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Abstract: 

The applications of time series modeling and statistical similarity methods to structural health 

monitoring (SHM) provide promising and capable approaches to structural damage 

detection. The main aim of this article is to propose an efficient univariate similarity method 

named as Kullback similarity (KS) for identifying the location of damage and estimating the 

level of damage severity. An improved feature extraction technique based on autoregressive 

(AR) model is presented to extract independent residuals of the AR model as damage-sensitive 

features. This technique emphasizes to choose a sufficient order such that the model residuals 

be independent. The proposed univariate similarity approach is a new application of the well-

known KS method that attempts to measure a difference between two randomly distributed 

variables. The major contribution of the proposed KS method is that it only requires one 

measurement of undamaged and damaged conditions to compute the similarity between them. 

For the process of damage localization, the sensor location associated with the largest KS 

quantity is identified as the damaged area. In the damage level estimation, it is necessary to 

compare at least two different damaged conditions and find the maximum KS value in these 

conditions as the highest level of damage severity. The performance and capability of the 

improved and proposed methods is successfully verified by an experimental laboratory frame 

belonging to the Los Alamos National Laboratory. Results show that the methods are 

powerful and reliable tools for identifying the location of damage and estimating the level of 

damage severity.   

 Introduction 

Structural health monitoring (SHM) is an implementing 

process that aims to evaluate the health and safety of 

engineering systems and detect any probable structural 

damage by vibration data [1]. 

All of these factors may cause permanent changes in 

structural stiffness, undesirable stresses and displacements, 
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inappropriate vibrations, adverse dynamic behavior, 

failure, and even collapse in structures. To prevent such 

dramatic events and decrease high costs of maintenance 

and rehabilitation, it is imperative to use SHM systems for 

assessing the safety of structures and detect structural 

damage. 

Damage detection process is normally carried out by 

model-based or data-based methods. The main premise 

associated with the model-based methods is to use a finite 

element model and its inherent physical properties such as 

mass, stiffness and damping [2, 3]. A main limitation of 

such methods is that the finite element model of the 

structure may not be accurate; therefore, a model updating 

strategy is typically employed to calibrate or update the 

physical properties of the structure [4-7]. On the contrary, 
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the data-based methods rely on applying raw vibration data 

on the basis of statistical pattern recognition paradigm that 

attempts to extract patterns or features from measured 

vibration responses and then analyze the extracted features 

to make a meaningful decision about the condition of 

structure and damage occurrence [8-12]. 

The process of feature extraction is concerned with finding 

out features that should be sensitive to damage, called 

damage-sensitive features [9, 13-15], and not to 

operational and environmental variability [16-18]. In the 

SHM community, coefficients and residuals of time series 

models are normally chosen as the damage-sensitive 

features. On this basis, Sohn et al. [19] extracted the 

coefficients of autoregressive (AR) model as the damage-

sensitive features and applied X-bar control charts based 

on statistical process control for damage detection. In a 

similar way, Fugate et al. [20] utilized the residual errors 

of AR model as the damage-sensitive features and then 

used some statistical process control methods such as X-

bar and S control charts in order to identify damage in a 

concrete column. Nair et al. [21] used an autoregressive 

moving average (ARMA) model and applied the first three 

AR coefficients, which were used into two damage 

localization indices for the identification of structural 

damage in the ASCE benchmark structure. Mei et al. [22] 

proposed an improved substructure-based damage 

detection method to locate and quantify damage in a shear 

building structure. In their article, both coefficients and 

residuals of ARMAX models in undamaged and damaged 

conditions were incorporated as damage features, rather 

than only considering the model coefficients or residuals, 

to capture more complete structural damage information. 

Hoell and Omenzetter [23] conducted a research to 

enhance an improved selection of coefficients regarding 

the AR or ARMA models as widely-used damage-sensitive 

features in structural damage detection.  

Even though time series modeling has extensively been 

used to extract the damage-sensitive features, there are 

some limitations and issues in using time series models 

that should be dealt with. One of the significant issues of 

such a modeling technique is to select sufficient model 

orders which still remains as a challenging issue in the 

SHM community. Figueiredo et al. [24] assessed the 

influence of selecting different orders of  AR model on 

damage detection. They introduced four information 

criterion techniques to select the most appropriate model 

order. Based on their results, one can realize that the 

selection of inappropriate orders may cause insensitive 

features for damage detection problems. Stull et al. [25] 

employed information-gap decision theory and robustness 

curves based on area under receiver operating 

characteristic (ROC) curve, which is abbreviated as AUC, 

versus uncertainty to choose a robust order of AR model. 

From a statistical viewpoint, a time series model should 

extract independent residuals to ensure the model accuracy 

and adequacy [13, 26-29]. In addition to the statistical 

sense, it is essential to fit an accurate time series model to 

vibration data in order to capture the entire physical and 

dynamic characteristics of the structure. To address these 

issues, in the first step an improved feature extraction 

technique using AR model is presented to choose a 

sufficient order and then extract the independent residuals 

of the model as the damage-sensitive features.  

Another important challenge of feature classification 

method for making a right decision about the current status 

of structure is to utilize a reliable statistical technique for 

measuring the discrepancy of damage features. Among a 

large number of methods, statistical similarity techniques 

are widely used in the context of SHM to implement the 

damage detection levels. A statistical similarity method 

generally calculates a difference or similarity between two 

objects or variables [12, 30-36]. In the decision-making 

phase, the similarity methods can be applied to detect early 

damage, identify damage location, and then estimate 

damage severity. Gul and Catbas [37] applied Mahalanobis 

similarity method by using the coefficients of AR model in 

order to detect and locate structural damage in the different 

laboratory structures. Mosavi et al. [38] proposed a novel 

feature extraction methodology by measuring the similarity 

of coefficients of vector autoregressive (VAR) model 

through Mahalanobis similarity method and employed 

Fisher criterion to identify the location of damage. 

Balsamo et al. [39] utilized squared Mahalanobis similarity 

method using Mel-Frequency Cepstral Coefficients, as new 

damage features, to detect damage.  

The main objective of this study is to propose a novel 

statistical similarity method for the identification of 

damage location and estimation of damage severity. The 

main novelty of the proposed KS method is to avoid 

exploiting any time-consuming and complex partitioning 

processes for measuring the similarity between two 

random variables. This characteristic makes it particularly 

suited for SHM applications. Another contribution of the 

proposed KS method is that it only requires one 

measurement of undamaged and damaged conditions to 

compute the similarity between them. In addition to the the 

proposed KS method, an improved residual-oriented 

feature extraction technique on the basis of time series 

modeling is presented to deal with some limitations in the 

feature extraction process such as the complexity of time 

series modeling, the overfitting problem, and the lack of 

sufficient efficiency of extracted features for SHM 

applications. In this technique, a sufficient order of AR 

model is chosen so that the model is able to extract 

independent residuals as the main criterion of sufficiency 

and accuracy of time series models. The performance and 
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robustness of the improved and proposed methods are 

verified by an experimental laboratory frame belonging to 

the Los Alamos National Laboratory (LANL). In this 

frame, operational and environmental variability are 

simulated in undamaged and damaged conditions by 

adding mass or reducing structural stiffness. Results 

demonstrate that the proposed KS method using the 

residuals of the sufficient AR model is influentially able to 

identify the location of damage and estimate the level of 

damage severity. 

The layout of this paper is as follows; Section 2 presents a 

brief discussion on the time series analysis by AR model. 

Section 3 describes the improved residual-oriented feature 

extraction technique. Section 4 entirely discusses the 

proposed KS method. Section 5 provides a full discussion 

of damage localization and damage level estimation on the 

laboratory frame. In this section, a comparative study on 

the process of damage localization between the proposed 

KS and the well-known Euclidean similarity method is 

carried out to reveal the robustness and performance of the 

proposed KS method in SHM applications. Eventually, the 

conclusions of this study are remarked in Section 6. 

 Feature extraction by time series modeling 

2.1 Autoregressive model 

Time series analysis is a statistical method that attempts to 

fit a mathematical model to the time series data for 

extracting some statistical features [40-42]. Autoregressive 

(AR) model is a widely used linear stationary model, 

which is generally applied to analyze stationary time series 

data. A stationary procedure is a stochastic process in 

which the statistical moments of time series data such as 

the mean, variance and higher order moments are time 

invariant [26]. The basic formulation of an AR model is 

expressed in the following form:  

 

( ) ( ) ( )i
i 1

i
=

= − +
p

x t a x t e t  
 

where x(t) is the measured vibration time-domain signal at 

the time t; a = [a1,a2,…,ap] denotes the vector of  AR 

coefficients (parameters), and p represents the order of AR 

model. In addition, e(t) is an independent residual (an 

unobservable random error) at the time t implying the 

difference between the measured vibration response and 

the predicted one gained by the model expressed as 

follows: 

 ( ) ( ) ( )ˆ= −e t x t x t   

It is important to mention that there are several reasons 

which confirm the capability of the AR model in the SHM 

applications. The most significant reason that makes the 

AR model particularly applicable for SHM is that 

statistical features extracted from this model are sensitive 

to damage. Another reason is that the AR model 

coefficients and residuals reflect the inherent structural 

properties, which is highly beneficial to SHM. In addition, 

the implementation of this model is simple [43].  

 

2.2 Identification of stationary time series models 

There are some factors to identify a specific type of time 

series model such as availability of time series data (input-

output versus output-only), nature of time series data 

(stationary versus non-stationary, Gaussian versus non-

Gaussian, and linear versus nonlinear), and type of 

application. For example, an ARX model may lead to a 

better performance than an AR model when the input-

output time series data is available. As another example, in 

the non-stationary time series data, an integrated time 

series model such as an autoregressive integrated moving 

average (ARIMA) model may provide more proper 

statistical features compared with an ARMA model. 

Regardless of the type of the time series data and models, 

there are engineering reasons that the AR model may be an 

appropriate choice for using in the SHM applications. The 

first reason is that the statistical features extracted from the 

AR model are sensitive to damage. Second, this model 

only depends on the response or output of the structure 

without regard to excitation sources. The third reason is 

that the parameters (coefficients) of AR model reflect the 

inherent properties of the structure so that excitation 

fluctuations do not have any influences on the model 

parameters. Eventually, the implementation of this model 

is simple and easy.      

2.3 Model order selection 

After the identification of a time series model, it is 

important to determine the model order(s) because an 

inadequate order selection can result in an inappropriate 

time series model. The number of orders required to a 

model specifies how many unknown parameters should be 

chosen for the mathematical equation of the time series 

model to predict the response of the structure. The 

selection of model orders can be implemented by Akaike 

and Bayesian information criteria and checking the 

autocorrelation function of the model residuals [26]. 

However, the model order determination depends strongly 

on the property of residuals. This means that a sufficient 

and robust order is one that enables the time series model 

to extract or generate independent residuals with zero 

mean [44]. Any time series model that does not satisfy 

these requirements should be modified. As a result, the 

extraction of independent residuals is of paramount 

importance in time series modeling, and one should 
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consider it as the first and main factor to ensure that the 

time series models are adequate and accurate [44].  

 

 An improved residual-oriented feature 

extraction technique 

In the SHM community, the residuals of the AR model are 

chosen as the damage-sensitive features [20, 24, 45]. 

Unlike the process of feature extraction by the model 

coefficients, the residual-oriented feature extraction 

algorithm relies on using an AR model, along with its 

coefficients estimated from the undamaged condition, to 

predict the response of the structure in the damaged state. 

The fact beyond this algorithm is that the linear AR model 

used in the undamaged structure will no longer correctly 

predict the response of the damaged structure; therefore, 

the residual errors regarding this structure will increase 

[24]. In this case, the increase in the model residuals is an 

indicator of damage occurrence.  

Due to the importance of extracting the independent 

residuals from engineering and statistical viewpoints, the 

improved residual-oriented feature extraction technique 

using the AR model is described in this section. This 

technique emphasizes to choose a sufficient AR order at 

each sensor location in such a way that the model is able to 

extract the independent residuals. Concisely, the algorithm 

of the improved residual-oriented feature extraction 

technique is described in the following steps: 

Step 1: Different AR models are fitted to time series 

signals acquired from all sensors in the undamaged 

condition in such a way that each sensor has a separate 

model. An information criterion technique is applied to 

estimate an initial order (p0) of the AR model at each 

sensor location.  

Step 2: Although the information criteria are normally 

applied to determine the orders of time series models, the 

residuals extracted from the initial model, AR(p0), may not 

fully be independent. In order to extract the independent 

residuals, the initial estimation of the model order is 

developed to achieve an improved order (pm). It is 

significant to point out that the primary criterion of 

choosing the improved order is to check the correlation of 

the model residuals by the autocorrelation function. In time 

series modeling, the residual analysis through the 

autocorrelation function is known as an efficient graphical 

tool. 

Step 3: For the damage detection problems, it is better to 

use equal numbers of the damage-sensitive features, either 

coefficients or residuals, in statistical approaches. To deal 

with the feature inequality in the improved feature 

extraction technique, the maximum number of the 

improved orders is chosen as a sufficient order (pr).  

Step 4: The sufficient order leads to a sufficient AR model 

and sufficient model coefficients. On this basis, in the 

undamaged condition, the sufficient AR model is fitted to 

all vibration time-domain signals and the coefficients of 

the sufficient model are estimated by one of the 

computational techniques such as least squares, Burg, 

forward-backward, and Yule-Walker methods [26]. 

Step 5: Eventually, the residuals of the AR models are 

extracted as the damage-sensitive features.  

 An efficient statistical method: Kullback 

similarity 
In statistics, the Kullback similarity is a non-symmetric 

measure of the difference between two probability 

distributions [46]. The results of KS method are always 

positive; therefore, a zero-similarity value obtained by this 

method is indicative of the presence of a full similarity 

between the distributions. Due to measuring the distance of 

two data distributions or variables, the Kullback similarity 

method falls into the category of univariate statistical 

distance methods. It is worth mentioning that the statistical 

distances are mostly not metrics and do not need to be 

symmetric; therefore, some kinds of distance measures are 

referred to as the statistical divergences. 

Assume that n-dimensional distributed sets X and Y are 

discrete probability distributions. The classical formulation 

of KS for such data sets is given by: 

 

( ) ( )
( )

( )KS
i 1

i
|| i ln

i=

=
X

X Y X
Y

n

D   

In the Equation 3, the DKS is an expectation of the 

logarithmic difference between the X (as the reference 

data) and Y (as the target data). In order to identify the 

location of damage, one needs to compute the DKS quantity 

at each sensor location between n-dimensional distributed 

sets X and Y.  

For the continuous probability distributions X and Y, on 

the other hand, the classical KS equation is defined in the 

integral form as: 

 

( ) ( )
( )

( )KS

x
|| x ln dx

y



−


= 

X YD   

where ρ(x) and ρ(y) denote the density functions of the 

distributions X and Y, respectively. To identify the 

location of damage and estimate the level of damage 

severity, one needs to compute the KS value at each sensor 

location using the residuals of the sufficient AR model in 

the undamaged and damaged conditions. On this basis, a 

similarity vector is formulated as follows: 

( ) ( )

( )

KS 1 1 KS 2 2
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[ || ||
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D D

        D
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where s denotes the number of sensors mounted on the 

structure. Each element in the vector D represents a 

similarity value at each sensor location obtained by the 

reference and target variables. The major advantage of this 

vector is to detect single and multiple damage cases in 

such a way that the sensor location in association with the 

largest KS value is identified as the damage location for 

the single damage scenario. In the multiple damage cases, 

the sensor locations that have more substantial KS 

quantities than the other sensors are indicative of damage 

locations. At these areas, the maximum similarity value is 

representative of the highest level of damage severity.  

 

 Experimental validation 

In this section, an experimental model is applied to 

validate the robustness and capability of the improved and 

proposed methods. This model is a three-story laboratory 

frame constructed at the Los Alamos National Laboratory 

[43]. The frame schematic and sensor locations are 

depicted in Fig. 1. This three-story laboratory frame was 

constructed from aluminum columns (height 177 mm, 

width 25 mm, and thickness 6 mm) and aluminum plates 

(length 305 mm × 305 mm, and thickness 25 mm) [43]. At 

each floor, four aluminum columns were connected to the 

top and bottom of the aluminum plate assembled using 

bolted joints. A random vibration load was applied by 

means of an electrodynamics shaker to the base floor along 

the centerline of the frame. The structure was instrumented 

with four accelerometers (channels 2-5) mounted at the 

centerline of each floor on the opposite side from the 

excitation source to measure acceleration time histories. 

The sensor signals were sampled at 320 Hz for 25.6 sec in 

duration, which were discretized into 8192 data samples at 

3.125 microsecond intervals. A comprehensive 

documentation concerning this model is available in [43]. 

Moreover, the experimental data can be downloaded free 

from [47]. 

 

 

 
Fig. 1: The three-story laboratory benchmark frame [43] 

 

To induce nonlinear damage, a center column (height 150 

mm and cross section 25 mm × 25 mm) was suspended 

from the third floor. This column was connected to a 

bumper mounted on the second floor, the position of which 

could be adjusted to define diverse structural damage. The 

source of damage is a simulation of breathing cracks to 

produce nonlinear behavior through opening and closing 

under excitation forces. The acceleration time-domain 

responses at all floors and base were measured under 17 

structural state conditions as shown in Table 1. 
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Table. 1: The structural state conditions in the laboratory 

frame[43] 

 

State Condition Description 

1 Undamaged Baseline without damage and 

environmental and operational 

variability 

2 Undamaged Added mass of 1.2 kg at the base 

3 Undamaged Added mass of 1.2 kg at the 1st 

floor 

4 Undamaged 87.5% stiffness reduction in one 

column of the 1st inter-story 

5 Undamaged 87.5% stiffness reduction in two 

columns of the 1st inter-story 

6 Undamaged 87.5% stiffness reduction in one 

column of the 2nd inter-story 

7 Undamaged 87.5% stiffness reduction in two 

columns of the 2nd inter-story 

8 Undamaged 87.5% stiffness reduction in one 

column of the 3rd inter-story 

9 Undamaged 87.5% stiffness reduction in two 

columns of the 3rd inter-story 

10 Damaged Nonlinear damage; distance 

between bumper and column tip 

0.20 mm 

11 Damaged Nonlinear damage; distance 

between bumper and column tip 

0.15 mm 

12 Damaged Nonlinear damage; distance 

between bumper and column tip 

0.13 mm 

13 Damaged Nonlinear damage; distance 

between bumper and column tip 

0.10 mm 

14 Damaged Nonlinear damage; distance 

between bumper and column tip 

0.05 mm 

15 Damaged Bumper 0.20 mm from column tip, 

1.2 kg added at the base 

16 Damaged Bumper 0.20 mm from column tip, 

1.2 kg added at the 1st floor 

17 Damaged Bumper 0.10 mm from column tip, 

1.2 kg added at the 1st floor 

 

The structural state conditions in the laboratory frame were 

categorized into the four main groups including an 

undamaged condition (state 1), undamaged conditions with 

operational and environmental variability (states  2-9), 

damaged conditions (states 10-14), and damaged 

conditions with the environmental and operational 

variability (states 15-17). In state 1, which refers to a 

baseline condition, there is no change in the laboratory 

frame. This state implies an ideal condition in the SHM 

community since there are neither nonlinear changes 

caused by damage nor linear changes due to the 

operational and environmental variability in the frame 

[43]. The states 2-9 provide linear changes to the 

laboratory frame by adding a concentrated mass or 

decreasing the stiffness of the frame so as to simulate the 

environmental and operational variabilities in the 

undamaged condition. 

In order to assess the effects of the environmental and 

operational variability, the processes of damage 

localization and damage level estimation are implemented 

by three different undamaged conditions to extract 

independent residuals from such conditions as reference 

data sets. On this basis, the independent residuals of 

sufficient AR models extracted from the states 1, 3, and 7 

are used as the reference data Type I, Type II, and Type 

III, respectively. Table 2 entirely gives the reference and 

target data sets for using in the proposed KS method. 

 

Table. 2: The reference and target data sets applied to the 

proposed KS method 

Input data Data type Structural conditions 

Reference 

Type I 1 

Type II 3 

Type III 7 

Target - 10-17 

5.1 Residual-oriented feature extraction by AR model 

In order to extract the independent residuals of AR model 

as the damage-sensitive features, four AR models are 

separately fitted to the acceleration time histories acquired 

from the channels 2-5 in the baseline condition. According 

to the improved feature extraction technique, the initial 

orders of AR models are estimated by Bayesian 

information criterion. Next, the improved orders are 

determined such that the AR models are able to produce 

independent residuals at all channels. Table 3 shows the 

initial and improved estimation of the orders of the AR 

models. 

 

Table. 3: The initial and improved orders of the AR models at all 

channels in the baseline condition 

Channel No. 2nd 3rd 4th 5th 

Initial estimation 36 28 12 16 

Improved estimation 45 40 31 35 

 

The sufficient order is 45 because the sufficient model, 

AR(45), can extract the independent residuals from all 

channels. It is desirable to verify the accuracy and 

adequacy of AR(45) by the goodness-of-fit statistics. Table 

4 presents the results of numerical statistics for the 

sufficient AR(45) at all channels. 
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Table. 4: The goodness-of-fit statistics for the AR(45) in the 

baseline condition 

Goodness-of-fit 
Channel No. 

2nd  3rd   4th   5th   

SSE 0.0017 0.0005 0.0001 0.0003 

R-square (%) 94.67 97.61 99.68 98.72 

Adjusted R-

square 
0.9467 0.9761 0.9968 0.9872 

RMSE 0.0081 0.0063 0.0009 0.0021 

In this table, all SSE quantities are roughly equal to zero in 

the sense that AR(45) is an adequate time series model for 

the prediction procedure. The values of R-square statistic 

are close to 100%; therefore, the sufficient AR model is 

not underfitting. The amounts of adjusted R-square statistic 

are positive and approximately identical to 1, which mean 

that the sufficient AR model has appropriately been 

matched with the acceleration time histories. Eventually, 

the values of RMSE statistic confirm that the sufficient 

AR(45) is not overfitting. 

Even though the use of high-order models may be a 

limitation in the time series modeling, it is important to 

note that the accuracy and sufficiency of a time series 

model is extracting the independent residuals and 

providing significant necessity for applying accurate time 

series models.  As stated earlier, a correct time series 

model should generate the independent residuals; 

otherwise, the model should be modified. For a 

comparative evaluation, Fig. 2 illustrates the 

autocorrelation functions of the residuals for the initial and 

sufficient AR models at channel 4. 

 

Fig. 2: The autocorrelation functions of residuals at channel 4 in 

the baseline condition with 95% confidence intervals: (a) the 

initial model-AR(12), (b) the sufficient model-AR(45) 

As Fig. 2(a) reveals, there are considerable correlation 

patterns that exceed the correlation bounds in the sense that 

the initial model AR(12) fails to extract the independent 

residuals. In other words, the initial order of model at 

channel 4 is inadequate and needs to be improved. By 

contrast, the samples of autocorrelation function for the 

residuals of AR(45) are roughly within the correlation 

bounds, which means that this model is sufficient and its 

residuals are independent. Note that the process of time 

series modeling is repeated for the states 3 and 7 to extract 

the independent residuals as the reference data Type II and 

Type III. Another point is that the sufficient model of 

AR(45) is also valid for these states. 

Considering the residuals of the sufficient AR models as 

the damage-sensitive features, a question arises as how to 

understand their sensitivity to damage. One way to address 

this problem is to utilize the norm of the AR residuals at 

the damaged area in all structural conditions. For the 

laboratory frame, channel #4 is the location of damage; 

therefore, the l2-norms of the vector of AR residuals, 

||e(t)||2, at this channel are computed in the states 1-17 as 

shown in Fig. 3. Notice that in this figure, UC denotes the 

undamaged condition (state 1), UCEOV implies the 

undamaged conditions with environmental and operational 

variability (states 2-9), DC is abbreviated to the damaged 

conditions (states 10-14), and DCEOV denotes the 

damaged condition with environmental and operational 

variability (states 15-17). 

 

Fig. 3: Evaluating the sensitivity of the AR residuals to damage 

at the channel 4  

As can be observed in Fig. 3, the l2-norms of the AR 

residuals in the states 1-9 are invariant, whereas there are 

considerable variations in the states 10-14 and 15-17. 

Among all structural conditions, state #14 has the 

maximum norm value and the rate of changes in the norms 

of the AR residuals increases with increasing the level of 

damage from state 10 to state 14. All results obtained from 

Fig. 3 lead to the conclusion that the residuals of the 
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sufficient AR model extracted from the improved feature 

extraction technique are sensitive to damage. 

5.2 Damage localization 

The residuals of AR(45) at the different sensor locations in 

both undamaged and damaged conditions are chosen as the 

reference and target variables to use in the proposed KS 

method. To perform the process of damage localization, it 

is only necessary to form the similarity vector D, in which 

each quantity represents the KS value at one sensor 

location. 

5.2.1 The KS-based damage localization in the laboratory 

frame 

The amounts obtained from the previous step are applied to 

the proposed equation of KS, Eq. (5), for identifying the 

location of damage in the laboratory frame. Before the 

analysis of results, it is important to mention that the 

location of channel 4 is equivalent to the damaged area in 

the laboratory frame owing to the existence of gap as the 

source of nonlinear damage at this channel. Therefore, the 

results of damage localization in this section are intended 

to demonstrate whether the improved and proposed 

methods are able to identify this channel as the damage 

location. On this basis, the largest KS value should be 

obtained at channel 4 in all reference data sets (Type I, II, 

and III) as shown in Figs. 4-6. 

 
Fig. 4: Damage localization by the proposed KS method in the 

laboratory frame based on the reference data Type I 

 
Fig. 5: Damage localization by the proposed KS method in the 

laboratory frame based on the reference data Type II 

 

Fig. 6: Damage localization by the proposed KS method in the 

laboratory frame based on the reference data Type III 
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Fig. 4 illustrates the results of damage localization in all 

damaged conditions (states 10-17) when the residuals of 

the sufficient AR model in the baseline condition are used 

as the reference data Type I. In this figure, it is obvious 

that the KS value at channel 4 is maximum; hence, the 

location of this sensor is indicative of the damaged area in 

the laboratory frame. By comparing the KS quantities at 

the DL and UDLs, it can be observed that the similarity 

value associated with channel 4 entirely differs from the 

other channel. Therefore, there is enough evidence to 

identify this channel as the damage location (DL).  

The observations of identifying the damage location using 

the reference data Type II and III are shown in Figs. 5 and 

6, respectively. From these figures, it is possible to assess 

the effects of the environmental and operational variability 

in both reference and target data sets for the identification 

of the damage location. As Figs. 5 and 6 indicate, channel 

#4 has the largest KS quantity implying the only damaged 

area in the laboratory frame. The observations in these 

figures also confirm that the operational and environmental 

variability do not have any adverse influences on the 

process of damage localization. In particular, the results 

concerning the states 15-17 entirely verify this claim 

because in these structural conditions, both the reference 

and target data sets incorporate the operational and 

environmental variability.  

In addition, the results of damage localization in the states 

10, 15, and 16 demonstrate that the improved and proposed 

methods can precisely identify the location of small 

damage. These structural conditions have the same damage 

pattern (the gap similarity is 0.20 mm) with the exception 

that different linear changes caused by the operational and 

environmental variability are applied to the structural states 

15 and 16. To sum up, the results shown in Fig. 4-6 lead to 

the conclusion that the improved feature extraction 

technique and the proposed KS method are successfully 

able to identify the location of damage even under varying 

operational and environmental conditions. 

  

5.2.2 A comparative study on the damage localization 

process 

One way to emphasize the capability and reliability of the 

proposed KS method is to compare it with a well-known 

similarity approach. On this basis, this research has 

attempted to provide a comparative analysis on the process 

of damage localization between the proposed KS method 

and the well-known Euclidean similarity (EUD) method. 

Given the vectors of residuals extracted from the sufficient 

AR model in the undamaged (X) and damaged (Y) 

conditions, the EUD method computes the similarity 

between these vectors in the following form: 

 ( ) ( )( )
T

E || = − −X Y X Y X YD   

At each sensor location, the EUD method yields a scalar 

quantity implying the similarity between the residuals of 

the undamaged and damaged conditions. In a similar 

manner to the proposed KS method, the computation of the 

EUD method leads a similarity vector, D, which consists of 

s elements representing the number of sensors mounted on 

the structure. Thus: 

( ) ( )

( )

E 1 1 E 2 2

E

[ || ||

|| ]

=D X Y X Y

X Ys s

D D

       D

L
   

Taking the reference data Type II and III into account, the 

results of damage localization for the damaged conditions 

10-17 in the laboratory frame are shown in Figs. 7 and 8. 

 

Fig. 7: Damage localization by the EUD method in the laboratory 

frame based on the reference data Type II 

Fig. 7 indicates the results of damage identification using 

the reference data Type II. From this figure, one can 

realize that the EUD method is approximately able to 

identify the damage location with the exception of the 

small damage scenarios such as the structural states 10, 15, 

and 16. In other words, the EUD method fails to find 

channel 4 as the damage location in these states. 

Fig. 8 obviously reveals that the operational and 

environmental variability adversely affect the damage 
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localization results. In all structural conditions with the 

exception of states 13 and 14, the EUD method cannot 

satisfactorily identify the location of damage occurred at 

channel 4. By comparing the results of damage localization 

between the proposed KS method and the well-known 

EUD approach, one can conclude that the KS method is an 

influential and promising similarity technique locating the 

damaged area even in the presence of the operational and 

environmental variability in both reference and target data 

sets. 

 

 

Fig. 8: Damage localization by the EUD method in the laboratory 

frame based on the reference data Type III 

 

 

5.3 Damage level estimation 

After identifying the precise location of damage, it is 

investigated whether the improved and proposed methods 

are capable of estimating the level of damage severity in 

the damaged conditions. In the laboratory frame, the 

severity of nonlinear damage increases with reducing the 

gap similarity between the suspended column and bumper. 

In this case, the damaged states 10, 15, and 16 give the 

lowest level of damage severities, while state 14 introduces 

the highest damage level as remarked in [43]. In order to 

demonstrate the results of damage level estimation, the KS 

values at the damage location in the laboratory frame 

(channel4) for the damaged conditions 10-17 are evaluated 

based on the three types reference data sets. Fig. 8 shows 

the results of estimating the level of damage severity. 

 

 

 
Fig. 9: Estimating the level of damage severity by the proposed 

KS method at the channel 4: (a) the reference data Type I, (b) the 

reference data Type II, (c) the reference data Type III 

In this figure, it is seen that the values of KS increase with 

increasing the damage level from state 10 to state 14. In all 

reference data sets, the structural state 14 provides the 

largest similarity quantity in the sense that this condition is 

the highest level of damage severity occurred in the 

laboratory frame. In addition, the similarity values 

regarding the states 10, 15, and 16 indicate that these 

structural conditions have the lowest damage levels. As 

another conclusion, these conditions give the same 
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similarity value in each reference data set, which means 

that the presence of the operational and environmental 

variability in the target data set do not have any 

considerable effects on the KS quantities.  

Despite the reliable and accurate results in estimating the 

level of damage severity, there are a few drawbacks in 

which, most of them pertain to the environmental and 

operational conditions. In the structural state conditions 

presented in Table 1, the states 13 and 17 have the same 

damage pattern (the gap similarity corresponds to 0.1 mm). 

However, the results of damage level estimation in Fig. 9 

reveal a computational error resulting from a discrepancy 

between the similarity values of these states. In the 

reference data Type III, on the other hand, the KS amounts 

have risen compared with the other reference data sets. 

This situation depends on the presence of the high-level 

operational and environmental variability (87.5% stiffness 

reduction in two columns of the second floor) in the 

reference and target data sets. Therefore, it would be very 

appropriate to remove such variability, either mass 

increasing or stiffness decreasing from the damage 

features, for better damage level estimation. 

 Conclusions 

In this study, a new formulation of KS method has been 

proposed to identify the location of damage and estimate 

the level of damage severity. An improved residual-

oriented feature extraction technique using AR model has 

been presented to determine a sufficient order of AR model 

such that the model is able to extract independent 

residuals. An experimental laboratory frame has been 

employed to validate the accuracy and reliability of the 

improved and proposed methods in the context of SHM. In 

this frame, the effects of operational and environmental 

variability have been considered in the undamaged and 

damaged conditions. Furthermore, the goodness-of-fit 

statistics and the graphical residual analysis by the 

autocorrelation function confirmed that increasing the 

initial order of AR model leads to an adequate and accurate 

time series model without the overfitting or underfitting 

problems. The experimental results demonstrated that the 

proposed KS method is a robust and efficient univariate 

statistical method that can precisely identify the location of 

damage even in the presence of the operational and 

environmental variability. Furthermore, it was observed 

that this method could accurately estimate the level of 

damage severity in the different damaged conditions. The 

observations in the experimental model showed that the 

different types of the operational and environmental 

conditions do not have any influences on the results of 

damage localization without false alarms. In all reference 

data types, channel 4 has been identified as the damage 

location. The comparative study of the initial and sufficient 

AR models showed that the sufficient order enables the AR 

model to extract independent residuals, whereas the 

residuals of the initial AR model are correlated. In another 

comparative study, it was observed the KS method 

provides more precise and robust results in comparison 

with the well-known EUD method, particularly when the 

high-level operational and environmental variability are 

available. 
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