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Abstract: 

It is possible to resolve numerical issues by utilizing a method known as the conventional scaled 

boundary finite element method (also known as SBFEM), which is a dimension reduction 

technique. This method can be utilized in conjunction with mesh-free technologies in order to 

enhance the numerical characteristics of the conventional SBFEM. Within the scope of this 

investigation, a novel interpretation of the SBM is presented that makes use of the advantages 

offered by the meshless local Petrov Galerkin method. Using the moving Kriging interpolation 

(MKI) method, it is possible tocreate shape functions that conform to the requirements of the 

Kronecker delta function property. The interpolating scaled boundary local Petrov Galerkin 

method that was then proposed has the ability to implement essential boundary conditions 

(ISBLPGM) directly. This new method offers a number of benefits in comparison to scaled 

boundary approaches that have been presented in the past. It is optional to have a mesh that 

has been predefined, and the boundary conditions can be determined with very little additional 

effort. It has been demonstrated that the numerical approach being presented yields results that 

are in very good agreement with analytical and other numerical approaches. Solving the 

benchmark numerical problems allows an evaluation of the effectiveness of the proposed 

method as well as its precision.

 

1. Introduction 

Partial differential equations (PDEs) can be applied to the 

majority of engineering problems in order to define and 

solve them. These strong forms of equations are amenable 

to being solved numerically through using methods such as 

continuum and discrete mechanics-based methods [1]. Some 

numerical techniques, such as the finite difference method 

(FDM), are utilized to solve partial differential equations 

and previously used to approximate their solutions. The 

method of finite differences is a powerful numerical 

technology that has been utilized in the past for a variety of 

different types of analyses [2, 3].  

In some circumstances, it may be possible to arrive at a more 

workable solution by lowering the order of the differential 

equations. 
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Utilizing the weighted residual method [4] is a way to order 

of differential equations can be reduced to integral 

equations. The resulting integral equations, sometimes 

referred to as weak-form equations, can be analyzed by 

applying a wide variety of numerical methods. 

Regarding problems involving PDEs in their weak form, the 

traditional finite element method, also known as FEM, is 

useful for approximating solutions. For example, the finite 

element method can be utilized to investigate both 

elastostatics and elastodynamics successfully [5, 6]. 

However, the FEM and the FDM are useful tools for 

numerical computation, but both of these approaches also 

have some limitations in dealing with various mechanical 

problems. These conventional numerical methods are only 

capable of conducting an analysis of unbounded media by 

adding various numerical approximations and making 

assumptions. In both the FEM and the FDM, it is necessary 

to discretize the entire domain. The finite element model 

(FEM) needs to use predefined shape functions, and can 

increase the level of accuracy, particularly for stresses. 
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Mesh-free technologies have the potential to be viable 

alternatives for the solution of partial differential equations. 

The application of mesh-free methods can significantly 

reduce the drawbacks of FDM and FEM, that have been 

previously discussed. These methods eliminate the 

requirement for a unique mesh, and the resultant stress field 

has the potential to be more accurate than those produced by 

FDM and FEM, respectively. There have been many 

different mesh-free methodologies developed up until this 

point. As an illustration, the mesh-free (or meshless) local 

Petrov-Galerkin (MLPG) method [9], the element-free 

Galerkin (EFG) technology [7], the reproducing kernel 

particle approach (RKPM) [8], and the radial point 

interpolation method [10] were all developed. 

For the purpose of resolving either the weak or the strong 

form of PDEs, discretizing boundary methods is an 

alternative to full-domain discretizing techniques (FEM and 

FDM). The boundary element method is a well-known 

numerical method that provides solutions to problems by 

discretizing domain boundaries (BEM). Recent engineering 

research has made use of the time-tested boundary element 

method (BEM) to investigate a wide range of engineering 

problems. The BEM was able to analyze seepage, as well as 

static [11, 12], dynamic [15, 16], and static [13, 14] issues 

successfully. For the boundary element method to work, the 

essential or fundamental solution, also known as the Green 

function, must satisfy the governing equations present in the 

problem's domain [17]. Calculating this analytical solution 

for a number of different problems could take a significant 

amount of time. The main disadvantage of the BEM is its 

reliance on a fundamental solution. SBM does not need any 

fundamental solution. In comparison with the PML, SBM is 

very similar in derivation and solving procedures. But the 

SBM can reduce the dimensional problem by one. 

In the past twenty years, Wolf and Song [18] have proposed 

a procedure for boundary discretization. This procedure uses 

finite element technology to solve problems on the boundary 

of the domain, while an analytical approach is used to solve 

problems in the interior of the domain. The Scaled Boundary 

Method (SBM), which is a relatively new methodology, 

does not require any Green function (unlike the conventional 

BEM). This semi-analytical approach (the scaled boundary 

method) combines the benefits of two of the most popular 

FEM and BEM approaches. Within the SBM, the Cartesian 

coordinate system needs to be converted into an entirely new 

coordinate system (scaled boundary coordinate system). The 

achieved partial differential equations in the mapped system 

can be expressed in the new form using a scaling centre (SC) 

and two dimensionless local coordinates (η, 𝜉). It is possible 

for two-dimensional (2D) problems. The scaled boundary 

method's domain discretization scheme is illustrated in 

Figure 1. 

 
Fig. 1: Domain discretization scheme of the scaled boundary 

method. 

In the past, a number of different problems have been tackled 

with the assistance of the scaled boundary method. Seepage 

[20, 21], static [22, 23], and dynamic issues [24, 25] are all 

examples of problems that have been analysed using this 

method. 

The traditional SBM can be modified in a variety of different 

ways to achieve better or similar results (in a more efficient 

manner) using this strategy. In recent decades, there has 

been an increased focus on the envisioned benefits resulting 

from the combination of" for clarity mesh-free technology 

with SBM [37]. Boundary discretization mesh-free methods 

are the only way to solve governing differential equations, 

and they achieve this only by discretizing the problem's 

boundary. This allows for a significant reduction in the 

number of degrees of freedom (DOFs) in the model. It is 

possible to consider the boundary node method (BNM), 

which was initially proposed by Mukherjee and Mukherjee 

in 1997 [26], as one of the pioneering boundary-type mesh-

free methods that were suggested in this area of research. 

Zhu and Atluri [27] presented the LBIE method, which 

stands for the local boundary integral equation. Both the 

BNM and the LBIE construct shape functions along with 

their derivatives with the help of an approximation known 

as moving least squares (MLS). As a direct consequence of 

this, the Kronecker delta function property is not satisfied by 

the aforementioned procedures. For the purpose of analysing 

engineering problems, Liu and Gu [28] proposed the 

boundary point interpolation method, also known as BPIM. 

Because shape functions are built with the boundary point 

interpolation method, which employs the point interpolation 

technique, the Kronecker delta function property is 

possessed by shape functions. 

Enhanced versions of the original SBM were presented in 

the past using the concept of meshless numerical algorithms. 

These enhanced versions were based on the local Petrov 

Galerkin and element-free Galerkin numerical technologies 

[29, 30]. These methodologies obtain their results by 

applying the MLS approximation to the data. Because the 

application of the MLS approximation in the construction of 

shape functions results in non-interpolating functions, these 
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studies present a brand-new method for modifying the MLS 

shape functions. The new procedure does provide the 

interpolating MLS shape functions; however, as a result of 

utilizing it, the scaled boundary mesh-free methods that 

were discussed earlier become excruciatingly sluggish and 

time-consuming. 

Recently, a number of researchers have been successful in 

solving engineering problems by employing a technique 

known as the radial point interpolation-based scaled 

boundary method (RPISBM). Investigations into two-

dimensional elasto-static problems [33], crack problems 

[32], and fracture analysis of piezoelectric material [31] 

were all conducted with the assistance of the RPISBM. 

Because the boundary of the 2D problems is one-

dimensional, using a radial basis in the scaled boundary 

point interpolation technology is not required. However, the 

use of radial basis is still possible. Hasanzadeh et al. [34] 

proposed a PIM-based scaled boundary mesh-free method 

as a solution to seismic soil-structure interaction problems. 

In the current investigation, a novel scaled boundary mesh-

free method is presented. This method has been created by 

combining the standard SBM with the meshless local Petrov 

Galerkin method. In order to generate shape functions for 

the scaled boundary method, [35] we have made use of the 

moving Kriging interpolation (MKI) method for the very 

first time. The proposed interpolating scaled boundary local 

Petrov Galerkin method can easily incorporate necessary 

boundary conditions thanks to the Kronecker delta function 

property of the shape functions that are produced by the MKI 

(ISBLPGM). This new method offers a number of benefits 

in contrast to scaled boundary approaches that have been 

presented in the past. Both the definition of boundary 

conditions and the creation of a predefined mesh are 

optional, and the former does not require any additional 

labor. The following is an outline of the paper's structure: 

The fundamental equations of the interpolating scaled 

boundary local Petrov Galerkin method are broken down in 

excruciating detail in the following section of this article. In 

this section, a number of numerical examples that serve as 

benchmarks will be solved in order to assess the accuracy of 

the proposed methodology and to demonstrate how effective 

this novel numerical approach is. In the final section, we 

cover the discussions, and then we draw some conclusions. 

 

2. The interpolating scaled boundary local Petrov 

Galerkin method 

 

An analytical approach is taken in the radial direction, while 

a numerical approach is taken in the circumferential 

direction when the SBM is first proposed (as a boundary 

element method without the requirement of essential 

solutions or Green functions). Because of this, the SBM can 

be viewed as a method semi-analytical [36]. A mapping 

strategy is utilized in the conventional SBM in order to 

convert the governing PDE to a set of ODEs (Cauchy–Euler 

differential equations in the case of static models). Within 

the context of the SBM, the domain edge is discretized in 

relation to a specific point (which should be visible from the 

whole of the boundary and can be named the scale centre). 

As has been previously stated, the point that is chosen to 

serve as the scale centre, which is denoted by the coordinates 

(x0, y0), must be visible from every single point on the 

boundary of the domain (as shown in Figure 1). The 

mapping procedure of the domain from the Cartesian 

coordinate system to the scaled boundary coordinate system 

is the primary example of the mathematical work required in 

the application of the SBM. Following this procedure for 

mapping, each point in the scaled boundary coordinate 

system can be defined by using the coordinates of the scale 

centre and the corresponding point in the discretized 

boundary, as shown by Equations (1) and (2): 

𝑥(𝜉) = 𝑥0 + 𝜉 𝑥(𝜂) (1) 

𝑦(𝜉) = 𝑦0 + 𝜉 𝑦(𝜂) (2) 

In the equations that are presented, 𝜉 and η stand for the 

radial coordinate and the circumferential coordinate, 

respectively. It is possible to extract the field variable by 

making use of the new coordinate system if such a 

geometrical mapping procedure is used, as it is defined in 

Equation (3). 

{𝑢ℎ(𝜉, 𝜂)} = [𝑁ℎ(𝜂)]{𝑢ℎ(𝜉)} (3) 

uh(𝜉) is a set of n functions of [30], and in this equation, 

[Nh(η)] is the matrix of shape functions. Equation (4) can 

be used to determine the strains present in the scaled 

boundary coordinate system (4). 

{𝜀ℎ(𝜉, 𝜂)} = [𝐿]. {𝑢ℎ(𝜉, 𝜂)} (4) 

Because the boundary of the domain is mapped to the scaled 

boundary coordinate system, the conventional differential 

operator L cannot be used to calculate strains in the new 

system; rather, a new operator called L* must be used in its 

place. This is because the new system is a different kind of 

differential operator. The following is one way to define this 

brand-new operator: 

[𝐿∗] = [𝑏1(𝜂)]
𝜕

𝜕𝜉
+

1

𝜉
[𝑏2(𝜂)]

𝜕

𝜕𝜂
 (5) 

Where [b1(η)] and [b2(η)] represent the coordinate functions 

and the shape functions, respectively. These matrices can be 

calculated using Equation (6) and Equation (7).  

[𝑏1] =
1

|𝑗𝑎𝑐|
[

𝑦(𝜂), 𝜂 0

0 −𝑥(𝜂), 𝜂

−𝑥(𝜂), 𝜂 𝑦(𝜂), 𝜂

] (6) 
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[𝑏2] =
1

|𝑗𝑎𝑐|
[
−𝑦(𝜂) 0

0 𝑥(𝜂)

𝑥(𝜂) −𝑦(𝜂)
] (7) 

In these equations, |jac| represents the Jacobean of the 

support domain and its value can be calculated as follows: 

|𝑗𝑎𝑐| = 𝑥(𝜂)𝑦(𝜂),𝜂− 𝑦(𝜂)𝑥(𝜂),𝜂 (8) 

In Equation (8), local coordinates and derivatives of them 
can be calculated as follows: 

𝑥(𝜂) = [𝑁1(𝜂)𝑁2(𝜂)𝑁3(𝜂)…… . 𝑁𝑁(𝜂)]{

𝑥1

𝑥2

⋮
𝑥𝑛

} (9) 

𝑦(𝜂) = [𝑁1(𝜂)𝑁2(𝜂)𝑁3(𝜂)…… . 𝑁𝑁(𝜂)]{

𝑦1

𝑦2

⋮
𝑦𝑛

} (10) 

𝑥(𝜂), 𝜂 = [𝑁1(𝜂)𝑁2(𝜂)𝑁3(𝜂)…… . 𝑁𝑁(𝜂)], 𝜂 {

𝑥1

𝑥2

⋮
𝑥𝑛

} (11) 

𝑦(𝜂), 𝜂 = [𝑁1(𝜂)𝑁2(𝜂)𝑁3(𝜂)…… .𝑁𝑁(𝜂)], 𝜂 {

𝑦1

𝑦2

⋮
𝑦𝑛

}      (12) 

It is possible to determine the strain field by combining 

Equation 3, 4, and 5, and then it is possible to determine the 

stress field by multiplying the resulting strain field by an 

elasticity matrix using the resultant strain field. The resulting 

stress field relationship for the scaled boundary method is 

displayed in Equation 13. 

{𝜎(𝜉, 𝜂)} = [𝐷]{𝜀(𝜉, 𝜂)}

= [𝐷][𝐵11(𝜂)]{𝑢ℎ(𝜉)},𝜉

+
1

𝜉
[𝐷]{𝜀(𝜉, 𝜂)}

= [𝐷][𝐵21(𝜂)]{𝑢ℎ(𝜉)} 

(13) 

Where  

[𝐵11(𝜂)] = [𝑏1(𝜂)][𝑁(𝜂)] (14) 

[𝐵21(𝜂)] = [𝑏21(𝜂)][𝑁(𝜂)],𝜂 (15) 

In order to fulfil the equilibrium requirement, the term 

"virtual work" should be implemented. In the local Petrov 

Galerkin method, in contrast to the Galerkin-based methods, 

the virtual displacement field is formed by using the test 

functions [w(η)], where the defined test functions are 

separate from the shape functions. In other words, the test 

functions are not the same thing as the shape functions. In 

light of the information presented above, the virtual 

displacement field can be stated as follows: 

{𝛿𝑢(𝜉, 𝜂)} = [𝑤(𝜂)]{𝛿𝑢(𝜉)} (16) 

 

Using Equation 4 and Equation 5, the virtual strain field can 

be introduced like Equation 17. 

{𝛿𝜀(𝜉, 𝜂)} = [𝐿∗]{𝛿𝑢(𝜉, 𝜂)} = [𝐿∗][𝑤(𝜂)]{𝛿𝑢(𝜉)}

= [𝐵12(𝜂)]{𝛿𝑢(𝜉)},𝜉

+
1

𝜉
[𝐵22(𝜂)]𝛿{𝑢ℎ(𝜉)}  

(17) 

Where  

[𝐵12(𝜂)] = [𝑏1(𝜂)][𝑤(𝜂)] (18) 

[𝐵22(𝜂)] = [𝑏2(𝜂)][𝑤(𝜂)],𝜂 (19) 

The principle of virtual work (by ignoring body force) can 

be written as: 

∫{𝛿𝜀(𝜉, 𝜂)}𝑇

𝑣

{𝜎ℎ(𝜉, 𝜂)}𝑑𝑉 − ∫{𝛿𝑢(𝜂)}𝑇

𝑠

{𝑡(𝜂)}𝑑𝑆 = 0 (20) 

Where the first and the second terms are related to the 

internal and the external work, respectively. By substituting 

Equation (17) and Equation (13) into the corresponding 

terms in Eq. (20) and after some mathematical manipulation, 

the expression of virtual work yields: 

{𝛿𝑢}𝑇([𝐸11]{𝑢},𝜉

+ [𝐸12]𝑇{𝑢})∫ {𝛿𝑢(𝜉)}𝑇[[𝐸11]𝜉{𝑢ℎ(𝜉)},𝜉𝜉 + [𝐸11]
1

0

+ [𝐸12]𝑇 − [𝐸21]] {𝑢(𝜉)},𝜉 − [𝐸22]
1

𝜉
{𝑢(𝜉)}] 𝑑𝜉

− {𝛿𝑢}𝑇 ∫ [𝑤]
𝜂=+1

𝜂=−1

𝑇

{𝑡(𝜂)}𝑑𝜂 = 0 

(21) 

In the above equation, E11, E12, E21, and E22 are coefficient 

matrices of the scaled boundary local Petrov Galerkin 

method and can be defined as follows: 

𝑥(𝜂) = [𝑁1(𝜂)𝑁2(𝜂)𝑁3(𝜂)…… . 𝑁𝑁(𝜂)]{

𝑥1

𝑥2

⋮
𝑥𝑛

} (22) 

𝑦(𝜂) = [𝑁1(𝜂)𝑁2(𝜂)𝑁3(𝜂)…… . 𝑁𝑁(𝜂)]{

𝑦1

𝑦2

⋮
𝑦𝑛

} (23) 

𝑥(𝜂), 𝜂 = [𝑁1(𝜂)𝑁2(𝜂)𝑁3(𝜂)…… . 𝑁𝑁(𝜂)], 𝜂 {

𝑥1

𝑥2

⋮
𝑥𝑛

} (24) 

𝑦(𝜂), 𝜂 = [𝑁1(𝜂)𝑁2(𝜂)𝑁3(𝜂)…… .𝑁𝑁(𝜂)], 𝜂 {

𝑦1

𝑦2

⋮
𝑦𝑛

}      (25) 

In the above equations, [D] is the elasticity matrix. It should 

be noted that |J| in Equations (22-25) is not identical to |jac| 

in Equations (6-7). |jac| is the Jacobean of the support 

domain, while |J| is the Jacobean of the integration cell. By 

setting both terms of Eq. (21) to zero, Equation (26) and 
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Equation (27) can be achieved. The solution procedure of 

these equations is explained in detail in [29]. 

{𝑃} = [𝐸11]{𝑢},𝜉 + [𝐸12]{𝑢} (26) 

[𝐸11]𝜉2{𝑢(𝜉)},𝜉𝜉 + [[𝐸11] + [𝐸12] − [𝐸21]]𝜉{𝑢(𝜉)},𝜉
− [𝐸22]{𝑢(𝜉)} = {0} 

(27) 

In the current work, the moving Kriging interpolation (MKI) 

method is used to create the shape functions and their 

derivatives. The MKI shape functions can be determined 

using Equation (28). 

{𝑁(𝜂)} = {𝑝(𝜂)}𝑇[𝐴] + {𝑟(𝜂)}𝑇[𝐵] (28) 

Where {p (η)} is the vector of polynomial basis (for the 

related Gauss point). Other coefficient matrices can be 

determined by:  

[𝐴] = ([𝑃]𝑇[𝑅]−1[𝑃])−1[𝑃]𝑇[𝑅]−1 (29) 

[𝐵] = [𝑅]−1([𝐼] − [𝑃][𝐴]) (30) 

{𝑟(𝜂)}𝑇 = {𝛾(𝜂, 𝜂1)… 𝛾(𝜂, 𝜂𝑁)} (31) 

Observe that in the above equations N is the number of nodes 

in the support domain, and [I] is the unit matrix. The 

matrices of [P] and [R] should be calculated by: 

[𝑃] =

[
 
 
 
 
1 𝜂1 𝜂1

2 … 𝜂1
𝑚−1

1 𝜂2 𝜂2
2 … 𝜂2

𝑚−1

1 𝜂3 𝜂3
2 … 𝜂3

𝑚−1

⋮ ⋮ ⋮ ⋱ ⋮
1 𝜂𝑁 𝜂𝑁

2 ⋯ 𝜂𝑁
𝑚−1]

 
 
 
 

 (32) 

[𝑃]

=

[
 
 
 
 
𝛾(𝜂1 , 𝜂1) 𝛾(𝜂1 , 𝜂2) 𝛾(𝜂1, 𝜂3) … 𝛾(𝜂1, 𝜂𝑁)

𝛾(𝜂2, 𝜂1) 𝛾(𝜂2, 𝜂2) 𝛾(𝜂2, 𝜂3) … 𝛾(𝜂2, 𝜂𝑁)

𝛾(𝜂3, 𝜂1) 𝛾(𝜂3, 𝜂2) 𝛾(𝜂3, 𝜂3) … 𝛾(𝜂3, 𝜂𝑁)
⋮ ⋮ ⋮ ⋱ ⋮

𝛾(𝜂𝑁 , 𝜂1) 𝛾(𝜂𝑁, 𝜂2) 𝛾(𝜂𝑁, 𝜂3) ⋯ 𝛾(𝜂𝑁 , 𝜂𝑁)]
 
 
 
 

 
(33) 

In Equation (33), the variable γ can be defined using the 

following: 

𝛾(𝜂𝑖 , 𝜂𝑗) = 𝑒−𝑐||𝜂𝑖−𝜂𝑗||
2
 (34) 

Where c is a constant number smaller than one. The 

constructed shape functions using Equation (28) has the 

property of the Kronecker delta function. The first-order 

derivation of the shape functions can be determined 

straightforwardly by: 

{𝑁(𝜂)},𝜂 = {𝑝(𝜂)},𝜂
𝑇
[𝐴] + {𝑟(𝜂)}𝜂

𝑇
[𝐵] (35) 

For simplicity, the used test functions are selected equal to 

the {r(η)} in Equation (31).  

 

3. Numerical verifications 

In this section, three benchmark numerical examples are 

solved by the proposed ISBLPG method to evaluate the 

accuracy and efficiency of this approach. 

3.1 Cantilever beam subjected to a uniformly 

distributed load  

As the first example, a cantilever beam which is subjected to 

a uniformly distributed load at the end of the beam, is 

selected to analyze. Material properties are as follows 

E=100000 kPa (elastic modulus), v=0.33 (Poisson's ratio). 

The geometrical dimensions of the beam being considered  

are selected as L=12, D=8. The prescribed model for this 

investigation is shown  in Fig. 2. The load intensity is chosen 

as 2.5 KN. 

The exact solution to this problem was presented in the 

literature. Displacement in the y-direction can be determined 

using: 

𝑢𝑦(𝑥, 𝑦 = 0) =
𝑝

6𝐸𝐼
((4 + 5𝑣)

𝐷2𝑥

4
+ (3𝐿 − 𝑥)𝑥2)      (36) 

Where I is the moment of inertia. Figure 3.a illustrates the 

deformed shape of the beam, and Figure 3.b depicts the 

displacements calculated along the length of the beam. 

 
Fig. 2: Prescribed cantilever beam model and applied load for 

the first example.  

As can be seen from this figure, excellent agreement is 

achieved between the ISBLPGM and the exact solution. 

(a) 

 

(b) 

  
Fig. 3: (a) Deformed shape of the beam (500 times larger than 

the real answer). (b) The calculated and the exact 
displacements along the length of the beam. 
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3.2 Cantilever beam subjected to a bending moment 

For the second example, another cantilever beam which is 

subjected to a bending moment at the end of the beam, has 

been. Material properties are as follows E=1000 kPa (elastic 

modulus), v=0 (Poisson's ratio). The geometrical 

dimensions of the beam being considered  are selected as 

L=12, D=8. The prescribed model for this investigation is 

shown in Figure 4. The magnitude of the bending moment is 

equal to 1kN.m. 
The exact solution to this problem couldbe calculated using 

the principles of solid mechanics. Displacement in the y-

direction can be determined using: 

𝑢(𝑥) =
𝑀𝑥2

2𝐸𝐼
                                                        (37) 

 
Fig. 4: Prescribed cantilever beam model and applied bending 

moment for the second example. 

Where I is the moment of inertia. Figure 5.a depicts the 

deformed shape of the beam, and Figure 5.b illustrates the 

calculated displacements occurring along the length of the 

beam. According to what is displayed in this figure, the 

ISBLPGM and the analytical solution achieve a very high 

level of agreement.  

 (a) 

 
(b)    

 
Fig. 5: (a) Deformed shape of the beam under bending moment 

(500 times larger than the real answer). (b) The calculated and the 
analytical solution of displacements along the length of the beam. 

3.3 Cook membrane problem 

For the last example, cook membrane problem is selected 

to solve. Cook membrane is a clamped cantilever beam, 

which is subjected to a uniformly distributed load at the 

end of the beam. Material properties are as follows E=1 

(elastic modulus), v=1/3 (Poisson's ratio). The geometrical 

dimensions of the beam being considered are detailed in 

Figure 6. The magnitude of the concentrated load is 1, is 

applied at the end of the beam with a uniform distribution. 

 
Fig. 6: Geometrical dimensions of the Cook membrane problem.  

The exact solution to this problem could be obtained from 

the literature. In this analysis, displacement of Point C is 

calculated using the finite element method and the 

interpolating scaled boundary local Petrov Galerkin 

methods. Different numbers of nodes are used to evaluate 

the convergence path of the mentioned methods. Figure 7 

shows the deformed shape of the Cook membrane for one of 

the selected nodes.  

(a) 

 
(b) 

 

 
Fig. 7: Deformed shape of the Cook membrane in the a) FEM 

and b) ISBLPGM. 

 

Convergence paths of the FEM and the ISBLPGM have 

been shown in Figure 8. As this figure shows, the proposed 
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scaled boundary meshless method can rapidly lead to the 

exact solution with a few numbers of nodes. In the case of 

the FEM, it is obvious that this method needs a large number 

of nodes in comparison with the ISBLPGM. 

 
Fig. 8:  Convergence paths of the FEM and the ISBLPGM. 

The BEM (a well-known boundary discretizing method) has 

previously been mostly used for unbounded domain 

problems. Therefore, a comparison between the results of 

the proposed method with the BEM is impossible for the 

authors. However, as the BEM could be considered a semi-

analytical method, the previously published studies show the 

same level of accuracy between SBM and BEM. For 

example, Hassanzadeh et al. [34] compared the results of a 

mesh-free SBM with BEM and demonstrated that both 

methods lead to the same accuracy. 

 

4. Conclusion   

An interpolating mesh-free scaled boundary local Petrov 

Galperin method was presented in this paper as a means of 

analysing elastostatics problems. As is the case with other 

scaled boundary methods, the proposed ISBLPGM does not 

require a fundamental solution. Three benchmark numerical 

examples were used to illustrate how this mesh-free scaled 

boundary approach can be applied in practice. The results of 

the proposed model and the analytical solutions were able to 

agree with one another in a very satisfying manner. It is 

shown that the error of the proposed method could lead to 

1% by a mesh refining procedure, while the error of the FEM 

could only decrease to 10% by the same refinement. It is 

revealed by the solved examples that the proposed SBM has 

no more than a 1% error in comparison with the analytical 

results. In addition, it has been demonstrated that the 

ISBLPGM has a better convergence (to the exact solution) 

when contrasted with the conventional finite element 

method. Therefore, it is possible to draw the conclusion that 

the proposed boundary-type mesh-free method is capable of 

accurately modelling elastostatics problems. 
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