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Abstract: 

This paper uses a parametric numerical study to assess the Lateral-torsional buckling (LTB) 

performance of several semi-compact beams: S1, S2, and S3. The carrying capacity of these 

beams, predominantly loaded in bending, is approached by elastic and inelastic buckling 

analyses. A series of parameters that are believed to influence the resistance to LTB of class 3 

beams to (EC3) steel I-beams, namely boundary conditions, flange thickness, and load 

application level, are investigated. An eigenvalue analysis that predicts the theoretical 

buckling strength through 3D computational elastic beam models is first conducted using 

LTBEAM software and ABAQUS. A good agreement in the prediction of Mcr was found. Then, 

a parametric inelastic buckling analysis is performed using the Riks method implanted in 

ABAQUS. Results have shown the importance of the lateral restraint conditions and the 

transverse stiffeners to LTB resistance of compressive flange slenderness following EC3-1-1 

for cross sections with a class 3 web and class 1 or 2 flange. In addition, an interaction of 

local buckling (LB) and LTB in the flanges was observed exclusively for restrained beams. 

The applied load level strongly affects the beams' elastic and inelastic resistance to LTB.

 

1. Introduction and literature review 

Steel members with thin-walled cross-sections are 

commonly used for long-span beams of industrial halls 

composite bridges due to their lightness and long-span 

capacity. The design of steel I-girder sections mainly 

assumes that flanges provide bending resistance and that 

the web has a relatively small thickness. The semi-compact 

sections are susceptible to various forms of instability 

phenomena. The local buckling reduces the load-carrying 

capacity of steel members, and their full plastic capacity 

cannot be reached. Under transverse loads, beams are bent 

about the major axis and may fail by buckling. One of the 

primary forms of general stability loss of beams in bending 

is the Lateral Torsional Buckling (LTB).  
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Physically, the phenomenon of Lateral Torsional Buckling 

(LTB), as depicted in Figure 1, is manifested by changes 

from initially in-plane bending to combine a large lateral 

displacement and twist angle and may lead to a partial 

failure or whole failure in the structure. The complex 

nature of the LTB phenomenon makes it difficult to 

embrace all the factors and assumptions responsible for it. 

The factors believed to influence the resistance to LTB are 

namely the distance between lateral or torsional braces, the 

type, and position of the applied loads, the boundary 

conditions at the ends and intermediate positions along the 

beam axis, the material properties, the magnitude and 

distribution of residual stresses, the initial imperfections 

and interaction between local and overall buckling. 

Therefore, lateral torsional buckling should be considered 

during the design process, as it can significantly reduce 

load-bearing capacity and affect the safety of the entire 

structure. Currently, in steel codes (i.e., Eurocode3 and 

AISC), LTB is accounted for in a simplified way by 
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determining Mcr, the critical moment of lateral torsional 

buckling. The classical case solutions of a cantilever beam 

carrying a concentrated load at its free edge and the case of 

a simply supported beam under uniformly distributed 

moment may be found in traditionally known books [1-3]. 

However, the literature does not provide analytical 

solutions for other support conditions.  

With the advent of high-performance computer-aided 

numerical techniques (FEA), new solutions to complex 

lateral-torsional buckling problems have been introduced. 

Moreover, LTB has gained interest in recent years, and 

many analysis approaches are suggested to assess the 

lateral torsional buckling behavior of steel members [4,5]. 

Different material and section properties are also reflected 

in the studies for identifying the structural behavior in 

detail [6,7]. Also, the effects of lateral restraints on lateral 

torsional buckling were investigated for elastic and 

inelastic regions [8,9]. The literature on different issues 

related to lateral torsional buckling (LTB) of beams is vast, 

yet in a majority of cases, it focuses on the determination of 

critical moments with the assumption of fork support as it 

is in Eurocode3 (EC3) [10]. For such idealized support 

conditions, among others, the impact of some parameters 

was investigated, such as the distribution of the bending 

moment [11-14]. Numerous numerical and experimental 

studies have been performed to predict the ultimate load-

carrying capacity of I-beams subjected to lateral torsional 

buckling. Unterweger et al. [15] investigated beam 

columns' lateral torsional buckling behavior with one-sided 

rotation and warping restraints by numerical finite element 

method (FEM) analysis. The ultimate capacity was 

compared with two different beam-column design methods, 

the interaction concept (EC3: EN 1993-1-1, 6.3.3) and the 

general method (EC3: EN 1993-1-1, 6.3.4). An improved 

LTB design curve (buckling reduction factor) was 

presented. Özbaşaran [16] analyzed the elastic lateral 

torsional buckling moment of the cantilever I section by 

finite difference method. Samanta and Kumar [17] studied 

single symmetric I-sections in which the top and bottom 

flanges are laterally restrained under different loading 

cases. The effect of hole diameter and location of lateral 

torsional buckling strength of composite cantilever beams 

by experimental and analytical methods were carried out 

[18]. Balázs and Melcher [19] determined the critical load 

of steel thin-walled beams with lateral continuous restraint, 

which is crucial for lateral torsional buckling assessment. 

An extensive numerical study on lateral torsional buckling 

of class 4 welded I-section beams at elevated temperatures 

was performed by [20]. ˇSorf and Jandera [21] studied the 

lateral torsional buckling behavior by experimental and 

numerical analysis of welded stainless steel slender I-

section beams. 

The geometric and material nonlinear properties with 

imperfection effects were also considered during the 

analyses. Kuś and Maleska [22,23] proposed a procedure 

using the Rayleigh-Ritz method to calculate a web-tapered 

I-beam's critical buckling moment with stiffener ribs. 

Investigation on lateral torsional buckling of simply 

supported non-prismatic I-beams with axially varying 

materials properties according to the volume fraction of the 

constituent materials based on an exponential or a power 

law function by a novel finite element formulation and 

tapered thin-walled beams with singly-symmetric cross-

section with arbitrary boundary conditions using finite 

difference method can be found by Soltani et al. [24,25]. In 

very recent work, Piotrowski and Szychowski [26] 

analyzed in a beam the effect of the elastic restraint against 

warping and rotation in the bending plane compared to 

classical boundary conditions of fork support communally 

used and proposed new formulas for several loading cases. 

The present work investigates some parameters influencing 

the LTB of semi-compact steel sections. An emphasis on 

the slenderness of the compressive flange in preventing 

LTB with the interaction with local buckling for a laterally 

restrained beam. 

 
 

Fig. 1: Lateral torsional buckling phenomenon in a simply 
supported beam 

 

2. Critical moment to EC3  

According to EN 1993-1-1:2005 [10], the beams loaded in 

the plane of the web and subject to major axis bending 

should be verified against lateral torsional buckling as 

follows: 

,Ed b Rd
M M                                 (1) 

Where EdM  is the design value of the moment and ,b RdM  

is the design buckling resistance moment defined as: 

,

1

y

b Rd LT y

M

f
M w


=                            (2) 

Where yw  is 
,el yW the appropriate section modulus for 

class 3 cross-sections, 1M  is the partial factor for buckling 
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resistance and a recommended value of 1, 
yf  is the yield 

strength of the material, and LT  is the reduction factor for 

lateral-torsional buckling that ranges from zero to one. For 

bending members of constant cross-section, the value of 

LT
  for the appropriate non-dimensional slenderness LT  

should be determined from the given formulation: 

2
2

1
LT

LTLT LT





=

 +  −

    ,  1LT                   (3) 

Where, ( )( )
2

0.5 1 0.2LT LTLT LT
   = + − +  and ranges 

from 0 to 1, LT  is an imperfection factor equal to 0.21 

(buckling curve 'a') or 0.34 (buckling curve 'b') and 0.49 

(buckling curve 'c') or 0.76 (buckling curve 'd') for rolled 

and welded sections, respectively, and LT  is the non-

dimensional slenderness, it is calculated as: 

 
y y

LT

cr

w f

M



=                                                             (4) 

Where cr
M  is the elastic critical Lateral torsional buckling 

moment and can be analytically evaluated by the 3-factor 

formula Eurocode3 (EC3) for laterally unrestrained beams 

[27]. It is expressed as follows: 

( )
( ) ( )

22
2

2 3 2 32
*

z tiwiz
cr g gj j

w zi zi

N
K L GIIK

M C Z C Z C Z C Z
K I EI

 
  
  
   

  


= + + − − −

 

(5) 

( )

2

1 2

zi

z

EI
N C

K L


= 


 

Where, 
1C , 

2C , 
3C  are factors depending on the loading, 

end restraint conditions and mono-symmetry of the beam, 

wK and 
zK  are effective length factors which refer to end-

warping and to end rotation in plan, respectively, E  

modulus of elasticity, G  shear modulus, L  is the length of 

the beam between points which have lateral restraints, 
tI  

the torsion constant, 
wI  the warping constant, 

zI  the 

second moment of area about the minor axis, zg is the 

coordinate of the point of load application, zj is mono-

symmetry parameter. 

 

3. Analysis types 

Two types of analysis are conducted to evaluate the 

ultimate load-carrying capacity of beams subjected to LTB 

subjected to bending loads, namely the linear and nonlinear 

buckling analyses.    

 

3.1 Brief theoretical background of linear buckling      

analysis 

The second analysis method used to analyze LTB is 

through an eigenvalue or Euler buckling analysis, which 

predicts the theoretical buckling strength of an elastic 

single beam member. When buckling occurs, eigenvalues 

are used to describe the values of loads. Then, eigenvectors 

are used to determine the shape of the calculated 

eigenvalues. The numerical elastic linear buckling analysis 

is performed using two software: LTBEAM CTICM 

[28,29] and ABAQUS [30]. During the linear buckling 

analysis (LBA), the bifurcation point is determined by 

solving an eigenvalue problem. The eigenvalue problem is 

solved when the stiffness matrix of the model becomes 

singular and provides nontrivial solutions. The generalized 

eigenvalue problem can be carried out as: 

( ) 0crK K q+  =                                             (6) 

Where cr  is the critical load factor, and q  is the mode 

shape vector. The linear stiffness matrix [31] is defined as 

follows: 

 [ ]

e

T

V

K B D B dV=                                                (7) 

Where, B  is obtained from a shape function by appropriate 

differentiation considering the first-order terms of the 

Green-Lagrange strain and D  represents the mechanical 

properties. The geometric stiffness matrix [32] is also 

calculated from the following equation: 

 [ ]

e

T

V

K G S G dV =                                              (8) 

Where, G  is obtained from a shape function by 

appropriate differentiation taking into account second-order 

terms of the Green-Lagrange strain and S  is the matrix 

that represents the state of stress. The main purpose of 

eigenvalue buckling analysis was to achieve a suitable 

pattern of imperfection, which is then incorporated into the 

nonlinear analysis using ABAQUS software. 

 

3.2 Nonlinear post-buckling analysis 

The nonlinear analysis solution is accomplished using the 

RIKS method [30]. This approach is based on the Arc-

length method implanted in ABAQUS and is a form of the 

Newton-Raphson iteration method. Geometric 

imperfections are also accounted for in the analysis by 

introducing suitable imperfections shape extracted from the 

previous LBA first mode shape and considered an initial 

imperfection added to suitable amplitude for the geometric 

imperfections of L/1000 [33]. 
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4. Local buckling  

The local buckling of cross-sections affects their resistance 

and rotation capacity and must be considered in the design. 

Local buckling prevents slender or semi-compact sections 

from attaining full capacity and greatly diminishes their 

load-bearing capability. This phenomenon is independent 

of the length of the member and hence is termed local 

buckling. Also, local buckling involves distortion of the 

cross-section and treats the safety and serviceability of steel 

structures. In I-shaped girder steel beams, flanges are parts 

of plate elements and are relatively thin, and they may 

undergo local buckling when subjected to compressive 

forces.  

 

5. Studied cases 

The design procedure of beams predominantly loaded in 

bending is accomplished by considering three cross 

sections designated as S1, S2, and S3. Sections are bi-

symmetric I-shaped sections designed using different 

flange thicknesses, as shown in Figure 2 and Table 1, made 

of elastic material (E=210 GPa, v=0.3) and single span 

length L=20 m. The beams are simply supported and 

subjected to a uniform distributed load along the beam, 

with different load positions in the cross-section level. 

Besides, the effect of variation of lateral boundary 

conditions at mid-span. According to EC3 classification 

criteria, it has been found that for all analyzed sections, the 

web section is classified in Class 3, while flange sections 

are of Class 1, 2, or 3, depending on the aspect ratio. 

Therefore, according to the EC3 classification criterion, all 

sections S1, S2, and S3 are hence of class 3, being semi-

compact. 

The dimension of the cross sections is defined as follow: 

1300   ,  300   ,  13 w wh mm b mm t mm= = =  

(9) 

1 2 330   ,  20    ,   15 f f ft mm t mm t mm= = =  

Table 1: Cross-section geometrical properties of S1, S2 and S3 

Geometrical 

properties 

Symb

ols 

Flange thicknesses (mm) 

tf 1 = 30 tf 2 = 20 tf 3 = 15 

Cross-sectional 

area (cm2) 
A 349 289 259 

Second moment 

of area about y 

(cm4) 

 

Iy 

 

1034148.3 760768.3 627100.8 

Second moment 

of area about z 

(cm4) 

Iz 13523.8 9023.8 6773.8 

Section modulus 

about the y-axis 

(cm3) 

Wely 15208.06 11354.7 9430.08 

Torsion constant 

(cm4) 
It 635.2 255.2 162.7 

Warping 

constant (cm6) 

 

Iw 

 

59805628 39307676 29283564 

Static moment 

(cm3) 

 

Sy 

 

8731.2 6706.2 5705 

Elastic moment 

(KN.m) 
M ely 3573.8 2668.3 2216.07 

Shear modulus 

(Mpa) 
G 80769.2 

 

 
Fig. 2: Typical bi-symmetric steel I-shaped cross-section  

 

Cross section: The cross-sectional geometric dimensions of 

the finite element model in ABAQUS are depicted in 

Figure 3. The X and Y axes define the cross-section plane, 

and the Z-axis defines the longitudinal beam axis. Due to 

the simplicity of the geometry of I-section beams, an 8-

node doubly curved shell element S8R has been chosen to 

model the web and flanges of I-sections. 
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Fig. 3: Typical I-shaped section model implanted in ABAQUS 
with(a) Finite element model of the beam and (b) Boundary 

conditions 

Material properties: The material properties of steel grade 

S235 are used throughout this investigation. An elastic-

plastic stress-strain diagram without strain hardening for 

the entire model is used, as represented in Figure 4. 

 
Fig. 4: Bi-linear stress-strain diagram material modeling 

Boundary conditions: The used software allows the 

adoption of common boundary conditions, that is, fork-

support as shown in Figure 3(b) or complete fixity. The 

lateral restraints are modeled for restrained beams by 

applying a boundary condition at the node that cannot 

deflect laterally. 

Level of the load application: The beams are subjected to 

transverse uniformly distributed loads at different levels, at 

the shear center, the top flange, and the lower flange, 

respectively. 

6. Results and discussion 

Convergence: Mesh convergence tests have been verified 

to determine how many elements are required to ensure the 

efficacy and validation of the presented finite element 

model. 

 

6.1 Linear buckling analysis 

The assessment of the buckling resistance of beams 

requires the computation of the elastic critical moment, 

which strongly depends on both the bending moment 

diagram and end support limitations. A linear buckling 

analysis (LBA) is performed to determine the beam's elastic 

critical lateral torsional buckling moment. The eigenvalue 

analysis was conducted assuming small displacements, 

elastic material behavior, and no imperfections. This 

numerical study compares the primary extracted results of 

linear finite element (FE) LTBEAM and ABAQUS with 

the Eurocode3 (EC3) code's formula. These results are used 

for two purposes: First, to compare the buckling moment 

results to the analytical solutions Eurocode3 (EC3) and 

finite element (FE) results, which can be used later on to 

validate the computational model and then, the definition 

of the initial imperfections, based on the first buckling 

mode shape when executing the inelastic static RIKS 

analysis 3D models implanted in ABAQUS. Table 2 

summarizes the obtained results for all models and shows 

the obtained values of Mcr from the Eurocode3 (EC3) 

formula, LTBEAM, and ABAQUS calculated based on the 

first LTB first mode eigenvalue extracted from software. As 

it can be noticed, the displaced values of the critical 

buckling moment are strongly dependent on the flange 

thickness. Mcr values are higher for S1 (Class 1 flange) than 

cases with the lowest values for case S3 (Class 3 flange). 

This matter can be explained by the smaller slenderness 

ratio of the compressive flange for the two latter cases

Table 2: Extracted values for the elastic buckling moment 

  
 

Unrestrained beams 

crM  (KN.m) 

 

 
Restrained beams 

crM  (KN.m) 

 

Stiffener members 

crM  (KN.m) 

Sections Load position 
Eurocode3 

(EC3) 
LTBEAM ABAQUS LTBEAM ABAQUS ABAQUS 

S1 

Top 643.074 638.03 641.855 2624.8 2588.3 664.807 

Shear centre 850.133 846.11 863.755 2946.9 2827.825 897.039 

Bottom 1123.254 1127.2 1181.466 3305.7 3042.325 1218.503 

S2 

Top 356.806 356.78 366.209 1636.5 1664.832 382.591 

Shear centre 489.857 493.11 507.933 1848.1 1827.58 530.638 

Bottom 672.061 680.96 720.893 2085.2 1971.652 746.959 

S3 

Top 254.356 255.41 264.324 1206.3 1245.392 279.016 

Shear centre 352.919 356.43 370.116 1364 1371.704 389.594 

Bottom 489.433 496.99 530.244 1540.9 1482.504 552.005 
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Table 3: Comparison of LTBEAM and ABAQUS critical moments predictions for unrestrained beams 

 

Table 4: Comparison of LTBEAM and ABAQUS critical moments predictions for restrained beams 

Results show that the ABAQUS outcomes regarding Mcr 

are very close to those from LTBEAM. This comparison 

provides additional confidence to the ABAQUS model 

when it is used later on for the inelastic analysis, as it can 

be seen in Figure 5, which depicts graphically the variation 

of the values of Mcr in terms of flange's thickness or 

flange's slenderness, that a significant decrease when the 

flange thickness increases. Also, the position of the applied 

load in the section is critical as it shows larger values for 

Mcr when located on the compressive flange and minor 

values at the shear center and tension flange, respectively. 

The use of analytical Equatin (5) of EC3 leads to very close 

values of Mcr to results of LTBEAM and ABAQUS with 

slight differences both for unrestrained and restrained 

beams.  

The differences in values of Mcr are minimal and range 

from 0.6 to 8% depending on the variation of boundary 

conditions and load positions.  

Tables 3 and 4 demonstrate the differences (%) for 

unrestrained and restrained beams from LTBEAM and 

ABAQUS outcomes, respectively, regarding load positions.  

Furthermore, numerical linear buckling eigenvalues results 

have shown that the obtained values of Mcr have shown a 

good correlation between LTBEAM and ABAQUS. That is 

ABAQUS results that are, on average, 1.3% larger than the 

results of LTBEAM, with a standard deviation of 0.02. Mcr 

values at the bottom position are higher than the others. 

The reason is mainly because the bottom is in the tension 

zone, free from buckling. Figure 6 depicts the first mode 

shapes of the lateral torsional buckling for unrestrained, 

restrained beams equipped with two symmetrical transverse 

stiffeners. In Table 5, the design resistance buckling 

moment values are indicated.  

Sections S1 S2 S3 

Load position Top 
Shear 

centre 

 

Bottom 

 

Top 
Shear 

centre 

 

Bottom 

 

Top 
Shear 

centre 

 

Bottom 

 

Unrestrained 

(LTBEAM) 

cr  0.17361 0.2367 0.3153 0.1334 0.1843 0.2546 0.1148 0.1602 0.2234 

crM  

(KN.m) 

 

638.03 846.11 1127.2 356.78 493.11 680.96 255.41 356.43 496.99 

Unrestrained 

(ABAQUS) 

cr  0.17954 0.24161 0.33048 0.13726 0.19038 0.27020 0.11928 0.16702 0.23928 

crM  

(KN.m) 

 

641.855 863.755 1181.466 366.209 507.933 720.893 264.324 370.116 530.244 

Difference 

(%) 
 0.599 2.085 4.814 2.642 3.006 5.864 3.490 3.839 6.691 

Sections S1 S2 S3 

Load position Top 
Shear 

centre 

 

Bottom 

 

Top 
Shear 

centre 

 

Bottom 

 

Top 
Shear 

centre 

 

Bottom 

 

Restrained 

(LTBEAM) 

 

 

cr  0.734 0.824 0.924 0.611 0.690 0.779 0.5422 0.613 0.692 

crM  

(KN.m) 

 

2624.8 2946.9 3305.7 1636.5 1848.1 2085.2 1206.3 1364 1540.9 

Restrained 

(ABAQUS) 

cr  0.724 0.791 0.851 0.624 0.685 0.739 0.562 0.619 0.669 

crM  

(KN.m) 

 

2588.3 2827.825 3042.325 1664.832 1827.58 1971.652 1245.392 1371.704 1482.504 

Difference 

(%)
 

 1.410 4.210 8.657 1.701 1.122 5.759 3.138 0.564 3.939 
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(a) 

 
(b) 

Fig. 5: Elastic critical variation of critical LTB moment: (a) 

Unrestrained beam (b) Lateral restraint beam 

 
(a) 

 
(b) 

 
(c) 

Fig. 6: Lateral torsional buckling deformed shape of the first 
mode for (a) unrestrained, (b) restrained, and (c) beam with 

transverse stiffeners. 

 

Table 5: Design buckling resistance moment 

Sections 
Load 

position 0.4LT   LT  LT  1LT   ,b RdiM

(KN.m) 

,u el yiM M=   

(KN.m) 

S1 

Top 2.357 

0.76 

4.097 0.134 478.901 

3573.894 Shear centre 2.050 3.304 0.17 607.562 

Bottom 1.783 2.691 0.212 757.665 

S2 

Top 2.734 5.200 0.103 274.841 

2668.366 Shear centre 2.334 4.034 0.136 362.897 

Bottom 1.992 3.164 0.177 472.300 

S3 

Top 2.951 5.899 0.090 199.446 

2216.070 Shear centre 2.505 4.513 0.120 265.928 

Bottom 2.127 3.494 0.159 352.355 

 

6.2 Inelastic buckling analysis results 

The discussion is based on the derived load-deflection 

curves from the modified RIKS analysis implanted in 

ABAQUS. Hence, for every single step, the displacement 

and stiffness matrices are updated, including initial 

geometrical imperfection, which is liable to trigger off 

torsion or lateral bending, is obviously of concern, and 

typically, with residual stresses (not considered in this 

study). 
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6.2.1 Unrestrained beam 

First of all, it should be noted that both load and boundary 

conditions have very significant effects on the inelastic 

LTB failure mode results. The results from the modified 

RIKS method are given in terms of load proportionality 

factor λ (LPF). The applied load on the model must be 

multiplied by the LPF to determine the actual critical load, 

indicating the point right before instability occurs. Table 6 

gives the load proportionality factor (LPF) and the actual 

critical load of the unrestrained beam. 

 

Table 6: LPF and actual failure load 

Sections 
Load 

positions 

Load (P) 

(KN) 
LPF 

Actual failure 

load (KN) 

S1 

 

Top 25.597 1.07 27.388 

Shear 

Centre 
34.463 1 34.463 

Bottom 47.19 0.96 45.302 

S2 

Top 14.659 1.16 17.004 

Shear 

Centre 
20.33 1.06 21.549 

Bottom 28.89 0.99 28.601 

S3 

Top 10.591 1.21 12.815 

Shear 

Centre 
14.863 1.09 16.200 

Bottom 21.271 1 21.271 

 

Generally speaking, the slope of the load-deflection curve 

represents an equivalent (generalized) stiffness to express 

the resistance to LTB. In common practice, the point 

corresponding to zero slopes is the critical load and the 

maximum associated moment in the vertical plane. This 

moment is regarded as the critical moment, which is very 

close to flange buckling by bending about the weak axis of 

the cross-section.  

Figure 7 represents the outcomes of the unrestrained 

beams, while Figure 9 is intended to give the results of 

restrained beams during the whole loading history by 

considering three load positions. Figures 7 and 9 show that 

the beams behave nonlinearly due to the initial geometric 

imperfections and the nonlinear geometry conditions. 

As far as unrestrained beams are concerned, Figure 7 

depicts the load-lateral deflection curves. As can be seen, 

two distinct branches are characterized by linear pre-

critical behavior for the first branch, and an inelastic post-

buckling behavior is recognized in the second branch, 

namely the decrease in stiffness. The load-lateral deflection 

curve starts to soften, which means that the capability to 

resist LTB starts to degrade. The observed tendency of all 

studied I-beams subject to LTB to twist about their 

longitudinal axis, and it is suspected that such I-beams 

contain a form of negative rotational stiffness about their 

longitudinal axis. 

It is evident from Figure 7 that linear load-deflection 

behavior exists before inelastic lateral buckling starts to 

occur. It can be deduced from Figure 7 that when a 

buckling instability occurs, the beam contains a form of 

negative stiffness. It is evident that varying flange 

slenderness, the member capacity, is governed by the 

inelastic capacity, as mentioned in the previous section. In 

the cases of unrestrained beams, a soft decrease in stiffness 

in the post-buckling behavior can be observed.  

 
(a) 

 
(b) 

 
(c) 
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Fig. 7: Critical load versus lateral deflection of unrestrained beam 

for (a) sections S1, (b) S2, and (c) S3, respectively. 

 
Fig. 8: Lateral torsional buckling for the unrestrained beam at the 

ultimate increment 

 

Figure 8 shows the deformed shape of the unrestrained 

beam at the ultimate increment with load applied at the top 

flange of S1. It produces a large lateral displacement due to 

the beam's high bending stiffness without considering the 

effect of stiffeners on the behavior of the whole I-beam. 

 

6.2.2 Restrained beam 

The same arguments discussed in the above section apply 

to laterally restrained beams. However, the critical 

buckling load in the post-buckling characteristic of the 

sudden phenomenon has a slight slope after the buckling 

point. The lateral restraint is located in the middle of the 

top flange of the beam. This measure prevents the beam 

from deflecting laterally and increases consequently Mcr. 

Figure 9 shows that the thicker flange leads naturally to a 

more significant value of Pcr. This matter is evident from 

the slope of the curve after the critical load is reached, and 

a beam was observed to have deformed significantly while 

the current load decreased. Figure 10 shows the deformed 

shape of the restrained beam at the ultimate stage with load 

applied at the top flange of S1. Table 7 gives the load 

proportionality factor (LPF) and the actual critical load of 

the restrained beam. 

Table 7: LPF and actual failure load 

Sections 
Load 

positions 

Load (P) 

(KN) 
LPF 

Actual failure 

load (KN) 

S1 

 

Top 103.532 0.96 99.390 

Shear 

Centre 
113.113 0.86 97.277 

Bottom 121.693 1.64 199.576 

S2 

Top 66.768 0.94 62.761 

Shear 

Centre 
73.295 0.85 62.300 

Bottom 79.073 1.65 130.470 

S3 

Top 50.018 0.98 49.017 

Shear 

Centre 
55.091 0.98 53.989 

Bottom 59.541 1.71 101.815 

Once again, as it was for unrestrained beams, Figure 9 

gives two distinct behaviors, pre- and post-bucking, in 

terms of load vs. lateral deflections. For laterally restrained 

beams, even with higher values of critical loads, the loss of 

stiffness is remarkable, with a more pronounced tendency 

with slight variation in the lateral displacements. The 

buckling capacity of LTB significantly increases when 

using a kind of lateral restraint, unlike the unrestrained 

beam. However, when the critical load is reached, a severe 

decrease in stiffness of all beams, especially for S1 

compared to S2 and S3 similar decreases have been noticed 

with less brutality. Indeed, when the beam approaches its 

collapse state, it becomes increasingly flexible in its 

stiffness. According to the results of the present study, and 

surprisingly enough, while expecting the failure of beams 

as the lateral deflection becomes more significant with a 

severe drop of the stiffness, a positive stiffness appears in 

all studied cases with different amounts, particularly when 

the load is applied in the tension flange. To the authors' 

knowledge, that is the first time it has been reported, 

expressing the particular effect of the lateral restraint 

parameter, which plays an essential role in the post-

buckling behavior of semi-compact class 3 I-beams shaped. 

However, as previously mentioned, this tendency is less 

critical when dealing with unrestrained beams. It is 

probably because the beam is stable, stemming from the 

intermolecular structures getting closer to each other and 

automatically gaining certain rigidity as the displacement 

decreases, leading to a positive stiffness to the beam. 

Figure 11 illustrates the deformed shape of the beam with 

stiffener members at ultimate increment with load applied 

at the top flange of S1, respectively.  

 
(a) 
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(b) 

 
(c) 

Fig. 9: Critical load versus lateral deflection of restrained beam 
for (a) sections S1, (b) S2, and (c) S3, respectively 

 

 
Fig. 10: Lateral torsional buckling for the restrained beam at the 

ultimate increment 

 
(a) 

 
(b) 

Fig. 11: Lateral torsional buckling for (a) beam with stiffeners; 

(b) restraint and stiffeners together 

 

6.3 Local buckling observations  

First, it is worth recalling that study case 3, i.e., S3, with 

lateral restraint, was composed of symmetrical flanges of 

class 3 along with the web. The lateral restraint was 

considered to avoid lateral torsional buckling. Figures 12-

15 depict that for S3 exclusively having flange Class 3, the 

local buckling instability phenomenon at the ultimate 

loading increment results in local deformation of flanges of 

I beam: upper and lower flanges, respectively. It can also 

be said that an interaction of LTB with local buckling in 

the upper flange phenomena has occurred. As seen in 

Figure 12-14, the general shape of the deformation looks 

like a continuous thin plate in flexion, which indicates that 

flanges are suffering from local buckling. The obtained 

results are in concordance with EC3 clause 6.2.1 for class 3 

cross-sections, where the resistance of all the compression 

parts of a cross-section that is of Class 3 should be based 

on an elastic distribution of strains across the cross-section. 

For Class 1 and 2 flanges, the local buckling was not 

observed, which is following EC3, which envisages some 

exceptions to the general procedure for the classification. 

For cross sections with a class 3 web and Class 1 or 2, 

flanges may be classified as class 2 cross sections with an 

effective web in accordance (clause 5.5.2(11)).  

 
Fig. 12: Local buckling at the upper flange of the stiffened 

beam at ultimate increment with load applied at the top of 

the flange and shear center of S3, respectively. 

 



 
B. W. Abuteir and A. Labed                                                             Numerical Methods in Civil Engineering, 8-1 (2023) 45-57 

55 

 

 
 

Fig. 13: Local buckling at the upper flange of stiffened 

beam at ultimate increment with load applied at the bottom 

of the flange of S3. 

 
Fig. 14: Lateral torsional buckling without local buckling 

appearance at the upper flange of the stiffened beam at 

ultimate increment with different positions of applied load 

of S1 and S2. 

 
Fig. 15: Local buckling at the upper flange of stiffened 

with stiffeners members along the beam at ultimate 

increment with load applied at the bottom of the flange of 

S3. 

 

7. Conclusion 

Lateral Torsional Buckling (LTB) is a buckling mode 

involving lateral deflection and twisting in flexure 

members. This study investigates the potential of bi-

symmetrical semi-compact beams subject to LTB. 

Although both elastic and inelastic behaviors of LTB are 

captured in this study, this research has some limitations as 

the effect of residual stresses is not considered. A series of 

parameters have been investigated, including member 

slenderness, degree of lateral restraint, type of loadings, 

initial imperfections, and stiffener members. Some 

concluding remarks can be drawn.  

 

- It was found that the studied parameters strongly 

affect the capacity of a beam to undergo large 

displacements in the inelastic range. 

- The present study's finding confirms the statement 

made by Uy [34]: when buckling occurs in the 

inelastic range, the stiffness is reduced, and the 

post-buckling response is generally affected rather 

than the ultimate load capacity.  

- The results of this study confirm the statement 

made in EC3 6.2.2.4 (clause 5.5.2(11)) about the 

compressive flange of sections 1 or Curves 9 and 

10, highlighting the significant effects of 

parameters. 

Regarding the effect of flange's class in the global 

behavior of class 3 sections, results confirm the 

EC3 statement in clause 5.5.2, dealing with some 

exceptions to the general procedure for the 

classification. When the flange is of Class 1 or 2, 

compressive dimensions (or slenderness) confirm 

for cross sections with a Class 3 web, and Class 1 

or 2 flanges may be classified as Class 2 cross 

sections with an effective web in accordance 

(clause 5.5.2(11)). 

- The load position in the cross-section and the 

lateral conditions can improve the carrying 

capacity of beams to LTB, especially in their 

inelastic response concerning these parameters. 

Choosing a compressive flange of class 1 has been 

found to give better results regarding the LTB 

resistance of the whole section. Although 

imperfections are considered, higher resistance 

levels are usually obtained for thicker compressive 

flange along with the load locations in the cross-

section. 

- A post-buckling behavior is observed in the 

restrained beams. For laterally restrained beams 

under high levels of large deflection, the 

intermolecular structures of the material get closer 

to each other and automatically provide a certain 

additional positive rigidity to the beam, leading to 

post-elastic beam stability. 

- Placing several transverse stiffeners has shown a 

particularly positive contribution to the carrying 

capacity of beams to LTB. More investigation is 

needed to confirm such a result. 

- Also, in future work, the interaction of LTB and 

the local buckling, being not a limiting criterion, 

by the more refined meshing of the web section, 

can be of interest. 

Finally, the natural resistance to LTB of the semi-

compact steel section is mainly related to the 

flange's class section. Better performance of I-

shaped steel structures can be observed with 

flanges class 1 or 2 as they can develop plastic 

behaviors. 
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