the geometry 

of the computational area because the dimensions of the 

computational area are 3.6 meters by 1.2 meters, but these 

dimensions are not covered. Therefore, it can be concluded 

that the low calculation error is not enough to investigate the 

problem of seepage under the dam, so the problem has no 

hydraulic justification, and the number of points needs to be 

increased. This step is done only as an initial approximation 

and finding a range of shape factors. 

In the next step, the number of points is increased to 15. It is 

observed that the geometry of the computational area is 

determined according to the problem statement, but the 

equipotential lines below the dam are not similar to the 

equipotential lines provided by the Finite Element Method. 

By selecting 28 points, it was observed that the dimensions 

of the computational area are covered, but the shape of the 

equipotential lines below the dam does not match the lines 

of equipotential provided by the Finite Element Method. 

Also, contrary to reality, negative values have been obtained 

for the water head. On the other hand, verticality is not seen 

on all impenetrable boundaries. Therefore, the number of 

points must be increased for good hydraulic compliance. By 

increasing the number of points to 45 points, it is observed 

that the dimensions of the computational area are covered. 

The error has decreased from 0.0854 in the previous step to 

0.0275 at this step. 

On the other hand, the shape of the contours under the dam 

and the perpendicularity to the impermeable borders have 

also improved compared to the previous step. Therefore, it 

can be said that problem-solving is converging and reaching 

the desired state. With increasing the number of points to 91 

points, it is observed that the equipotential lines below the 

dam have high compliance, and the dimensions of the 

computational area are covered. At this step, the error has 

decreased from 0.0275 in the previous step to 0.0135. By 

increasing the number of points to 133 points, the lines of 

equipotential under the dam are matched with the lines of 

equipotential under the dam by the Finite Element Method, 

and the dimensions of the computational area are covered. 

Comparing the error of the obtained results with the Finite 

Element Method shows a downward trend in the last 4 steps. 

This trend indicates the convergence of the problem and 

reaching the correct answer. The calculation error is 

minimized compared to the finite element method for 6 

points so that the root mean square error (RMSE) for 6 points 

is 0.0004 meters, and this value is 0.0108 meters for 133 

points. From the most important results of Figure 5, we can 

point out the basic case that having appropriate statistical 

values such as RMSE is not enough to investigate the 

problem, and the hydraulics governing the problem 

(equipotential lines) must be investigated. In general, we can 

say that by increasing the number of points, the accuracy of 

solving the problem increases, and the shape factor 

converges to a number. On the other hand, with increasing 

points, the ability to draw equipotential lines under the dam 

increases. In Table 1, to validate, some points in the area of 

solution and boundaries are randomly selected, and the 

water head in these points is presented using the RBF 

method and Finite Element after calculation. 

Table 1: Comparison results of the RBF method with the FEM 

method in a steady flow 

x 

(m) 

y 

(m) 

RBF 

(m) 

FEM 

(m) 

AE 

(m) 

RMSE 

(m) 

RRMSE 

(%) 
R2 

0.8 0.7 0.4478 0.4496 0.0018 

0.0028 1.146 0.9995 

1.2 1 0.4559 0.4588 0.0029 

2.6 0.55 0.1320 0.1344 0.0024 

0 0.9 0.4825 0.4807 0.0018 

2.2 0 0.2476 0.2526 0.005 

1 0.2 0.4056 0.4071 0.0015 

 

The x and y columns represent the coordinates of the 

selected points, third and fourth columns represent the water 

head obtained by RBF and FEM methods, respectively. The 

proximity of absolute error, root mean square error, and 

relative root mean square error to zero and coefficient of 

determination to 1 indicates the conformity of the RBF 

numerical solution method with the Finite Element Method. 

After investigating the seepage in the steady state, the 

transient state was considered by increasing the upstream 

head. In the case of the study by Hashemi and Hatam [15], 

the head of water increases linearly from 0.5 m to 1.5 m for 

300 minutes, as shown in Figure 6. 
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Fig. 6: Water head increase upstream of the dam during 300 min 

[15]. 

 

The finite difference was used to discretize time statements, 

and the RBF method was used for spatial statements to solve 

the equation in transient flow. First, the shape factor was 

calibrated for the transient state, and then the equipotential 

lines below the dam for different periods were plotted 

according to Figure 7. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

Fig. 7: Head contours in different time steps by RBF method. 
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Therefore, the water head of the points inside the 

computational area increases. During this period, the general 

shape of the contour has remained constant at different 

times. The increase of the head is completed in 300 minutes. 

At 320 minutes, the upstream water head is fixed at 1 m. The 

equipotential lines below the dam at 320 minutes are similar 

to those below at 300 minutes. This similarity indicates that 

the flow has returned to a steady state after 300 minutes. 

Several points from the solution area and boundaries were 

randomly selected at different time intervals to validate the 

results. The water head at these points is shown in Tables 2 

and 3 using the RBF method, finite element, and Local RBF-

DQ. The proximity of AE, RMSE, and RRMSE statistical 

indicators to zero and R2 to 1 indicate the conformity of the 

RBF method with the finite element method. 

In the study of transient flow, a calibrated coefficient for the 

steady state was used. The consistency of the results in 

Tables 2 and 3 shows that applying the calibrated shape 

factor in the steady flow can be used in the transient flow. 

This finding indicates that the shape factor in the RBF 

method is independent of the flow mode and depends on the 

geometry and the governing differential equation. 

 

Table 2: Comparison of the water head results of the RBF method with FEM in the transient state 

R2 RRMSE (%) RMSE (m) AE (m) FEM (m) RBF (m) Time (min) y (m) x (m) 

0.9994 1.078 0.00912 

0.004 0.41 0.41 0 

0 1 

0.01 0.71 0.72 120 

0.01 0.89 0.88 180 

0.01 1.06 1.05 240 

0.01 1.19 1.20 300 

0.9985 1.274 0.00663 

0.004 0.25 0.25 0 

0 2 

0.002 0.45 0.45 120 

0.01 0.56 0.55 180 

0.01 0.66 0.65 240 

0.0001 0.75 0.75 300 

Table 3: Comparison of the water head results of the RBF method with Local RBF_DQ in the non-steady state 

R2 RRMSE (%) RMSE (m) AE (m) 
Local RBF-

DQ (m) 
RBF (m) 

Time 

(min) 
y (m) x (m) 

0.9992 1.0756 0.0045 

0.005 0.26 0.25 0 

0.6 2 

0.002 0.45 0.45 120 

0.003 0.55 0.55 180 

0.007 0.62 0.61 220 

0.004 0.75 0.75 300 

0.996 1.7709 0.0012 

0.0025 0.031 0.031 0 

1 3 

0.001 0.055 0.054 120 

0.002 0.069 0.064 180 

0.001 0.076 0.075 220 

0.001 0.091 0.09 300 

4. Conclusions 

For the steady flow condition: 

1- To primarily solve the problems and get a good 

approximation of the answers, the above method can be used  

 

 

by using several points inside the solution area and several 

points on the borders. This study considered 3 points at the 

Dirichlet and 3 points at the Newman boundary conditions 
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as a preliminary approximation. In the initial approximation, 

the shape factor was 0.85, and RMSE was equal to 0.0004. 

2- It was observed that the results obtained from applying 

several points for solving have no hydraulic justification and 

are insufficient to draw equipotential below the dam despite 

having a low error. 

3- The initial approximations of the shape factor are close to 

the original answer. 

4- By solving the problem and calibrating the value of the 

shape factor, the amount of water head can be obtained at 

any desired point. 

For transient flow condition: 

1- Similar to the steady state, geometry, and boundaries must 

be determined through a series of points to draw 

equipotential lines. 

2- Since the shape factor of the base function depends on the 

geometry and the governing equation, the same shape factor 

was used for the steady and transient state. The verification 

performed, and the consistency of the results with the results 

of previous studies confirm the mentioned issue. 

3- By increasing the upstream water head of the dam from 

0.5 meters to 1.5 meters, the water head in the points below 

the dam also increases. However, after the water level 

behind the dam remains constant, the water head below the 

dam also reaches a constant value. 
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Notation 

The following symbols are used in this paper: 

B = differential operators at the interior points 

Ci = unknown coefficients 

h = hydraulic head 

hD = water head upstream of the concrete dam 

hU = water head downstream of the concrete dam 

hFEM = water head in the Finite Element Method 

hRBF = water head in the RBF meshless method 

kx = hydraulic conductivity in the direction of x 

ky = hydraulic conductivity in the direction of y 

kr = relative permeability 

L = differential operators at the boundary points 

N = total number of nodes 

n = porosity 

P = pressure head 

r = distance between points 

RBF = Radial Basis Function 

Ss = special maintenance 

Sw = water saturation ratio 

α, β, n = values obtained by calibration 

φi = shape function 
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