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Abstract: 

 The forward solution of dislocation on the fault plane is one of the most important issues for 

earthquake source slip inversion. The dislocation on the fault plane, explained by the Burgers 

vector which is called slip, plays a fundamental role in estimating displacement patterns in the 

whole medium. In addition, obtaining displacement values in any point of a medium is possible 

by using the slip function on the fault plane and Green’s function as medium properties. This 

study shows that various assumptions for earth materials result in significant differences in 

displacements. Therefore, due to the realistic ground motion simulations caused by future 

earthquakes, considering the properties of earth materials requires more attention. By 

implementing the elastostatic Green’s functions and based upon line integral representations 

due to an arbitrary Volterra dislocation loop, elastic displacements and strains due to finite 

fault dislocations in a functionally graded transversely isotropic (FGTI) half-space material is 

presented. Also, numerical examples are provided to demonstrate the effect of material 

anisotropy on the internal and surface responses of the half-space. 

1. Introduction 

Forward solutions for dislocations of faults provide a useful 

means of finding the behavior of faults. Also, this 

phenomenon, by considering realistic materials as exist in 

nature, extensively clarifies many physical aspects of the 

underlying problem through a deeper understanding of the 

mathematical nature of the associated problem. 

Displacement in solids induced by external load or 

dislocation is a topic of considerable interest in mechanics 

and has long been the subject of numerous studies for 

decades. Traditionally, the media are often assumed to be 

isotropic and homogeneous (e.g., [1-8] and references 

therein). 

In recent decades, the increasing use of composite materials 

in modern technologies and engineering applications has 

become an incentive for extensive research, both basic and 

applied, into various failure modes of such materials. 
……….…….. 
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Transversely isotropic (TI) model is able to appropriately 

represent the anisotropic behavior of most materials in 

various practical applications, such as composites, smart and 

intelligent materials, piezoelectrics, piezomagnetics [9-10], 

and many natural soils deposited through a geologic process 

of sedimentation over a period of time, where determining 

their displacements and stresses needs the anisotropy to be 

taken into account [11-16]. Therefore, the primary task is to 

choose a proper constitutive law of the medium. Thus, 

adding functionally graded materials (FGMs) as a rational 

assumption for continuous alteration of material properties 

with TI media can make a realistic medium that is very close 

to the nature of the soil. Therefore, a complex analysis 

associated with continuum modeling of soil can lead to an 

efficient and accurate result. 

Most of the above-mentioned studies assumed soils are 

isotropic, TI, or anisotropic, since actual soils are seldom 

homogeneous and their properties usually vary with depth 

due to the effects of deposition, overburden, and confining 

pressure. Therefore, constant depth-profile properties for 

soil deposits may be a rather poor approximation to the real 

conditions and more advanced models are essential [17-19]. 

Many researchers considered the problem of the elastic 
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response of inhomogeneous isotropic solids under different 

loading conditions for different patterns of material 

properties, such as linear, quadratic, power-law [20], and 

exponential functions [21-24]. Because of the practical 

simplification of the mathematical formulation, exponential 

variation for the FGMs is extensively used in the 

engineering literature [21, 25]. 

For the case of exponentially graded material, elastostatic 

and elastodynamic Green’s functions of an exponentially 

graded transversely isotropic half-space were presented by 

[26] and [27], respectively. Kalantari and others have 

conducted comprehensive studies on the functionally graded 

transversely isotropic (FGTI) material for various kinds of 

loads [28-30, 40]. They showed the impact of materials’ 

non-homogeneity on the response of various applied loads. 

Using our previous studies and based upon line integral 

representations due to an arbitrary Volterra dislocation loop 

[12,31], elastic displacements due to finite fault in an FGTI 

half-space are presented. 

2. Statement of the Problem and Governing 

Equations 

 

Fig. 1: Geometry of fault 

Consider a rectangular fault with length, L, along the fault 

strike direction, and width, W, along a perpendicular 

direction to the strike in an FGTI half-space as shown in Fig. 

1. The plane x1–x2 is the free surface of the half-space and x3 

≤ 0 is the problem domain. The axis of symmetry of the 

FGTI material is assumed to be parallel to the x3-axis. Δ1, 

Δ2, and Δ3 are strike-slip, dip-slip, and tensile components 

of the dislocation, respectively. The strike direction and the 

dip angle of the fault are represented by   and δ, 

respectively. 

2.1 Displacement discontinuity  

The elastic deformation due to shear and tensile polygonal 

fault in a TI half-space was solved by [12]. Therefore, by 

using these solutions, the displacement induced by a strike-

slip, dip-slip, and tensile fault in a TI half-space is expressed 

as: 

For strike-slip fault, 

 1 1 2cos sini i iu U U = − +  (1) 

For dip-slip fault, 

 2 1 2 3sin cos cos cos sini i i iu U U U    =  − −  (2) 

For tensile fault, 

 3 1 2 3sin sin cos sin cosi i i iu U U U    = − − +  (3) 

where 

c
ij ij ijU U U= +  

(4) 

and 
ijU  is the ith-component of displacement for a unit given 

dislocation in the j-direction and superscript infinity and c 

denote the full-space and complementary part of the 

response. 

2.2 Stress discontinuity 

Based on recent studies by Kalantari and others [28-30, 32, 

40], the displacement field in stress discontinuity is 

expressed by solving Fredholm dual integral equation as 

below:  
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(6) 

Other parameters can be found in [27-30, 32, 40]. 

To the best of the authors` knowledge, there is no closed-

form solution for equations (5) and (6) in general form ("A 

key characteristic of these kinds of equations is that they 

have mathematical properties which make it difficult to 

obtain useful solutions by straightforward methods" [33]). 

Also, due to the oscillatory nature of Bessel functions in 

kernels of integral equations, the trapezoidal and Simpson 

rules are not efficient in which equal intervals are used.  

Considering the above reasons, the adaptive quadrature 

method is appropriate for numerical evaluation. Based on 
[14] the relations between solutions of the displacement 

discontinuity and stress discontinuity are the representation 

of Betti’s reciprocal theorem, in which, if one has the stress 

discontinuity solution, the corresponding displacement 
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discontinuity can be found. Accordingly, by combining the 

result of section 2.1 and the solution of section 2.2, the 

solution of finite fault dislocation in the FGTI medium can 

be extracted. 

2.3 Material properties   

The elastic stiffness tensor Cijkl for a TI material, when the 

plane of isotropy is parallel to the surface of half-space, is 

expressed as: 

( ) ( )
( )

( )( )

( )( )
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44 66 3 3 3 3 3 3 3 3

2

2 4

2

ijkl ij kl ik jl il jk

i j k l

i j kl k l ij

j k il i l jk j l ik i k jl

C C C C

C C C C

C C C

C C

     

   

     

           

= − + +

+ + − −

+ − + +

+ − + + +

 

(7) 

where δij is the Kronecker delta, and Cij is the elastic 

constant. In the FGTI medium, the elastic constants are 

assumed to vary in the z-direction as [25, 28-30, 34, 35, 40]: 

2( ) z
ij ij

C z C e =  
(8) 

where β indicates the exponential factor characterizing the 

degree of the material gradient in the z-direction constants. 

The material constants for an isotropic medium are also 

written as: 

11 33 12 13 44 66    2 ,        ,     C C C C C C   = = + = = = =  (9) 

where λ and μ are Lame’s constants. 

3. Verification and Numerical Examples 

Before applying our solutions to a general fault dislocation 

embedded in a TI or FGTI half-space, the first numerical 

example (number 1) in observation point (25, 15) km is 

compared with the [8] problem which is related to a 

rectangular fault in an isotropic half-space. 

Consider a rectangular fault with a length of 12 km and 

width of 8 km in which the lower edge is located at 10 km 

below the free surface and the azimuth and the dip angle of 

the fault are equal to zero and 40°, respectively. In addition, 

the medium is considered isotropic by a low, middle, and top 

range of Poisson's ratio. The displacements for different 

fault modes are also shown by dimensionless parameters 

ij ju   which i denotes displacement in xi direction due to 

j type of faults (j=1,2,3; 1: strike; 2: dip; 3: tensile). 

In the following examples, the effects of the medium 

anisotropy on displacements are investigated. As mentioned 

previously, the soils are inherently anisotropic media and the 

source of anisotropy may be intrinsic (due to deposition, 

overburden, and confining pressure) or extrinsic (formed by 

stress-induced cracking of intrinsically isotropic rocks). In 

this article, Beryl rock and Mat I as real TI materials are 

selected [36-37]. For comparison, the corresponding Voigt 

average (VA) is also used to calculate the induced response 

in the equivalent isotropic half-space (Table. 1). The VA 

assumes 
aniso iso

ijij ijijC C=  and 
aniso iso

iijj iijjC C= , and hence for TI 

materials, the VA is defined as: 

𝜆̑ ≅
𝐶11 + 𝐶33 + 5𝐶12 + 8𝐶13 − 4𝐶44

15
 

𝜇̑ ≅
7𝐶11 − 5𝐶12 + 2𝐶33 + 12𝐶44 − 4𝐶13

30
 

(10) 

in which 𝜆̑ and 𝜇̑ are the equivalent Lame constants. 

Table 1: Material properties and the equivalent Lame constants 

 Beryl rock Mat I 𝜆̑ 𝜇̑ 

C11 41.3 113 Beryl rock 

C33 36.2 87 12.79 12.25 

C44 10 30 Mat I 

C66 13.3 41.5 27.07 36.23 

C13 10.1 22   

3.1 Isotropic materials  

 

 

 
Fig. 2: Displacement along the depth (km) for a) Strike-slip, b) 

Dip-slip, and c) Tensile fault  

Figure 2 shows displacement at the observation point (25, 

15) in xi direction along the depth for various Poisson's ratios 

in different fault modes (strike, dip, and tensile fault). 

Comparing with available literature shows that the results 
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are the same as the results in [8] for 0.25 = .Also, based 

upon the introduced dimensionless parameters (
ij ju  ), 

exact displacements can be easily found by changing the 

dislocation amplitude (Δj).  

The agreement of the results in the isotropic case confirms 

the accuracy, efficiency, and reliability of the proposed 

procedure to evaluate the effect of non-homogeneity on the 

dislocation problem.   

3.2 Transversely isotropic materials (Beryl rock)  

Figures. 3 and 4 show the responses of another example 

(number 2) for a rectangular fault with a length of 39 km and 

width of 16 km which the lower edge is located at 18 km 

below the free surface and the dip angle of the fault is 17°. 

 

 

 
Fig. 3. Displacement along the depth (km) for a) Strike-slip, b) 

Dip-slip, and c) Tensile fault in (5,10) km 

The medium is considered TI as Table. 1 and displacements 

for different fault modes are shown by dimensionless 

parameters 
ij ju   in two observation points (5, 10) km and 

(-5, -10) km, in which the first observation point is in the 

fault image on the free surface (Figure 3) and the second one 

is out of the area (Figure 4).  

Figure 3 shows displacement along the depth for different 

dislocation modes when the observation point is in the fault 

image on the free surface. In this figure, discontinuity in 

displacement near the fault area shows that the boundary 

conditions perfectly match assumptions. 

 

 

 
Fig. 4: Displacement along the depth (km) for a) Strike-slip, b) 

Dip-slip, and c) Tensile fault in (-5, -10) km  

3.3 Functionally graded transversely isotropic 

materials (Beryl rock)  

Figure 5 shows the results of another example (number 3) 

for a horizontal square fault with a length of 10 km which 

the lower edge is located at 15 km below the free surface. To 

show the impact of materials properties on surface 

displacements, TI materials and their equivalent isotropic 

material (VA) are considered (Table. 1). In addition, the 

Figure shows the impact of non-homogeneity on the 

responses by considering different β parameters. 
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Fig. 5a. Surface displacement along the x1 direction for a) Strike-

slip, b) Dip-slip, and c) Tensile fault 

 

 

 
Fig. 5b. Surface displacement along the x1 direction for a) Strike-

slip, b) Dip-slip, and c) Tensile fault 

 

 

It is observed from Figure 5 that there is a major difference 

between FGTI, TI, and VA. The results show that 

simplifying assumptions as isotropic media causes poor 

approximation for considering soil and the simplified results 

are not reliable. Also, as indicated in Figure 5, the larger the 

degree of β parameter, the smaller the displacement results.   

Since the larger the value of β, the larger the wave velocity 

results in, which means the stiffer soils and causes less 

displacement. 

3.4 Subtraction of transversely isotropic materials and 

Voigt average (Mat I)  

Figures. 6-8 shows the displacements in a rectangular fault 

in Mat I, with a length of 20 km and width of 10 km which 

the lower edge is located at 15 km below the free surface, 

and the dip angle of the fault is 45° (example number 4). 

 

 

 
Fig. 6. Surface displacement for strike-slip fault in strike direction 

for a) VA, b) TI, and c) Subtraction of (a) and (b) 
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Fig.7. Surface displacement for dip-slip fault in dip direction for 

a) VA, b) TI, and c) Subtraction of (a) and (b) 

Figures 7 and 8 clearly show the difference between the TI 

and VA is significant. Thus, the non-homogeneity of the 

medium should be considered to accurately predict the 

response in TI or TIFG medium. 

4. Simple Slip Inversion 

There are many scientific reasons why detailed knowledge 

of the earthquake source is valuable, and the destructive 

effects of earthquakes are a motivation to learn as much as 

possible about their nature and effects. Since direct 

measurement of the source activity is not feasible, one can 

learn about the source only from distant (weak motion) and 

near (strong motion) records. The inversion can be 

associated with different source parameters, depending on 

the mathematical model, but ultimately the goal is to learn 

as much as possible about the nature of the source. In 

earthquake engineering, understanding the earthquake 

source is important for ground motion prediction from 

possible future earthquakes, which is needed for the seismic 

design of structures.  

 

 

 

 

Fig.8. Surface displacement for tensile fault in the fault normal 

direction for a) VA, b) TI, and c) Subtraction of (a) and (b) 

The characterization of the earthquake source from recorded 

data is an inverse type of problem, i.e., one in which the 

input of a system has to be determined from the output.  

4.1 Data and model parameter  

The final goal of scientists and engineers is to find a relation 

between physical parameters as models to some set of data 

as responses. This relation in many physical phenomena can 

be introduced by Green's functions that play system 

functions to describe the relations between models and data 

sets. Thus, generating an exact and appropriate system 

function that introduces the medium properties in a good 

way is a priority. Based on our previous studies [28-30, 32, 

40], extracted Green's function can be used in a forward 

problem. In this part, a simple way to solve an inverse 

problem is suggested. 

Consider function G which describes the relationship 

between the model (m) and data (d):  

( )G m d=  (11) 

In practice, d may be a function of time, space, or a 

collection of discrete observations. An important issue is 
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that actual observations always contain some amount of 

noise. Two common ways that noise may arise are 

calibration influences on instruments and numerical round-

off. Thus, the data can be considered as generally consisting 

of noiseless observations from a “perfect” experiment, dtrue, 

plus a noise component η: 

( )true trueGd m d += +   (12) 

where dtrue satisfies equation (11) for m equal to the true 

model (mtrue). Although it is mathematically possible to 

separate noise from data, it is impossible in practical 

applications due to the mentioned reasons. This problem 

(divide noise from data) is left to seismologists; however, 

the point is to know that a random error can be added to the 

data set for simulation of a real condition. 

4.2 Fault Geometry, soil properties, and preparing 

inverse model 

We assumed that the fault dimensions and depth are found 

by using GBIS software as used by [38] or using a grid 

search on fault geometry. Also, the TI elasticity constants 

(soil properties) can be found by the single-plug or three-

plug method as used by [39]. By considering mentioned 

description, we have all the basic information to build a 

discrete linear inverse problem (G by having soil properties 

and data on the surface by measuring displacements).  
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(13) 

by using equations (1), (2) and (12), we can write a linear 

system of algebraic equations as above, where superscript   

nk indicates kth observation point on a free surface. 

As is clear from equation (13), when the number of 

observation points are selected more than one point, the 

matrix G is not square and cannot be determined in common 

ways. So, we can fix the problem by using SVD (singular 

value decomposition) to achieve model parameters.  

5. Conclusions 

Based on the concepts of displacement dislocation and stress 

dislocation (stress jump), the general rectangular fault in a 

three-dimensional FGTI half-space was considered. 

The applicability and robustness of the presented solution 

are demonstrated by some numerical examples as a special 

case and the results show complete agreement with the 

literature.  

The numerical examples revealed the important effect of 

material anisotropy on internal and surface deformations. 

Furthermore, the numerical results show a significant 

difference in displacement, which emphasizes why 

considering a realistic material for a real ground motion 

simulation is imperative. Also, as indicated in the figures, 

the larger the degree of β parameter, the smaller the 

displacement results in.   

In addition, a simple formulation by using data on a surface 

is proposed for extracting the dislocations vector in the fault 

plane. 
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