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Abstract: 

Hydraulic permeability of soil (k) is a critical parameter for the mathematical modeling of 

groundwater and soil water flow. Due to the complexity of 𝑘, it is hard to develop a general 

empirical model which provides a reliable prediction of it. Therefore, this study used the gene 

expression programming (GEP) model as a powerful data-driven technique for estimating k. 

The available published data for estimation of 𝑘 were culled from the literature. Six effective 

parameters, including clay content (CC), water content (ω), liquid limit (LL), plastic limit (PL), 

specific density (γ), and void ratio (e), were used to establish a predictive formula to estimate k. 

Statistical parameters such as bias (BIAS), root mean square error (RMSE), scatter index (SI), 

correlation coefficient (R), and mean absolute error (MAE) were used to evaluate the accuracy 

of the developed GEP model. In addition, GEP findings were compared to the artificial neural 

network (ANN) algorithm to assess the performance of GEP. The GEP with BIAS = −0.0005, 

RMSE = 0.0079, SI = 57.33%, R = 0.8109 and MAE = 0.0047 outperformed the ANN with BIAS 

= 0.001, RMSE = 0.0090, SI = 65.12%, R = 0.7490 and MAE = 0.0053 in predicting k in the 

testing stage. GEP provided an explicit mathematical equation that can be utilized to determine 

k. Comparing the observed data and ANN results demonstrated that the GEP approach has 

suitable performance for predicting k. 

1. Introduction 

Soil permeability is one of the most important hydraulic 

parameters in simulating water movement and solute 

transport in soil profiles, which is highly variable in space. 

The essential parameters in the flow and infiltration models 

are the hydraulic conductivity and soil water retention 

function 𝑘, which is one of the most critical hydraulic 

parameters. Determining the soil permeability coefficient is 

crucial, and this task is difficult, time- consuming, and 

expensive. The permeability is represented by the amount of 

water transmitted via an interconnected soil void. Soil 

hydraulic properties reflect the structure of the porous soil 

system, comprising pores of different geometry, sizes and 
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connectivity. 

For these reasons, many researchers studied 𝑘 using 

different methods. Sihag et al. [1] assessed the potential of 

machine learning approaches, including support vector 

regression (SVR) and Gaussian process (GP) regression of 

cumulative infiltration, and compared their performances 

with three traditional models such as the Kostiakov model, 

US-Soil Conservation Service (SCS) model and Philip’s 

model. Their analysis showed that the GP regression-based 

approach works better than the SVR, Kostiakov model, SCS 

model, and Philip’s model approaches and could be 

successfully used to predict cumulative infiltration data. 

Sinha and Wang [2] presented artificial neural network 

(ANN) prediction models which relate permeability, 

maximum dry density (MDD), and optimum moisture 

content with the classification properties of soils. Chapuis 

[3] proposed a new equation based on a best-fit equation in 

a graph of the logarithm of measured k. Boadu [4] predicted 

k values using grain size distribution, fractal dimension, 

distribution entropy, porosity, soil density, and fine grain 

content. Elbisy [5] developed two regression equations to 
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estimate the field saturated hydraulic conductivity k values 

for a soil sample from its properties. The SVM approach was 

proposed and adopted to forecast the 𝑘 field based on soil 

properties easily measured in the laboratory, and a genetic 

algorithm (GA) was used to optimize the parameters of the 

SVM. Zhu et al. [6] conducted a study to detect the 

differences and vertical variations of k to identify its 

dominant influencing factors. The results are helpful for 

understanding water movement within the soil profile and 

developing hydrological models.  

Recently, data-driven methods in civil engineering have 

become excellent tools for analyzing various civil 

engineering challenges. The GEP and ANN methods are 

frequently utilized in various civil engineering fields, such 

as estimating scour depth [7,8], longitudinal dispersion 

coefficient [9], water quality index [10], dynamic pressure 

distribution in hydraulic structures [11,12], and rock quality 

index [13]. 

The ANN technique is a predictive modeling tool with input 

and output variables described by coefficient weights 

between neurons. The primary shortcoming of neural 

networks is the inherent black-box nature. As a result, it may 

not be easy to express the relationship between the inputs 

and outputs of a neural network in mathematical expression 

form [14]. A newer computational intelligence approach 

known as gene expression programming (GEP), which 

belongs to a group of evolutionary programming techniques, 

is also a potential option for handling complicated 

estimation issues. GEP is a white-box model that can 

generate equations to estimate an output parameter based on 

the influential input variables and presents a clear 

relationship between input and output variables. In contrast, 

an ANN model is a “black-box” model that does not show 

how input and output variables are linked and is difficult to 

use. 

Due to its high predictive accuracy, GEP is commonly 

employed in the literature to conduct predictive modeling of 

engineering problems. GEP can generate a predictive model 

even without a predefined equation, like regression analysis. 

Therefore, this study employed the GEP to address the 

challenge of predicting the soil permeability coefficient. 

GEP was utilized to evaluate its feasibility as a predictive 

tool for the computation of 𝑘. A GEP-based equation was 

proposed for the estimation of 𝑘. The estimation of 𝑘 was 

then solved using ANN, and the resulting ANN and GEP 

solutions were compared with others and observed values 

for assessing the performance of GEP. ANN modeling was 

also used to understand GEP’s prediction performance. In 

predicting the soil permeability coefficient, six parameters, 

namely, 𝐶𝐶, 𝜔, 𝐿𝐿, 𝑃𝐿, 𝛾, 𝑒 were used. As mentioned 

before, GEP is a white-box data-driven model that provides 

a mathematical expression for predicting k. Thus, in this 

study, k was predicted using field data and soil physical 

properties by GEP. 

2. Materials and Methods 

2.1 Theoretical background and availability of data 

set 

In functional form, the permeability of soil is [15]: 

k = f (CC, ω, LL, PL, γ, e) (1) 

Eighty-four data samples are available for modeling k. For 

more details about the data set found in Ref. [15], Table 1 

summarizes the major statistical parameter of the data used 

in the present study [15]. 

Table 1: Basic statistical parameters of data used in this study 

[14] 

Variable Min Max Average 

𝐶𝐶(%) 5.70 64.00 25.17 

𝜔(%) 15.09 99.90 34.23 

         𝐿𝐿(%) 18.90 88.93 37.27 

         𝑃𝐿(%) 12.20 54.80 22.21 

         𝛾(
𝑔𝑟

𝑐𝑚3
) 2.58 2.74 2.68 

              𝑒 0.46 2.63 0.97 

  𝑘(10−9𝑐𝑚/𝑠) 0.003 0.071 0.015 

 

2.2 Overview of GEP and development 

Ferreira [16] developed GEP, a novel evolutionary approach 

for artificial intelligence. This approach is a refinement of 

GP introduced by Koza. GA, GP, and GEP are three 

algorithms classified as genetic algorithms since they all 

employ populations of individuals, select individuals based 

on their fitness, and add genetic diversity through one or 

more genetic operators. The primary distinction between the 

three methods is in the nature of the individuals: in GAs, 

individuals are represented by symbolic strings of constant 

length (chromosomes); in GP, individuals are represented by 

nonlinear entities with varying dimensions and shapes (parse 

trees); and in GEP, individuals are also represented by 

nonlinear entities with varying dimensions and shapes 

(expression trees); however, these complex entities are 

encrypted as simple strings of constant length. Most genetic 

operators used in GAs may also be applied with modest 

modifications in GP and GEP [17-19]. GEP development 

consists of five major parts: “fitness function,” “terminal 

set,” “function set,” “control components,” and “stop 

criterion.” These major parts must be assigned for solving a 

problem using GEP. 

GEP fitness functions include RMSE, MAE, and root-

relative square error (RRSE) examined to generate the GEP 
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equation. The RRSE fitness function was found to have 

better performance than RMSE and MAE. In addition, 

several previous studies reported successful application of 

RRSE for GEP development. 

The next major stage is to define the terminal and function 

sets used to produce chromosomes. As a result, the terminal 

set for 𝑘 prediction is input variables including 𝐶𝐶, 𝜔, 𝐿𝐿, 

𝑃𝐿; 𝛾, and 𝑒. Additionally, the following function sets were 

used: +, −,×,÷, √𝑥, √𝑥
3

, 𝑥2 , 𝑥3, 𝑒𝑥𝑝, 𝑙𝑛, 𝑆𝑖𝑛, 𝐶𝑜𝑠, 𝐴𝑡𝑎𝑛. 

Then, the architecture of chromosomes, which includes the 

number of genes and head length, was defined. In addition, 

the summation operator was selected as the linking function 

so that summation of sub-expression trees and the genetic 

operator’s value are determined for the GEP model (See 

Table 2). The stop criterion for GEP was select 100000 via 

trial and error procedure. 

Table 2: Setting parameters of GEP 

Parameter Value 

Number of chromosomes 50 

Number of genes 4 

Head size 8 

One-point recombination rate 0.3 

Two-point recombination rate 0.3 

Gene recombination 0.1 

Gene transposition 0.1 

Inversion rate 0.1 

Mutation rate 0.044 

 

The GEP presents four Sub-ETs for estimation of 𝑘. The 

Sub-ETs obtained via GEP are illustrated in Fig 1. 

 

 

 

 

 
Fig. 1: Sub-ETs for prediction of 𝑘 
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The explicit equation is related to each Sub-ETs indicated in 

Figure 1 as follows: 

Sub-ET 1: 𝐴𝑟𝑐𝑡𝑎𝑛((ln(𝑑1) − ln(𝑑5)) × (ln(𝑑0) + 𝑑2)) (2) 

Sub-ET 2: 𝑑0 × (((𝑑3 − 𝑑2) × (𝐶1 𝑑4⁄ )) − 𝑑4)              (3)            

Sub-ET 3: 𝐴𝑟𝑐𝑡𝑎𝑛(𝑑0
2 × (𝐶2 × (√𝑑3

3 𝑑4⁄ )))                   (4)        

Sub-ET 4: 𝐴𝑟𝑐𝑡𝑎𝑛(𝑑4 − 𝐴𝑟𝑐𝑡𝑎𝑛(𝑑4 − (𝐴𝑟𝑐𝑡𝑎𝑛((𝑑1
2 ×

𝐶3)3))
3

)                                                                            (5) 

The variables of Sub-ETs were  𝑑0 = 𝐶𝐶, 𝑑1 = 𝑒, 𝑑2 = 𝛾; 

𝑑3 = 𝐿𝐿,𝑑4 = 𝜔; 𝑑5 = 𝑃𝐿.  

In addition, the constant values of each Sub-ETs were C1 = 

9.748, C2 = 3.972, and C3 = 2.711. 

Finally, the value of k was calculated by summation of sub-

ETs as follows: 

𝑘 = 𝑆𝑢𝑏 − 𝐸𝑇 1 + 𝑆𝑢𝑏 − 𝐸𝑇 2 + 𝑆𝑢𝑏 − 𝐸𝑇 3 + 𝑆𝑢𝑏 −

𝐸𝑇 4                                                                                   (6) 

As can be seen, an explicit mathematical equation was 

obtained by GEP. According to the properties of this 

algorithm, triangular and algebraic functions have been used 

to estimate 𝑘 using input variables. This led to the flexibility 

and increase of computational capabilities of GEP for 

computation of 𝑘. 

2.3 Overview of ANN and development 

Neural networks are constructed from a collection of simple 

parts called neurons that work in parallel. These components 

are inspired by the nervous system of the human brain. As is 

the case in nature, the function of a network is primarily 

determined by the connections between its neurons. A neural 

network can be trained to serve a specific purpose by 

changing the values of the weights between the neurons in 

the network. 

ANN is composed of multiple layers. Each layer has one or 

more neurons that depend on the number of input data. Each 

neuron in the first layer takes the input data, multiplies it by 

the connection weight, and sends the result to the 

corresponding neurons in the hidden layer, which applies the 

activation function. The hidden layer’s results are then sent 

to the output layer by multiplying the output of each neuron 

in the hidden layer by the connection weight between the 

hidden and output neurons. Finally, the output layer presents 

the results of the network. Afterward, the error is calculated 

by comparing the output values to the target output at this 

phase. 

If the error is within reasonable limits, the result of the 

network is valid; otherwise, the connections’ weights are 

modified beginning at the output layer and propagating 

backward. After updating the weights, a new cycle starts 

until training is completed. The training procedure is 

terminated after reaching a certain error level or completing 

a certain number of cycles. Numerous publications have 

explained the fundamentals of artificial neural networks 

[20]. The dataset presented in Sect. 2.1 was also employed 

in the ANN modeling of k. For ANN model development,  

similar GEP and the same input and output variables were 

used. In addition, for the assessment of GEP, the same train 

data set used for GEP was employed for the training of 

ANN. The primary objective of training ANN is to establish 

the optimal weights between neurons in the configuration 

ANN for predicting k. This research applies a multilayer 

feed-forward neural network with a back-propagation 

training algorithm to train ANNs, a frequently accepted 

technique. Based on Hornik et al.’s [21] study, one hidden 

layer was employed for ANN development. The learning 

rate and momentum coefficient were set to 0.25 and 0.9 

based on Swingler’s [22] recommendation. In addition, the 

number of hidden neurons was obtained via Huang and 

Foo’s criterion (2002), successfully used in Refs. [23,24], 

which is as follows: 

𝑁𝐻 < 2𝑁𝐼 + 1                                                                    (7) 

where 𝑁𝐻 and 𝑁𝐼 are the number of hidden and input 

neurons in the hidden and input layers, respectively. The 

best configuration of ANN was found via trial and error. The 

most accurate results were obtained using a multilayer 

perceptron (MLP) network with one hidden layer and six 

neurons in the hidden layer. Therefore, the best ANN 

configuration was 6×6×1. This configuration is displayed in 

Figure 2. 

 
Fig. 2: The ANN configuration for prediction k 

The optimal weights and bias values were also extracted 

from the proposed ANN for future work. Tables 3 and 4 

present the corresponding optimal weights between input, 

hidden, and output layers.  
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3. Performance evaluation criteria 

For evaluating the accuracy and ability of developed models, 

the common statistical criteria include bias (BIAS), root 

mean square error (RMSE), scatter index (SI), correlation 

coefficient (R), and mean absolute error (MAE) were used. 

Accordingly, the following equations were used to calculate 

the efficacy of the suggested models [25,26]: 

𝐵𝐼𝐴𝑆 = 𝑘𝑝
̅̅ ̅ − 𝑘𝑜

̅̅ ̅ (8) 

𝑅𝑀𝑆𝐸 = √∑  

𝑁

𝑖=1

(𝑘𝑖𝑜 − 𝑘𝑖𝑝)
2

/𝑁 (9) 

 

𝑆𝐼 =
𝑅𝑀𝑆𝐸

𝑘𝑜
̅̅ ̅

× 100 (10) 

 

𝑅 =
∑  𝑛

𝑖=1 (𝑘𝑖𝑜 − 𝑘𝑜
̅̅ ̅)(𝑘𝑖𝑝 − 𝑘𝑝

̅̅ ̅)

√∑  𝑛
𝑖=1 (𝑘𝑖𝑜 − 𝑘𝑜

̅̅ ̅)
2

√∑  𝑛
𝑖=1 (𝑘𝑖𝑝 − 𝑘𝑝

̅̅ ̅)
2
 

 

              (11) 

 

𝑀𝐴𝐸 =
1

𝑁
∑  

𝑁

𝑖=1

|𝑘𝑖𝑜 − 𝑘𝑖𝑝| 
 

                              (12) 

Here 𝑘𝑖𝑜 and 𝑘𝑖𝑝 represent the observed and predicted 

values, 𝑘𝑜
̅̅ ̅ and  𝑘𝑝

̅̅ ̅  represent the average of the observed and 

predicted values of 𝑘𝑖𝑜 and 𝑘𝑖𝑝 , respectively; and 𝑁 equals 

the number of the dataset.  

 

Table 3: The optimal weights between input and hidden layers 

Weight between input and hidden neurons Bias 

𝑤06 = −0.62 𝑤07 = −0.22 𝑤08 = 0.04 𝑤09 = −0.11 𝑤010 = 0.25 𝑤011 = 0.02 ∅6 = −0.33 

𝑤16 = −0.56 𝑤17 = −0.71 𝑤18 = −1.19 𝑤19 = 0.04 𝑤110 = −0.19 𝑤111 = −1.18 ∅7 = 0.06 

𝑤26 = −0.14 𝑤27 = −0.26 𝑤28 = −0.32 𝑤29 = −0.18 𝑤210 = −0.24 𝑤211 = −0.22 ∅8 = 0.34 

𝑤36 = −0.33 𝑤37 = 0.14 𝑤38 = −1.05 𝑤39 = 0.25 𝑤310 = 0.20 𝑤311 = −1.09 ∅9 = 0.11 

𝑤46 = 0.63 𝑤47 = 0.28 𝑤48 = 0.92 𝑤49 = −0.10 𝑤410 = 0.10 𝑤411 = 0.99 ∅10 = −0.58 

𝑤56 = −0.27 𝑤57 = −0.32 𝑤58 = −0.29 𝑤59 = −0.56 𝑤510 = −0.02 𝑤511 = −0.96 ∅11 = 0.65 

 
Table 4: The optimal weights between hidden and output layers 

Weight between hidden and output neurons Bias 

𝑤612 = −0.83 𝑤712 = −0.38 𝑤812 = −1.58 𝑤912 = 0.09 𝑤1012 = 0.24 𝑤1112 = −2.09 ∅11 = 0.73 

 

RMSE and MAE have the benefit of calculating model error 

in just the same unit of variables. R provides a metric for the 

model’s ability to mimic observed results. One of the 

primary advantages of R and SI are their non-dimensionality, 

which enables the evaluation of various models irrespective 

of the size and dimension of the variables. The BIAS values 

indicated underestimating and overestimating results of 

GEP and ANN models. The negative and positive values of 

BIAS indicate judgments about under and overestimated 

results obtained from the models, respectively. 

Table 5 shows the values of statistical parameters for ANN 

and GEP in the training and testing datasets to predict 𝑘. 

Table 5 presents the statical metrics of GEP and ANN for 

predicting k. GEP in training stage had BIAS = −0.0006, 

RMSE = 0.0069, SI = 44.76 and MAE = 0.0041 and ANN 

has BIAS = 0.0002, RMSE = 0.0075, SI = 48.70%, R =  

0.8986 and MAE = 0.0045. As seen, the error values are In 

addition, the R-value increased 8.26% when using GEP 

compared to ANN. 

The BIAS values obtained for GEP and ANN are almost 

equal to zero. However, the negative BIAS value obtained 

through GEP indicated a slight underestimation of the 𝑘 

values. In contrast, the positive BIAS value obtained via 

ANN indicates a marginal overestimation of the k values. 

Scatter plots of ANN and GEP are displayed in Figures 3 

and 4. These scatter plots graphically indicate the 

performance of GEP and ANN. As seen, these figures found 

similar performances of ANN and GEP for the prediction of 

k. However, GEP results are more concentrated on the 45-

degree line. 

In addition, to further evaluate the results of this study, they 

were compared with previous work conducted by Pham et 

al. [15]. They used the M5 model tree (M5MT) and Gaussian 

process (GP) approach to predict k. They discovered that 

M5MT, with RMSE = 0.0081 and MAE = 0.0045, 

outperforms GP, with RMSE = 0.0093 and MAE = 0.0054. 

In the present study, GEP with RMSE = 0.0079 and MAE = 

0.0047 led to similar results to M5MT. In addition, 

compared to previous work [15], this study provided an 

explicit equation for predicting k.
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Table 5: Statistical metric values of GEP and ANN for prediction 𝑘

4. Summary and Conclusions 

In this study, GEP was applied to solve the problem of soil 

permeability coefficient. This study provided a 

mathematical expression obtained by GEP for predicting k. 

These equations calculate the k value by substituting the 

input variables. The data samples were obtained from 

previously published research. Moreover, the ANN model 

was employed to evaluate the potential of GEP in predicting 

𝑘. Six input parameters, including clay content (𝐶𝐶), natural 

water content (𝜔), liquid limit (𝐿𝐿), plastic limit (𝑃𝐿), 

specific density (𝛾), and void ratio (𝑒) were used to estimate 

the soil permeability coefficient (𝑘). Statistical parameters 

were used to determine the performance of the GEP 

equation. The GEP in the training stage with RMSE = 0.0069 

and R = 0.9115 led to a slightly better prediction of k 

compared to ANN with RMSE = 0.0075 and R = 0.8986. 

Compared to ANN with RMSE = 0.009 and R = 0.7490, GEP 

with RMSE = 0.0079 and R = 0.8109 had a better 

performance in estimation of k in the testing stage. 

Therefore, the GEP results were much better than the best 

ANN outputs. Nonetheless, GEP provided an explicit 

expression for prediction k. Thus, from this point of view, 

GEP is preferable to ANN. However, ANN presented a 

complex network with optimal weights for predicting k. 

Overall, the findings of the present research indicated that 

GEP outperformed ANN.  For future work, the application 

of the group method of data handling (GMDH), extreme 

learning machine (ELM), and evolutionary polynomial 

regression (EPR) is suggested for the prediction of k. 

Model BIAS RMSE SI (%) R MAE 

GEP (Train) −0.0006 0.0069 44.76 0.9115 0.0041 

GEP(Test) −0.0005 0.0079 57.33 0.8109 0.0047 

ANN(Train) 0.0002 0.0075 48.70 0.8986 0.0045 

ANN (Test) 0.0010 0.0090 65.12 0.7490 0.0053 
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Fig. 3: Observed data versus the output of GEP for a) training 

and b) testing data set. 

 

Fig. 4: Observed data versus the output of ANN for a) training 

and b) testing data set 
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