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Abstract: 

In this research, a multilayer feed-forward backpropagation error neural network has been used 

to predict the strength parameters of a concrete sample containing different additives. To 

achieve the most optimal neural network structure, the strength parameters of the concrete have 

been evaluated for different neural network arrangements. Control criteria are the use of 

numerical  values of performance, the correlation between training functions, Validation and 

testing in the neural network, gradient and results of regression diagram to determine the most 

optimal neural network structure. It was found that the function of the neural network largely 

depends on its geometric structure. Revealed by the research findings, the most optimal 

prediction of the neural network has occurred in the case of using three layers with 30 neurons 

in each layer in the neural network. In this case, the numerical value of the neural network 

performance and the regression were obtained as 58.5 × (10-9) and 0.9846  , respectively. By 

determining the optimal neural network, different percentages of concrete raw materials based 

on the pre-performed experimental study are introduced to the selected neural network and the 

considered resistance parameters are predicted through residual analysis. According to the 

results, the differences between the predicted values of the neural network and the numerical 

values of the experimental study concerning the parameters of compressive, flexural, and tensile 

strength were also found to be equal to 1.68%, 1.92%, and 0.21%, respectively. Such a slight 

difference reflects the optimal accuracy of the chosen neural network in predicting the strength 

parameters. 

1. Introduction 

The determinative and effective parameters in the designing 

process involve compressive, flexural, and tensile strength 

of the concrete, while using concrete in various axial and 

bending elements needs to be considered as well. 

Experimental limitations, the high cost of additives, etc., do 

not always allow us to perform experimental studies 

designated to achieve the most desirable percentage of the 

composition of additives to obtain a concrete sample with 

the highest strength parameters. ….….…  
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Also, considering the high importance of concrete structures 

can always reduce the damage and increase the safety and 

productivity levels of different types of structures using the 

most optimal concrete with ideal strength parameters. Thus, 

it seems reasonable to employ alternative methods to 

estimate the strength parameters of concrete for different 

percentages of constituent raw materials. Therefore, 

applying the neural network method seems a good choice.  

A neural network is a large parallel processor consisting of 

simple processor units, and the most critical superiority 

compared to other intelligent systems is the power of   

learning from the environment and increasing efficiency 

during training. Figure 1 shows a model of a node containing 

the primary processing unit in a neural network and the 

governing mathematical model. Xij are the input values of 

node j, Wij is the network weights, f is the excitation 
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function, bj is the bias value, and Oj is the output value of 

node j.  

 
Fig.1: Function of neurons in the neural network. 

In Generally, the neural network consists of five different 

parts, which include inputs, weights, bias, performance 

function and output. Inputs are the input information to the 

network, the weights are the effect of the input on the output, 

and the bias is the effect of the input of a fixed value of 1 on 

the neuron. Weights and bias are adjustable, and the 

performance function is determined by the network 

designer. In general, neural networks consist of three types 

of layers that are input layers, hidden layers and output 

layers. Figure 2 shows the general structure of the neural 

network.  

 
Fig. 2: neural network structure 

Therefore, in recent years, the use of neural network 

methods to predict engineering parameters has been of great 

interest. Mahin Rousta and Boroujerdi (2011) [1] focused on 

predicting the stress-strain behavior of gravel materials 

using artificial neural networks. The parameters used in the 

network training of their study included grading 

characteristics, dry density, relative density, Los Angeles 

wear percentage, all-round (confining) pressure, strain, and 

deviatoric stress. The simulation results suggest that the 

proposed neural network is capable of predicting and 

determining the stress-strain behavior of the coarse 

aggregates. The performed sensitivity assessments also 

indicate very excellent compliance of the network behavior 

with the rules and principles of soil mechanics. Hence, the 

neural network presented in their study seems to be able to 

model the stress-strain curves of gravel materials using 

simple parameters usually defined in the early stages of 

explorations. Kyuchukova and Austin (2020) [2] utilized the 

artificial neural network to examine the effect of the 

presence of date kernel shells as aggregate on the 

compressive strength of concrete. They studied and 

evaluated fifty different concrete mixtures containing 

different ratios of date kernel shells, in which 80% of the 

samples were used for training and 20% of the samples were 

employed for evaluation and testing of the neural network. 

According to the study results, the numerical values 

predicted by the artificial neural network were found to be 

significantly correlated with the experiment results in 

estimating the compressive strength of concrete containing 

date kernel shell. Yoon et al. (2020) [3] studied and 

evaluated the mechanical properties of lightweight 

aggregates in concrete, including compressive strength and 

elastic modulus of the mixture, using an artificial neural 

network. They found that the numerical values predicted by 

the artificial neural network are highly accurate according to 

the results obtained from the linear and non-linear regression 

models. Zavertonik et al. (2016) [4] used artificial neural 

networks to model the air vacuum content in different 

superstructure (pavement) mixtures. The main goal of their 

study was defined as modeling the relationship between 

different parameters and air vacuum content in dense 

mixtures by employing multiple linear regression (MLR), in 

which the backpropagation error algorithm was used to build 

the neural network. Their results demonstrated that the 

examined neural networks had provided quite proper models 

to estimate the amount of air vacuum in the studied mixtures. 

Lazaruska et al. (2012) [5] reviewed the application of 

artificial neural networks in civil engineering. They 

specifically investigated the resistance of structural elements 

to fire. Comparing the results obtained from numerical 

studies with the findings from the prediction using the neural 

network method revealed that the artificial neural network 

method can be used as a powerful mechanism to determine 

the resistance of reinforced concrete columns against fire 

(especially in situations where experimental and numerical 

studies cannot be performed). In a study in 2012 [6]. 

Mortezaei and Kheiruddin (2012) [6] modeled and estimated 

the plastic joint length of reinforced concrete columns by 

artificial neural networks. They used artificial neural 

networks to analyze and examine the behavior of reinforced 

concrete columns at the component level, including 

determining the length of the plastic joint and obtained 

acceptable and optimal results. The plastic joint 

specifications, including the length of the plastic joint, were 

provided according to the results of 150 experiments on 

reinforced concrete columns and the proposed artificial 

neural network model which the specifications of the plastic 

.
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joints can be obtained by presenting the necessary 

information to these networks in less than a few tenths of a 

second. The input data is divided into three training, 

evaluation, and testing categories, of which 70%, 20%, and 

10% of the data are considered for them, respectively. A 

relation is provided by considering the calculated errors and 

the effect of each of the input parameters on the length of the 

plastic joint. The original measured values for the length of 

the plastic joint can be obtained using this equation. 

Shafabakhsh et al. (2012) [7] focused on selecting the 

optimal artificial neural network algorithm to analyze the 

rigid pavement of the roads. The proposed analytical tool 

based on the results of artificial neural network models was 

in the form of a four-layer backpropagation neural network, 

consisting of two hidden layers and input and output layers, 

with 18 neurons and employing a cyclic transfer function. A 

regression rate of 0.99928 assures the use of accurate results 

obtained in other studies. Golnaraghi et al. (2019) [8] 

determined the most optimal neural network in their research 

study aimed at predicting the efficiency of various 

parameters. The neural networks examined in this study 

included Artificial Neural Network (ANN), General 

Regression Neural Network (GRNN), Backpropagation 

Neural Network (BNN), Radial Base Function Neural 

Network (RBFNN), and Adaptive Neuro-Fuzzy Inference 

System (ANFIS). Comparing the findings   from each of the 

studied modes revealed that the use of the artificial neural 

network (ANN) method operates better than other modeling 

techniques. Mohammed et al. (2021) [9] evaluated and 

quantified the effect of nanoclay (NC) as an additive to   

cement paste. Considering qualification, the flow of slurry 

and stress at the failure of   cement paste modified with 

nanoclay, non-linear regressions model (NLR), and 

Artificial Neural Network (ANN) technical approaches were 

used. The results have   shown that the ANN model could 

predict the compressive strength of the testing data so 

carefully (R greater than or equal to 0.851). After that, a non-

linear relation (NLR) was derived by using the same 

variables and the parameters were found via multiple 

regression. Similarly, the NLR model and ANN models 

could predict the rheological properties and compression 

strength of the testing data precisely. According to the 

experimental data sets, the NLR predicted the compressive 

strength very close to experimental data and the predictions 

were better than the ANN model. Al-Gburi and Yusuf 

(2022) [10], using ANN, investigated the effect of mineral 

additives on concrete strength. They found that the artificial 

neural network's results were so close to the previous 

experimental results. As a result, using an artificial neural 

network is very suitable to understand and predict the 

behavior of complicated data. Nafees et al. (2021) [11] in a 

study, considered the predictive modeling of mechanical 

properties of silica fume-based green concrete using 

artificial intelligence approaches. The values of statistical 

parameters indicated that all models can predict the 

compressive and split tensile strengths of concrete precisely. 

Finding the most careful model, the results of the machine 

learning models and the genetic programming (GEP) model 

are compared. External validation and sensitivity 

assessments were also carried out for additional assurance. 

R2 values were achieved using the best model (GEP) for 

compressive strength of 0.97 and for tensile strength of 0.93. 

Sharifi and Hosseinpour (2020) [12], in a study, present a 

predictive model-based ANN for compressive strength 

assessment of the mortars containing metakaolin. After that, 

to predict the compressive strength of mortars, which 

containing Metakaolin (MK), a new formula was presented 

using the constructed ANN model. It is observed that the 

formula can predict the compressive strength of the mortars 

incorporating Metakaolin (MK) with a slight error. Finally, 

to examine the effect of each predictive variable on the 

compressive strength of the mortars containing MK, 

Garson’s algorithm as a sensitivity algorithm was employed. 

The results have   shown that the binder-sand ratio is a more 

important parameter in determining the compressive 

strength of the mortars containing MK. Although some 

researchers such as adili et al. [13] have used other methods 

such as fuzzy systems to predict the mechanical properties 

of concrete, the appropriate accuracy and simplicity of the 

neural network have usually prioritized its use. As it seems, 

extensive studies have been performed   the use of neural 

networks in solving various problems in the field of civil 

engineering [14-24]. Due to the complex structure of the 

neural network, determining the most optimal structure has 

a significant impact on the accuracy of the predicted 

response and optimization in the neural network. 

 In the present study, in order to predict the strength 

parameters of concrete containing different additives using 

an optimal neural network structure, first , the design of 

mixing a concrete sample containing different percentages 

of additives as input, and corresponding strength parameters 

as output parameters was taken from laboratory study [25]; 

and then, they used for training a neural network system. to 

achieve the optimal neural network function, the geometric 

structure of the network, including the number of the layers 

and neurons in each layer, is considered a variable. 

Therefore, considering 3, 4, and 5 middle layers and 10, 20, 

30, and 50 neurons in each layer, activation functions, 

number of layers, and number of neurons in each layer was 

optimized using control criteria through trial and error Also, 

the geometric structure of the network, including the number 

of layers and number of neurons in each layer, are 

considered as variables. Then, through trial and error, for 

different values of the number of the layers and neurons, the 

neural network in predicting the three parameters of 

compressive, flexural and tensile strength of the studied 
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concrete sample was performed by controlling the criteria 

of numerical value of neural network performance and 

regression. The most desirable neural network structure is 

obtained   using the minimum numerical value of network 

performance and regression close to 1. After determining the 

most optimal geometric structure of the neural network, the 

considered strength parameters for the concrete sample with 

different percentages of additives are calculated by 

performing residual analysis.  Hence, the predicted results 

through the optimal neural network and the results presented 

in the experimental study (reference 25) will be compared.  

2. Materials and method 

2.1 Data collection and normalization 

The data studied in this research are derived from 

experimental study samples conducted by Agarwal et al. 

(2020) [25]. Various compounds have been used in this 

experimental study and the raw materials and compounds 

along with the weight of each component in Table 1 are 

provided for making concrete samples. As can be seen, the 

amounts of gravel, water, and superplasticizer are fixed in 

all combinations, and cement, nanosilica, coarse aggregates, 

and recycled materials each has 4 different numerical values. 

Thus, 256 possible and unique cases in this study can be 

assessed. However, due to a large number of possible cases, 

only 16 cases have been evaluated according to Table 2. 

Therefore, the values of the strength parameters will be 

predicted among these 16 cases. 

 

Table 1: Primary materials for making different concrete samples [25]. 

Weight Unit Material 

489.08 494.12 499.16 504.21 3kg/m Cement 

15.12 10.08 5.04 0 3kg/m Nanosilica (NS) 

683.24 683.24 683.24 683.24 3kg/m Sand 

443.25 664.87 886.5 1108.13 3kg/m Coarse Aggregate (CA) 

141.63 141.63 141.63 141.63 3lit/m Water 

4.67 4.67 4.67 4.67 3l/m Super Plasticizer 

664.87 443.25 221.6 0 3kg/m Recycled Aggregate (RA) 

Table 2: Selected studied modes to determine different strength parameters of concrete [25]. 

Super Plasticizer Water Cement RA CA NS Model 

4.67 141.63 504.21 0 1108.13 0 NS0RA0 

4.67 141.63 504.21 221.6 886.5 0 NS0RA20 

4.67 141.63 504.21 443.25 664.87 0 NS0RA40 

4.67 141.63 504.21 664.87 443.25 0 NS0RA60 

4.67 141.63 499.16 0 1108.13 5.04 NS1RA0 

4.67 141.63 499.16 221.6 886.5 5.04 NS1RA20 

4.67 141.63 499.16 443.25 664.87 5.04 NS1RA40 

4.67 141.63 499.16 664.87 443.25 5.04 NS1RA60 

4.67 141.63 494.12 0 1108.13 10.08 NS3 RA0 

4.67 141.63 494.12 221.6 886.5 10.08 NS3RA20 

4.67 141.63 494.12 443.25 664.87 10.08 NS3RA40 

4.67 141.63 494.12 664.87 443.25 10.08 NS3RA60 

4.67 141.63 489.08 0 1108.13 15.12 NS5RA0 

4.67 141.63 489.08 221.6 886.5 15.12 NS5RA20 

4.67 141.63 489.08 443.25 664.87 15.12 NS5RA40 

4.67 141.63 489.08 664.87 443.25 15.12 NS5RA60 
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Fig.3: Research methodology flowchart. 

We used 70% of the data for neural network training and 

30% for neural network evaluation and testing.We 

normalized different datasets to increase the accuracy of the 

neural network so that all the data turned into a number 

between zero and one. Hence, the largest number is equal to 

1 and the other numbers would be in the range of zero to one. 

Equation (1) was used to normalize the data. 

 

                                                

(1) 

 

In the present study, various criteria such as mean square 

error and number of learning cycles, gradient, momentum 

mass, and the numerical value of network performance as 

well as linear regression have been used to evaluate the 

efficiency of the neural network. Increasing the power of 

network generalization, the Cross-Validation method has 

been used. In this method, the data is divided into three sets: 

training, evaluation, and experimental. To find the best 

parameters for the model, the evaluation set is used as part 

of the inexperienced data in the control of the training 

process. Initially, the performance of the trained network in 

dealing with this data was evaluated according to the error 

indices, then the networks that performed well for the 

evaluation data were also studied for the experimental set. 

Finally, each parameter by which the network shows the best 

performance in simulation and prediction, is selected as the 

optimal parameter. Figure 3 shows the flowchart of the 

methodology of the research.  

2.2 Neural network 

The neural network used was examined in MATLAB 

software environment with “nntool” command with 

different numbers of layers and neurons by trial and error 

approach aimed at ultimately doing the most optimal 

prediction of the studied parameters. Various scenarios have 

been studied to build the neural network. Thus, the studied 

scenarios regarding the arrangement and formation of the 

neural network are given in Table 3. Accordingly, 12 

different states (modes), including the number of different 

layers and the number of different neurons in each layer, 

were studied and analyzed by trial and error approach. The 

names of each of these simulation modes are presented in 

Table3. 

Table 3: Different modes of neural network simulation 

Number of 

neurons 

Number of 

Layers 
Abbreviation 

State 

No. 

10 3 Ffb310 1 

20 3 Ffb320 2 

30 3 Ffb330 3 

50 3 Ffb350 4 

10 4 Ffb410 5 

20 4 Ffb420 6 

30 4 Ffb430 7 

50 4 Ffb450 8 

10 5 Ffb510 9 

20 5 Ffb520 10 

30 5 Ffb530 11 

50 5 Ffb550 12 

3. Results and Discussion 

Based on the research plan, we provide the performance 

graphs, gradients, and regression curves related to each of 

the 12 different neural network simulation modes aimed at 

determining the most optimal conditions for neural network 

simulation to predict the strength parameters of the studied 

concrete sample according to Table 2. Figure 4 shows the 

mean square of errors and the number of learning cycles 

used for 12 different neural networks. The greater 

correlation between the “Training, Validation, and Testing” 

functions, i.e., these three graphs are more uniform relative 

Start

Selection of input data (concrete mixing design) 

and

output data (concrete strength parameters)

Neural network training by 70% 

of data and normalization

Changing the structural characteristics of 

the neural network and controlling the 

neumerical value of performance and 

regression with trial and error

Is the neumerical 

value of performance 

small and regression 

close to 1?

Yes

No

Selecting the optimal neural network 

and performing the sensitivity 

analysis

Comparison of predicted results 

with experimental study

Stop

)(

)(

UU
UU

U
MINMAX

MINI
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to each other, we will see the success of the neural network 

in predicting the examined parameter. Figure 5 illustrates the 

gradient, momentum mass, and evaluation controls for each 

of the 12 proposed neural networks. Finally, Figure 6 

indicates the linear coefficient of data correlation 

(regression) related to different modes of the neural network. 

The closer this coefficient to the number 1, the higher the 

accuracy of the network in numerically predicting the 

parameters in question would be. The numerical comparison 

between control criteria aimed at determining the most 

optimal neural network among the 12 cases is presented in 

Table 4 according to the high number of discussed graphs.  

The numerical values of regression as the first controlling 

criterion should be considered. Thus, providing acceptable 

results when the regression is less than 0.9 is not acceptable. 

Therefore, modes 4, 6, 7, 9, 10, and 11 are considered 

unacceptable modes, which will be removed in the first 

control from the list of candidate neural networks (based on 

the results of Graph 4). The numerical value of the function 

will be addressed in the next control. The lower numerical 

values of the performance will bring us better results. Hence, 

modes 1, 8, and 12 are removed from the list of desirable 

neural networks due to their high numerical value. Thus, 

according to the latest control criterion, the greater 

correlation between the three functions of training, 

validation, and testing, the better result will be obtained.  

Therefore, among the three modes 2, 3, and 5, the highest  

correlation is related to mode 3 according to the diagrams in 

Figure 4. Thus, the most optimal neural network is a network 

that consists of three layers with 30 neurons used in each 

layer (Ffb330). The results obtained at this   research stage 

indicate the very high sensitivity of the structure and 

geometry of the neural network to the predicted response. 

Therefore, based on the results of trial and error and based 

on the mentioned control criteria, the most desirable neural 

network is a network that consists of three layers and has 30 

neurons in each layer. It should be noted that in the case of 

the diagrams presented in Figure 4, which show the changes 

in MSE versus the cycles, the training data are for the 

network training and the validation data have no effect on 

the training process. Also, validation data is often used to 

validate and find the appropriate number of training cycles. 

According to the neural network model related to Ffb330 

mode, shown in Figure 4, if the neural network is trained 

with training data (blue curve), by increasing the number of 

cycles, the training data error will be decreased. Also, due to 

the trend of error and validation changes (green curve), it is 

observed that until cycle 4, the validation error decreased 

and then remained constant and unchanged. At this point, the 

most desirable network performance is achieved and 

training should be stopped. Based on the obtained results, it 

can be seen that the most optimal performance of the optimal 

neural network is related to the Ffb330 state, for the 4th cycle, 

the functional error is 0.045 and the numerical value of that 

neural network (Ffb330) is equal to 58.5*10-9. Also, 

according to Figure 5 and for the selected neural network 

mode, the numerical parameter of the gradient and the 

momentum coefficient are 0.000194 and 10-10, respectively. 

The correlation coefficient for the training curve, validation, 

evaluation and total data curve are presented in Figure 5. It 

can be seen that the linear regression correlation coefficient 

for the selected neural network Ffb330 is 0.9846. In fact, in 

this case, the regression line is really close to the line with a 

one-to-one slope. Also, the results presented in Figure 6 

show that the degree of closeness in training data is much 

higher than the validation and evaluation data.  

Table 4: Selecting the most optimal neural network according to the controlling criteria. 

Reg )10-Mu(10 Gradient )9-Perfor(10 Abbreviation  

0.9304 100 0.00151 2360 Ffb310 1 

0.9682 0.00001 0.000109 4.15 Ffb320 2 

0.9846 1 0.000194 58.5 Ffb330 3 

0.7902 10000 0.00045 56300000 Ffb350 4 

0.9412 0.00001 0.000265 0.352 Ffb410 5 

0.8578 10 0.00177 2150 Ffb420 6 

0.8076 1000000 0.104 6090000 Ffb430 7 

0.9767 1 0.00265 1040 Ffb450 8 

0.6366 100000 0.00143 195000 Ffb510 9 

0.8990 1 0.00339 3470 Ffb520 10 

0.7107 1000 0.00189 15000000 Ffb530 11 

0.9603 1000 0.000751 109 Ffb550 12 
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Fig. 4: The mean square of errors and the number of learning cycles used in the studied neural networks. 
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Fig. 5: The gradient, momentum mass, and evaluation controls related to neural networks used in the present study. 
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Fig. 6: The linear regression for training, validation, and testing functions for different neural network modes used in the present study. 
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3.1 Residual Analysis 

After selecting the most optimal neural network, the residual 

analysis will be performed according to the data extracted 

from the experimental study [25], which included 16 

different mixing designs. As mentioned before, 70% of the 

data was used for network training (12 mixing designs) and 

30% was used for evaluation (4 mixing designs). Output 

parameters in the present study included 28-day 

compressive, flexural, and tensile strength of the concrete 

specimens. Therefore, in Table 5, the output parameters of 

the reference article [25] are compared with the values 

obtained from the Ffb330 neural network prediction. Figures 

7-9 provide a comparison of flexural, compressive, and 

tensile strength between the outputs of the reference paper 

and the values calculated from the neural networks, 

respectively. According to the results of the residual analysis 

based on the flexural strength criterion of concrete (Figure 

7), the difference between the results predicted by the neural 

network and experimental results varies in the range of 0.6-

4.9%. Also, the range of difference between the results of 

neural network prediction and experimental study on the 

compressive and tensile strength of concrete is in the range 

of 0.6-2.9% and 0.3-2.5% respectively. On average, the 

difference between the results predicted by the neural 

network and experimental study on determining   flexural, 

compressive and tensile strength of concrete is 

1.68%,1.92%, and 0.21%, respectively. Thus, due to the 

high cost of experimental studies, it is advisable to predict 

the strength parameters of concrete with acceptable accuracy 

using the optimal neural network introduced in the presented 

study. In this way, the cost and time of experimental studies 

was significantly reduced. The comparison results of the 

flexural, compressive, and tensile strength among the 

outputs resulted from the reference paper and the calculated 

values from the neural network are provided in Figures 7 to 

9, respectively. 

Table 5: The numerical comparison of normalized output 

parameters of the neural network. 

Split Tensile 

Strength 

Compressive 

Strength 

Flexural 

Strength 

 

1 1 0.94 Experimental 

0.7538 0.9343 0.9999 Neural Network 

0.7 0.7 0.94 Experimental 

0.7695 0.8899 0.9999 Neural Network 

0.7 0.6 0.94 Experimental 

0.7331 0.8501 0.9996 Neural Network 

0.2 0.5 0.5 Experimental 

0.3995 0.7937 0.9914 Neural Network 

 
Fig. 7: The residual analysis of flexural strength 

 
Fig. 8: The residual analysis of compressive strength 

 
Fig. 9: The residual analysis of split tensile strength 

 
Fig. 10: The computational error of the ffb330 neural network. 
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The calculated errors between the outputs of the reference 

article and the values calculated by the selected neural 

network are presented in accordance with Figure 10 in the 

following. 

4. Conclusion 

In this study, the main purpose was to predict the strength 

parameters of a concrete sample containing additives using 

a neural network. Therefore, by doing trial and error, the 

most optimal neural network structure is selected, and the 

numerical values of flexural, compressive, and tensile 

strength predicted by the selected neural network are 

presented. After that, the difference between the calculated 

values and numerical output from the reference article [25] 

is compared. Therefore, based on the results of this study, it 

was observed that the structure of the neural network will 

have a significant impact on the accuracy of the prediction. 

According to the control criteria, such as executive 

performance and regression correlation coefficient, the most 

optimal neural network was obtained with three layers and 

30 neurons in each layer. Thus, increasing the number of   

layers does not always increase the accuracy of the network. 

On the other hand, based on the results of this study, it was 

found that data normalization can optimally increase the 

accuracy of the neural network for predicting the desired 

parameters. The predicted values obtained from the residual 

analysis by the selected neural network (Ffb330), compared 

to the reference article, indicate a difference of 1.688% in 

flexural strength, 1.92% in compressive strength, and 0.21% 

in tensile strength. Thus, the use of the proposed neural 

network to estimate the strength parameters of concrete in 

comparison with experimental studies is considered as a 

desirable and quite cost-effective method in terms of 

economics and time.  
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