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Abstract: 

In this paper, the dynamic responses of cracked beams under different moving forces, including 

moving load, moving mass, moving oscillator, and four-degrees-of-freedom moving system, are 

investigated. Structural elements such as beams are designed to withstand the predicted loads, 

but unfortunately, they are always exposed to unpredictable damage such as cracks. Several 

factors may cause these damages, and the important thing is that their presence can affect the 

dynamic behavior of the beam or even endanger its reliability and durability in some cases. 

Therefore, this study considers an Euler-Bernoulli single-span beam with simple supports and 

a crack. First, with the help of the function expansion method and by employing MATLAB 

software, the dynamic time history responses of the beam at its midpoint under the influence of 

each type of moving force are extracted. Then, the changes in maximum displacement responses 

due to various parameters such as velocity, load magnitude, crack depth, and crack location 

are plotted in different spectra and compared with each other. The results show that the beam 

will have close results under all types of moving force (moving load, moving oscillator, and 

moving system) except moving mass. Obviously, this difference is due to the effect of inertia on 

the moving mass.

 

1. Introduction 

Beams are among the structural elements widely used in 

engineering designs and can be subjected to frequent static 

and dynamic loads. The existence of damages such as cracks 

in a beam caused by various factors can directly affect its 

dynamic behavior and, in some cases, endanger its reliability 

and durability. Therefore, in recent decades, scientists have 

studied the effect of cracks in beams in their research [1-7]. 

Lee et al. [8] surveyed the dynamic response of a cracked 

beam under a moving load. Law and Zhu [9] also 

investigated the dynamic behavior of a reinforced concrete 

bridge. They modeled vehicles as moving masses and 

moving systems with four degrees of freedom. Mahmoud 

and Abou Zaid [10] studied crack effects on the dynamic 

response of a beam subjected to a moving mass by focusing  
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on the simply supported Euler-Bernoulli beam. 

Rofooei et al. [11] used the governing differential equation 

of motion for an Euler-Bernoulli beam under moving mass, 

considering the centripetal and Coriolis accelerations 

besides the vertical component one. Kiani et al. [12] carried 

out parametric studies on the vibration of multi-span 

viscoelastic Euler–Bernoulli beams traversed by a moving 

mass. They used a total moving least square method for 

spatial discretization of the problem’s parameters. A number 

of other studies on this topic have also been done by Kiani 

et al. [13-16]. Thatoi et al. [17] used finite element analysis 

and experimental techniques to validate their proposed 

procedure. They observed significant changes in mode shape 

at the crack location and declared that the variation in 

dynamic characteristics of the cracked cantilever beam 

could be utilized for the early assessment of cracks. In 

another study, Pala and Reis [18] investigated the effects of 

inertial, centripetal, and Coriolis forces on the dynamic 

response of a hinge-supported beam with a single crack 

under moving mass. Jena and Parhi [19] surveyed the 
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dynamic response of a cracked cantilever beam with the 

presence of multiple open cracks with different positions and 

depths under a moving mass that has numerous mass 

magnitudes and speeds. The results taken from the 

numerical formulation showed good agreement with those 

of laboratory tests. Cicirello [20] investigated the response 

of damaged Euler–Bernoulli beams with some unilateral 

cracks and subjected to one or more moving masses that 

always remain in contact with them. Al Rjoub et al. [21] 

obtained an analytical solution using a modal expansion 

method to study the forced vibration response of multi-

cracked Euler-Bernoulli and Timoshenko beams, including 

shear deformation and rotary inertia, with different boundary 

conditions and two moving loads which travel with constant 

velocity. Nikkhoo and Sharifinejad [22] scrutinized the 

effect of parameters such as the magnitude and speed of the 

moving force (including moving load and moving mass), its 

inertial effects, and crack’s depth on the dynamic behavior 

of a simply supported Euler-Bernoulli beam. Other research 

on this area had also already been done by Nikkhoo [23-26]. 

A review of the previous studies shows that the transfer 

matrix method has been used to model the crack in the beam 

many times [9,27,28]. In this method, the crack is modeled 

as a rotational spring, and the beam parts are connected by 

it. Attar [29] probed an analytical approach to investigating 

natural frequencies and mode shapes of an Euler-Bernoulli 

beam with several cracks and different forms of boundary 

conditions. He modeled the stepped cracked beam as a group 

of uniform sub-segments connected by massless rotational 

springs. Al Rjoub et al. [30] studied the free vibration of 

multi-cracked, axially loaded beams with different boundary 

conditions, such as clamped-clamped, hinged-hinged, 

clamped-hinged, and clamped-free. They modeled cracked 

beams as several beam segments connected by massless 

rotational springs with sectional flexibility. 

The purpose of the present paper is to investigate the effect 

of the vehicle modeling method (moving load, moving mass, 

moving oscillator, and moving system) on the dynamic 

behavior of cracked beams. In previous studies, the vehicle 

was modeled by a moving load or a moving oscillator. So, 

by upgrading the modeling method, a moving system that is 

a more realistic model of a vehicle is used. 

This study investigates the effect of parameters such as 

velocity and load magnitude, crack depth ratio, crack 

location in the beam span, and the distance between axes of 

the moving system. Also, the passing effect of different 

types of moving forces, including moving load, moving 

mass, moving oscillator, and four-degrees-of-freedom 

moving system with a constant speed on the maximum 

displacement response of the beam is compared and 

discussed. Hence, by considering an Euler-Bernoulli beam 

in which there is a crack, the time history response of the 

mid-span of the beam under each type of moving force 

(moving load, moving mass, moving oscillator, or moving 

system) is calculated. A massless rotational spring and the 

transfer matrix method are used to model the crack and to 

obtain the mode shapes of the cracked beam. In each case, 

the maximum displacement response extracted from the 

time history responses is plotted and compared in different 

spectra. The results show that except for the situation in 

which the moving mass passes over the beam, it has almost 

similar dynamic responses under the other loading 

conditions. 

2. Dynamic behavior of cracked beam under 

the moving forces 

In this section, the behavior of a uniform Euler-Bernoulli 

beam under a moving force is studied. To investigate the 

effect of the type of moving force on the results, the force is 

examined in four conditions (moving load, moving mass, 

moving oscillator, and moving system). In all cases, the 

speed of the moving force is constant when crossing over the 

beam, and the contact surface of the force and the beam is 

assumed to be without friction. In general, the motion 

equation of a uniform Euler-Bernoulli beam under a moving 

force is as follows [31]: 

4 2

4 2

w w
EI ( x ,t ) A ( x ,t ) f ( x ,t )

x t


 
+ =

 
                        (1) 

In the above equation, A is the cross-section of the beam, and 

L,  , I, and E are beam length, material destiny, second 

moment of area, and modulus of elasticity, respectively. 

f ( x ,t )  is also introduced later in this section according to 

the type of force model. To solve the above differential 

equation, the answer in the modal space is considered as 

follows: 

n

i i

i 1

w ( x ,t ) ( x )u ( t )
=

=                                                       (2) 

where w ( x ,t ) is beam displacement response; 
i
( x ) and 

i
u ( t ) are mode shape and modal coordinates of the ith 

mode, respectively. 

By substituting Eq. (2) into Eq. (1) and also considering the 

orthogonal nature of the modes, the differential equation of 

motion of the beam is generally obtained for the first i 

modes: 

MX CX KX F( t ) ( t ) ( t ) ( t )+ + =&& &                                         (3) 

In the above equation, the parameters M, C, K, X(t), and F(t) 

for each case are presented as in the following [11]: 

2.1. Moving load 

In the first case, a moving load of size mg goes through the 

beam. In this case, f(x,t) is considered in Eq. (1) as follows: 
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f ( x ,t ) mg ( x vt )= −                                               (4) 

where   is a function of the Dirac delta, and the parameters 

of Eq. (3) are defined as follows: 

 M
L

i jij 0
A ( x ) ( x )dx  =   

 C
ij

0=  

 K
L

i jij 0
EI ( x ) ( x )dx  =   

 F
i mi

mg ( x )=  

 X
T

1 2 n
( t ) u ( t ) u ( t ) ... u ( t )=                                  (5) 

In the above equation, xm is the position of the moving load 

measured from the left support. 

2.2. Moving mass 

In the second case, the moving force is considered as a 

moving mass with mass m. In this case, f(x,t) is considered 

in Eq. (1) as follows: 

f ( x ,t ) m( g w ( x ,t )) ( x vt )= − −&&                                 (6) 

where   is a function of the Dirac delta, and the parameters 

of Eq. (3) are defined as follows: 

 M
L

i j i jij 0
m mA ( x ) ( x )dx m ( x ) ( x )    = +  

 C
i j ,xij m m2 mv ( x ) ( x ) =  

 K
L

i j i j ,xxij 0

2

m mEI ( x ) ( x )dx mv ( x ) ( x )    = +  

 F
i mi

mg ( x )=  

 X
T

1 2 n
( t ) u ( t ) u ( t ) ... u ( t )=                                  (7) 

As before, xm is the position of the moving mass measured 

from the left support. 

2.3. Moving oscillator 

In this part, the moving force is considered as a moving 

oscillator with the parameters shown in Fig. 1-c. Therefore, 

f(x,t) in Eq. (1) and also the differential equation governing 

the moving oscillator motion are obtained as follows: 

w w
f ( x ,t ) m ( g y ( t )) ( x vt )= − −&&                                    (8) 

w w w w w w
m y ( t ) c ( y ( t ) w ( x ,t )) k ( y ( t ) w ( x ,t )) 0+ − + − =&& & &     (9) 

where   is a function of the Dirac delta, and the parameters 

of Eq. (3) are defined as follows: 

M M
M

b n

w
0 m

=
 
 
 

 

C
C

n w

0 0

c
=
 
 
 

 

K
K

K

b

n w

0

k
=
 
 
 

 

F
F

b

0
=
 
 
 

 

 X
T

1 2 n w
( t ) u ( t ) u ( t ) ... u ( t ) y ( t )=                  (10) 

Non-zero sub-matrices in the above equations are calculated 

as follows: 

 M
L

b i jij 0
A ( x ) ( x )dx  =   

 M
n w ii

m (vt )=  

 C
n w jj

c (vt )= −  

 K
L

b i jij 0
EI ( x ) ( x )dx  =   

 K
n w jj

k (vt )= −  

 F
b w jj

m g (vt )=                                                           (11) 

2.4. Moving system 

In this case, the moving force is considered as a moving 

system (a vehicle with three degrees of transient freedom 

and one degree of rotational freedom) with the parameters 

shown in Fig. 1-d. Therefore, f(x,t) in Eq. (1) and also the 

differential equation governing the moving system motion is 

obtained as follows: 

2

1 s 1 1 1 1

1 2

1

2 s 2 2 2 2

1 2

f ( x ,t )

b
k ( y w ( x ( t ),t )) m g ( x x ( t ))

b b

b
k ( y w ( x ( t ),t )) m g ( x x ( t ))

b b





=

= − + + − +
+

+ − + + −
+

   
   
   

   
   
   

 

                                                                                         (12) 

( ) ( )

( ) ( )

v 1 1 v 1 1 1 1 v 1 1

2 2 v 2 2 2 2 v 2 2

I c b y y b k b y y b

c b y y b k b y y b 0

  

 

+ − + + − + +

− − − − − − =

&& && &

&& &
         (13) 

( ) ( )

( ) ( )

v v 1 v 1 1 1 v 1 1

2 v 2 2 2 v 2 2

m y c y y b k y y b

c y y b k y y b 0

 

 

+ − + + − + +

+ − − + − − =

&&& & &

&& &
            (14) 

( ) ( )

( )

1 1 1 v 1 1 1 v 1 1

1 s 1 1

m y c y y b k y y b

k y w ( x ( t ),t ) 0

 − − + − − + +

+ − =

&&& & &
              (15) 

( ) ( )

( )

2 2 2 v 2 2 2 v 2 2

2 s 2 2

m y c y y b k y y b

k y w ( x ( t ),t ) 0

 − − − − − − +

+ − =

&&& & &
          (16) 

In the above relations, x1(t) and x2(t) show the position of the 

first and second wheels of the moving system on the beam, 

respectively, and are defined as follows: 

1 1 2
x ( t ) vt ( b b )= − +  
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2
x ( t ) vt=                                                                         (17) 

In this case, the parameters of Eq. (3) are defined as follows: 

M M
M

M

b n

v
0

=
 
 
 

 

C
C

v

0 0

0
=
 
 
 

 

K K
K

K K

b n

m v

=
 
 
 

 

F
F

b

0
=
 
 
 

 

 X
T

1 2 n v 1 2
( t ) u ( t ) u ( t ) ... u ( t ) ( t ) y ( t ) y ( t ) y ( t )=  

                                                                                         (18) 

Non-zero sub-matrices in the above equations are calculated 

as follows: 

 M
L

b i jij 0
A ( x ) ( x )dx  =   

   M
n i 1 ,2 1 ,3 1 ,4

0 ,a ,a ,a=  

( )v

1 i 2 2 i 1

1 2

1 ,2

m
b ( x ( t )) b ( x ( t ))

b b
a  = −

+
 

1 i 11 ,3
m ( x ( t ))a = −  

2 i 21 ,4
m ( x ( t ))a = −  

M
v v v 1 2

diag( I , m , m , m )=  

C

2 2

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 2 1 2

v

1 1 1 1

2 2 2 2

c b c b c b c b c b c b

c b c b c c c c

c b c c 0

c b c 0 c

+ − −

− + − −
=

− −

−

 
 
 
 
 
 

 

 K
L

b i j 1 s i 1 j 1ij 0

2 s i 2 j 2

EI ( x ) ( x )dx k ( x ( t )) ( x ( t ))

k ( x ( t )) ( x ( t ))

   

 

 = +

+


 

   K
n 1 i 1 2 i 2i

0 ,0 , k ( x ( t )), k ( x ( t )) = − −  

   K
T

m 1 s j 1 2 s j 2j
0 ,0 , k ( x ( t )), k ( x ( t )) = − −  

K

2 2

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 2 1 2

v

1 1 1 1 1 s

2 2 2 2 2 s

k b k b k b k b k b k b

k b k b k k k k

k b k k k 0

k b k 0 k k

+ − −

− + − −
=

− − +

− +

 
 
 
 
 
 

 

 F
2 1

b 1 v j 1 2 v j 2j

1 2 1 2

b b
m m g ( x ( t )) m m g ( x ( t ))

b b b b
 = + + +

+ +

   
   
   

 

                                                                                         (19) 

The differential equations governing the cracked beam are 

the same as the relationships obtained in the case of a healthy 

beam, except that in this case, the mode shapes and the 

natural frequencies of the cracked beam obtained through 

the matrix method [32] are replaced with the mode shapes 

and the natural frequencies of the healthy beam in the above 

relations. This method can also be used for beams with 

multiple cracks. 

 
Fig. 1: An image of different moving forces; 

(a. Moving load, b. Moving mass, c. Moving oscillator,  

 d. Moving system.) 

3. Solving the equations 

In this study, a numerical method based on the concept of 

state space has been used to find the amplitude of the 

deformation of the beam under moving load in the time 

domain and to solve its motion equation. According to this 

method, Eq. (3) is rewritten as follows: 

Q A Q F( t ) ( t ) ( t ) ( t )= +&                                                   (20) 

where  

u
Q

u
k 1

( t )
( t )

( t )


=
 
 
 &

, 

I
A

M K M C
1 1

k k

0
( t )

− −



=
− −

 
 
 

, 

F
M F

1

k 1

0
( t )

−



=
 
 
 

                                                            (21) 

In the above relations, k is as follows: 
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2 n

k 2 n 2

2 n 8

= +

+







       

;  for moving force & moving mass

; for moving oscillator

; for moving system

 

Moreover, n is the number of considered mode shapes.  
Equation (20) is assumed to be as follows: 

k 1 k k k
( t ) ( t ) ( t ) ( t )

+
= +Q A Q F                                   (22) 

So that: 

A k k

k

A ( t ) ( t )
( t ) e


 , ( ) [ ( ) ] ( ) ( )F A I A F

1

k k k k
t t t t

−
 −  

(23) 

In these equations
k k 1 k

( t ) t t
+

= − is assumed a small time 

step. Finally, by numerically solving Eq. (22), the value of 

Q ( t ) at any moment could be calculated. Finding it will 

lead to the determination of u(t). 

 

4. Verifying example 

In this section, an example is used to verify the accuracy of 

the theoretical relationships presented in the previous 

section to calculate the displacement responses. This 

example studies the situation in which a moving system 

passes over a simple-span simply supported beam, and the 

results of it are reported in another research [5]. The assumed 

beam has a length of L = 30 m, a moment of inertia of I = 

0.2 m4, q modulus of elasticity of .E 27 5  GPa= , and a 

mass per unit length of kg/mm 2000  = . A moving system 

with the lumped mass Mv = 2500 kg, the moment of inertia 

around the center of mass Iv = 2300 kg.m2, axial distances b1 

=1.3 m and b2 = 1.7 m, springs with stiffness k1 =180 KN/m 

and k2 = 230 KN/m with speed v = 10 m/s passes over the 

beam. The contact surface between the beam and the wheels 

is assumed to be without friction, and the moving system is 

considered without damping. The response of the vertical 

displacement of the midpoint of the beam span for the first 

five modes with time intervals of t 0.001 sec = is shown 

in Fig. 2.  

 
Fig. 2: Time history responses of displacement at the mid-span 

As it can be seen, there is a very good agreement between 

the results obtained from the theoretical relationships of this 

research and the results reported from the Reference [5]. 

5. Numerical example 

In this section, some numerical examples are used to review 

the studies. In all these examples, the properties of the beams 

are the same as a uniform beam with the length L=25m, 

cross-sectional dimensions B=30 cm and h=60 cm, modulus 

of elasticity E=2.11011 N/m2, volumetric mass =7800 

kg/m3, and a crack at a distance of x1=0.3L from the left 

support. The specifications of the moving forces are as 

shown in Table 1. The first six modes are used to solve the 

equations and the time interval is also equal to 0.001 sec. 

The normalized speed, mass, and displacement parameters 

have been used to simplify the calculations. The normalized 

velocity parameter is defined by 
n

V v v .=  In this 

equation, the base velocity is EI
L Av 


 = . The normalized 

load magnitude parameter is 
n b

M M M= , where
b

M is 

the mass of the beam. 

Table 1: The properties of moving forces  

Type parameter Assumed measure 

Moving load m (kg) 7020 

Moving mass m (kg) 7020 

 m (kg) 7020 

Moving oscillator c (Ns/m) 1 

 k (N/m) 725.76 

 mv (kg) 7000 

 m1 , m2 (kg) 10 

Moving system c1 , c2 (Ns/m) 1 

 k1 , k2 (N/m) 725.76 

 k1s , k2s (N/m) 725.76 

 b1 , b2 (m) 0.5 

n

dyn ,max

sta ,max

 W

 W
W =  is also the normalized displacement 

parameter, where 
dyn ,max

W  is the maximum displacement 

response of the beam when vibrating and 
sta ,max

W  is the 

maximum static displacement response obtained from the 

following equation: 

3

sta ,max

mgL
 W

48 EI
=  

The values of each of these normalized parameters can be 

seen in Table 2. The purpose of the following examples is to 

determine the effect of each of the factors of crack depth 

ratio (
c

d
D

h
= ), the type of moving force, wheel distance of 

the moving system, load magnitude of moving force, and 
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crack position on the maximum displacement response of 

the beam at the midpoint. 

Table 2: Assumed values of the normalized parameters 

Parameter values 

n
V  0.025 0.05 0.075 … 1 

n
M  0.05 0.1 0.15 0.2  

In the first step of this stage, the beam is examined under 

each type of moving force (moving load, moving mass, 

moving oscillator, and moving system) with  Mn = 0.15. 

Figure 3 shows the maximum normalized beam 

displacement response due to changes in the speed of 

various moving force types.  

 
Fig. 3: The effect of normalized velocity on the normalized 

displacement of the cracked beam at mid-span with different 

crack depth ratios under a moving force (a. Moving load;                        

b. Moving mass; c. Moving oscillator; d. Moving system);      

Dc=0.1 ⎯⎯ , Dc=0.2 −  −  , Dc=0.5 − − − . 

In this figure, the spectra are plotted for different crack depth 

ratios. As it can be seen, the deeper the crack depth in the 

beam section is, the greater displacement of the beam under 

the passage of various moving loads will be created, and the 

corresponding spectra will have a higher position. This is 

true for all mentioned loading conditions such as moving 

load, moving mass, moving oscillator, and moving system. 

For example, by plotting the beam displacement response 

separately for velocities Vn = 0.1 , 0.6 and in conditions 

where the crack depth ratio increases from Dc = 0.1 to Dc = 

0.9, Fig. 4 is obtained. Figure 4-a for Vn = 0.1, Mn = 0.15, 

and also Fig. 4-b for Vn = 0.6, Mn=0.15 show that the 

displacement response will increase with increasing crack 

depth ratio in the cross-section of the beam. In these figures, 

it can be seen that the beam under moving mass has a 

different response from other moving force states (moving 

load, moving oscillator, and moving system). 

 
Fig. 4: The effect of crack depth ratio on the normalized 

deflection of the cracked beam at mid-span (a. Vn=0.1; b. Vn=0.6) 

and Mn=0.15; Moving load ⎯⎯ , Moving mass − − − ,  

Moving oscillator  , Moving system −  −  . 

To compare the efficiency of the beam under different types 

of moving force, Fig. 5 investigates the spectra of the 

velocity-maximum response of the beam displacement 

under a different type of moving force (moving load, moving 

mass, moving oscillator, and moving system) with Mn = 

0.15. This figure illustrates that under the same conditions, 

the beam fluctuated by the moving load, the moving 

oscillator, and the moving system has very similar 

responses, but with the passage of the moving mass over it, 

the displacement responses will generally have larger 

values. 

It is also observed that, in general, as the normalized velocity 

increases, the difference between the moving mass spectra 
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and other states increases. It is obvious that the reason for 

this deviation is the effect of inertia on the moving mass. 

 
Fig. 5: The effect of moving load type velocity on the normalized 

displacement of the cracked beam at mid-span; Moving load ⎯⎯ 

, Moving mass −  −  −   , Moving oscillator −  − , 

 Moving system  . 

Now let us study the effect of the change in the distance 

between the wheels of the moving system in Fig. 6. As it can 

be seen, by increasing the distance of the wheels of the 

moving system, the displacement response of the beam 

decreases slightly but still does not have a significant effect. 

 
Fig. 6: The effect of the moving system wheel’s distance on the 

normalized displacement of the cracked beam at mid-span; 

distance=1m ⎯⎯ , distance=1.5m − − −,  distance=2.5m −  − . 

In the next step, the spectra of changes in the magnitude of 

each moving force type on the maximum displacement 

response of the mid-span are checked (Fig. 7). The crack 

depth ratio is assumed to be Dc = 0.5h, and the normalized 

moving load velocity is Vn = 0.4.  

 
Fig. 7: The effect of moving load magnitude changes on the 

normalized displacement of cracked beam at mid-span; Moving 

load ⎯⎯ , Moving mass − − −  , Moving oscillator −  −  − , 

Moving system −  −  . 

Figure 7 represents that the beam displacement response 

under moving load, moving oscillator, and the moving 

system remains constant due to mass changes and does not 

change at all. While for the sake of increasing in load 

magnitude of the moving mass, the response of the beam 

displacement increases linearly. 

On the other hand, to distinguish the effect of the crack 

location in the beam span on the maximum displacement 

response of it under each type of loading, it is assumed that 

there is a crack with a depth ratio of Dc = 0.5h in the distance 

of x/L from the left support (Fig. 8). The normalized velocity 

of the moving force when passing over the beam and the 

normalized mass of it is considered to be Vn = 0.6 and Mn = 

0.15. This figure denotes that the closer the crack location is 

to the center of the beam, the greater the maximum 

displacement response it will have. It is again observed that 

under the same situations, the dynamic responses of the 

beam under moving mass have a greater value than other 

moving force conditions. 

 
Fig. 8: The effect of crack location on the displacement of 

the cracked beam at mid-span; Moving load ⎯⎯ ,  

Moving mass −  − , Moving oscillator − − −,  

Moving system  . 

6. Conclusions 

In this paper, the dynamic behavior of a cracked beam under 

moving forces such as moving load, moving mass, moving 

oscillator, and four degrees of freedom moving system was 

studied. First, a hinged beam was assumed in the form of a 

numerical example. Then the maximum response of its 

vibrations was extracted under the considered moving loads. 
At each step, the effect of parameters such as speed, load 

magnitude, crack depth ratio and location, and also the effect 

of the distance between the wheels of the moving system on 

the maximum deformation response of the midpoint of the 

beam was investigated. These responses were plotted in the 

form of spectra and compared with each other. By 

comparing these spectra, the following results were 

obtained: 

• By increasing the crack depth ratio, the displacement 

response of the cracked beam under each type of the moving 

force becomes greater, and the related velocity-displacement 
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spectra are in a higher position. This becomes clearer at 

higher speeds. 

• By increasing the crack depth ratio at a constant speed, the 

displacement response increases. 

• Increasing the distance of the wheels of the moving system 

decreases the displacement response of the beam slightly but 

still does not have a significant effect  

• Increasing the load magnitude of the moving load, the 

moving oscillator, and the moving system did not change the 

beam displacement responses. However, by increasing it in 

the moving mass case, the beam displacement response 

increases linearly. 

• If the location of the crack is closer to the middle of the 

beam, the response of the cracked beam will be higher. 
Conversely, if the crack is closer to the supports, the 

displacement response will be lower. 

• Overall, by comparing the response spectra of the cracked 

beam displacement under different types of moving force, it 

is observed that its displacement response under moving 

load, moving oscillator, and moving system have very close 

values. Nonetheless, the displacement response under 

moving mass had higher values due to the inertial effect, so 

its spectra are in a higher position.
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