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Abstract: 

This paper addresses a reliability-based multi-objective design method for spatial truss 

structures. The uncertainties of the applied load and the resistance of the truss members have 

been taken into account by generating a set of 50 random numbers. The failure probability of 

each truss member has been evaluated and consequently, the failure probability of the entire 

truss system has been calculated considering a series system. A multi-objective optimization 

problem has been defined with objective functions of truss weight and failure probability of the 

entire truss structure. The cross-sectional area of the truss members has been considered as the 

design variable. Also ,The limitations of nodal displacements and allowable stress of the 

members have been defined as constraints. A 25-bar benchmark spatial truss has been 

considered as the case study structure and has been optimally designed using the non-dominated 

sorting genetic algorithm II (NSGA-II). The results show thr effectiveness and simplicity of the 

proposed method which can provide a wide range of optimal solutions through Pareto fronts. 

These optimal solutions can provide both safety and reliability for the truss structure. Also, the 

results indicate that the failure probability of the truss structure reduces by increasing the 

uncertainty level of load and resistance.  

D
 

1. Introduction 

Truss structures are one of the most important structures in 

civil engineering and have been widely used in different 

applications such as bridges, transmission towers, 

outriggers, roofs, etc. Over the decades, designing truss 

structures to satisfy both safety and economic requirements 

has received much attention and several studies have 

addressed this issue [1-10]. These studies have imposed 

limitations on nodal displacements and axial stress of the 

members as a safety criterion as well as limitation on truss 

weight as an economic criterion. The optimization 

techniques have been taken to design truss structures 

considering these limitations as objective functions or 

constraints in a deterministic framework. However, different 

sources of uncertainties within, design variables, material 

properties, and applied load exist and may reduce the 

probabilistic performance of the truss structure. 
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Indeed, the main shortcoming of the previous studies is the 

lack of direct relevance between design criterion and the 

reliability of the truss structure. An accurate and reliable 

design of truss structures entails a probabilistic framework 

which explicitly involves the failure probability of the entire 

truss structure in the design process.  

Several attempts have been made to limit the failure 

probability of the truss structure majorly as constraints in 

optimization-based procedures. Papadrakakis et al. [11] 

have considered the objective function of minimization of 

the structure weight while satisfying the probabilistic 

constraints. Yadav and Ganguli [12] optimized truss 

structures and laminated composite plates considering 

failure probability as a constraint. They have used Monte 

Carlo simulation to obtain the probability of failure.  

Considering the uncertainties in design process of structures, 

the robust design optimization has been proposed. The aim 

of this method is to minimizing the probabilistic properties 

of the objective function, such as expectation value or 

standard deviation. Doltsinis and Kang [13] converted a 
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multi-objective optimization problem to a single-objective 

optimization problem by introducing weighting coefficients 

for expectation value and standard deviation of the objective 

function. Lee and Park [14] designed truss and frame 

buildings using weighting coefficients. They linearized the 

constraint function using Taylor’s series first-order 

approximation. Therefore, the robust optimization problem 

was converted to a deterministic optimization problem. 

Sandgren and Cameron [15] have used Monte Carlo 

simulation to determine the expectation value and standard 

deviation of the constraint function. They have used this 

method for topology optimization of a truss structure and an 

automotive inner body panel. Recently, the minimization of 

both weight and failure probability of the truss structure has 

been considered multiple-objective functions and a game 

theory procedure has been used to design an optimal truss by 

the authors [16]. However, in this case, only one solution 

(i.e., optimal truss) has been designed. This study has been 

performed to determine several optimal solutions for truss 

design through Pareto fronts using (non-dominated sorting 

genetic algorithm-II) NSGA-II method. Therefore, the aim 

is to shed light on the multi-objective optimization problem 

of truss design. 

 

2. Reliability of truss structures 

2.1 Failure definition 

Failure definition is an essential task in determining the 

failure probability of each component and the entire 

structure as well. According to the reliability theory, the 

failure could be defined by performance function or limit 

state function as follows [17]: 

𝑔 = 𝑅 − 𝑄 (1) 

in which, R denotes the resistance and Q represents the load 

effect. Both R and Q are random variables. 

When g<0, the load effect exceeds the resistance, then the 

performance is undesirable and the component is failed. 

Conversely, when g≥0, the performance is desirable and the 

component is safe. Consequently, the probability of failure, 

Pf, is the probability that the undesired performance occurs 

and could be expressed as: 

𝑃𝑓 = 𝑃(𝑅 − 𝑄 < 0) = 𝑃(𝑔 < 0) (2) 

In this paper, the uncertainties have been accounted for both 

the applied load and the resistance of the truss members by 

generating random numbers. The uncertain applied loads 

cause the random stress demand in each element of the truss 

structure. On the contrary, randomness has also been 

considered for yielding and buckling stress capacity of truss 

elements. 

 

 

 

2.2 Failure probability of truss element 

Several methods could be used for estimating the failure 

probability of a truss element. As a common approach, a 

reliability index denoted by β has been introduced by 

Hasofer and Lind [18] as follows: 

𝛽 =
𝜇𝑅 − 𝜇𝑄

√𝜎𝑅
2 + 𝜎𝑄

2

 
(3) 

where μ and σ respectively denotes mean and standard 

deviation. By assuming a normal distribution for both 

random variables R and Q, the probability of failure could 

be derived by: 

𝑃𝑓 = Φ(−𝛽) (4) 

in which Φ is the standard normal cumulative distribution 

function. This equation represents the failure probability of 

a single truss element, while the failure probability of the 

entire truss structure is required.  

 

2.3 Failure probability of the entire truss system 

Determining the failure probability of a truss structure is a 

challenging task which should be performed properly. 

Indeed, it is important to distinguish that the failure of a 

single element may or may not cause the failure of the entire 

structure. The truss system configuration is within series and 

parallel systems. In a series structural system, the failure of 

each element leads to immediate failure of the whole system. 

A definite truss and an indefinite truss with brittle elements 

are examples of series systems. Conversely, in a parallel 

system, all of the elements must fail before the system fails. 

An indefinite truss structure with ductile elements behaves 

similarly to a parallel system. In this paper, the case study 

truss structure is assumed to be an indefinite truss with brittle 

elements and thus, it is categorized as a series structural 

system. The failure probability of a series structural system 

belongs to the following range [17]: 

max(𝑃𝑓−𝑖) ≤ 𝑃𝑓−𝑠𝑦𝑠 ≤ 1 − ∏(1 − 𝑃𝑓−𝑖)

𝑁𝑒

𝑖=1

 (5) 

where Pf-sys is the failure probability of the system, Pf-i is the 

failure probability of the i-th element, and Ne is the number 

of truss elements. In a series system, the failure probability 

of the system depends on the statistical dependence among 

failures of elements. The lower bound is the failure 

probability of the system when all elements are fully 

coupled. The upper bound relates to the case that all 

elements are uncorrelated and statistically independent. This 

upper bound provides a conservative estimate of failure 

probability and it is commonly used for series systems in the 

literature [19-21]. In this paper, the case study truss structure 

is an indefinite truss with brittle elements and it is assumed 
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that the failure of its elements is uncorrelated. Hence, the 

failure probability of this system could be evaluated by the 

upper bound of the Equation (5) which is as follows: 

𝑃𝑓−𝑠𝑦𝑠 = 1 − ∏(1 − 𝑃𝑓−𝑖)

𝑁𝑒

𝑖=1

 

= 1 − [(1 − 𝑃𝑓−1)(1 − 𝑃𝑓−2) ∗ … ∗ (1 − 𝑃𝑓−𝑁𝑒
)] 

(6) 

 

3. Multi-objective optimization problem of 

truss structure 

In many realistic engineering problems, it is required to 

satisfy some different objectives that conflict with each 

other. The multi-objective optimization is a practical method 

to solve such problems and represents Pareto optimal 

solutions instead of a single solution. The Pareto optimal 

solutions do not dominate each other. Generally, the 

definition of a multi-objective optimization problem is as 

follows: 

𝐹𝑖𝑛𝑑           ∶ 𝐗∗ = [𝑋1
∗, 𝑋2

∗, … , 𝑋𝑛
∗ ]𝑇 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒  ∶ 𝐟(𝐗) = [𝑓1(𝐗), 𝑓2(𝐗), … , 𝑓𝑚(𝐗)]𝑇 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝑔𝑖(𝐗) ≥ 0,         𝑖 = 1,2, … , 𝑝 

                        ℎ𝑖(𝐗) = 0,         𝑖 = 1,2, … , 𝑞 

(7) 

where f is the vector of m number of objective functions. X 

denotes the vector of design variables which may have 

several solutions such as X*. Also, n is the number of design 

variables and m is the number of objective functions. The 

inequality constraints, gi(X), and the equality constraints, 

hi(X), with the number of p and q, respectively, should be 

satisfied.  

The multi-objective optimization problem to design the 

spatial truss structure is defined as follows: 

𝐹𝑖𝑛𝑑           ∶ 𝐗∗ = [𝐴1
∗ , 𝐴2

∗ , … , 𝐴𝑛𝑣
∗ ]𝑇 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒  ∶ 𝑓1 = 𝑊 = ∑ 𝛾𝑖𝐴𝑖𝐿𝑖

𝑛

𝑖=1

 

                        𝑓2 = 𝑃𝑓−𝑠𝑦𝑠 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝛿𝑚𝑖𝑛 ≤ 𝛿𝑖 ≤ 𝛿𝑚𝑎𝑥 ,         𝑖 = 1,2, … , 𝑝 

                         𝜎𝑚𝑖𝑛 ≤ 𝜎𝑇,𝑖 ≤ 𝜎𝑚𝑎𝑥 ,      𝑖 = 1,2, … , 𝑞 

                         𝜎𝑖
𝑏 ≤ 𝜎𝐶,𝑖 ≤ 0,                 𝑖

= 1,2, … , 𝑛𝑠 

                         𝐴𝑚𝑖𝑛 ≤ 𝐴𝑖 ≤ 𝐴𝑚𝑎𝑥 ,       𝑖

= 1,2, … , 𝑛𝑣 

(8) 

in which W is the weight of the truss structure. p and q are 

respectively the numbers of nodes and members of the truss. 

Also, ns is the number of compression members and nv is 

the number of design variables. Li is the length of i-th 

element. Ai is the cross-section area of the i-th member. σ 

and δ are stress and nodal deflection, respectively. σb is 

allowable buckling stress when the member i-th is in 

compression. This constrained optimization problem is 

reformulated into an unconstrained optimization problem 

according to the penalty method [22] and the new objective 

functions are as follows: 

𝐹1 = 𝛼𝑓1 + 𝛽(max[0, 𝑔1] + max[0, 𝑔2] + max[0, 𝑔3]) 

𝐹2 = 𝛼𝑓2 + 𝛽(max[0, 𝑔1] + max[0, 𝑔2] + max[0, 𝑔3]) 

𝑔1 =
|𝛿𝑖|

𝛿𝑚𝑎𝑥

− 1, 𝑔2 =
𝜎𝑇,𝑖

𝜎𝑚𝑎𝑥

− 1 , 𝑔3 =
𝜎𝐶,𝑖

 𝜎𝑖
𝑏 − 1 

(9) 

α and β are penalty parameters that can be determined either 

through parametric study or by trial and error. The values of 

α=1 and β=200 have been considered. 

 

4. Multi-objective optimal design using NSGA-

II 

Several metaheuristic algorithms have been proposed for 

solving optimization problems [23-27]. The genetic 

algorithm, GA, is one of the most practical algorithms which 

is inspired by the evolution process in nature. The GA was 

been developed first by Holland [28] and it is widely used in 

engineering applications [29] due to its simplicity and 

effectiveness for solving nonlinear optimization problems. 

The GA has three main operations, including selection, 

crossover, and mutation [30].  

 A common technic for solving multi-objective problems in 

the literature is converting them to a single objective 

optimization problem [31]. Nevertheless, the main 

drawback of these methods is the requirement of several 

runs using various adjustments and even a considerable 

portion of Pareto front may not be discovered. Therefore, 

other algorithms have been proposed to solve the multi-

objective optimization problem directly and detect the 

Pareto answers in a single run.  

Srinivas and Deb [32] have developed the non-dominated 

sorting genetic algorithm, NSGA, which was efficient to 

solve multi-objective optimization problems. Further, this 

algorithm has been improved to version II [33] and version 

III [34] to overcome some disadvantages including high 

processing cost and lack of elitism. For optimization 

problems with a few objective functions such as this study, 

the NSGA-II seems efficient and has been used in solving 

the multi-objective optimization problem.  

Figure 1 illustrates the flowchart of the NSGA-II method to 

solve the multi-objective optimization problem of designing 

truss structure. The NSGA-II is comprised of nine 

operations including, Initialization, fitness, evaluation, non-

dominated sorting, crowding distance evaluation, selection, 

crossover, mutation, combination, and truncate. Initially, a 

random population P with the size of Nind is generated. Then, 

the fitness of each individual is calculated via each objective 

function. Following, these individuals are sorted based on 



 
R. B. Semiromi and A. Keyhani                                                         Numerical Methods in Civil Engineering, 7-2 (2022) 68-76 
 

71 

 

the non-domination concept and placed into successive 

Pareto fronts. The crowding distance calculates how close 

an individual is to its neighbors. Then, the GA operators, 

including selection, crossover, and mutation are conducted 

to generate a new_born population Q with size Nnew.  The 

population R=P+Q contains the current and the new_born 

populations to ensure the elitism of the best individuals. 

Finally, the population is truncated to the size Nind based on 

the rank values. This process of optimization is repeated 

until reaching the maximum number of generations. 

Start

Create initial population P of size N-ind 

for design variables (A-i)

 Use N-ind set of variables to form 

spatial truss structure

f_2=Failure probability of the 

entire truss structure

Generate random numbers for the applied load and truss resistance  

Evaluate the fitness of multiple objective functions of each individual

f_1 =Truss weight

Rank the solutions of each individual based on

non-dominated sorting and crowding distance

Conduct GA operators: Selection, Crossover, Mutation 

to create newborn population Q  of size Nnew

Combine current and newborn population to 

population R=P+Q of size Nind+Nnew

Truncate the population to size Nind based on Rank

Exit condition

Show pareto 

optimal solutions

No

Determine optimal 

individuals on 

pareto front

Yes

 
Fig. 1: Flowchart of multi-objective optimal design of spatial 

truss structure based on NSGA-II method 

 

5. Numerical analysis and discussion 

In this section, the methodology of reliability-based multi-

objective optimal design of truss structures has been 

explained through numerical analysis. A bi-objective 

optimization problem including the objectives of 

minimization of the truss weight as well as the probability of 

failure of the entire truss structure, has been defined. The 

NSGA-II method has been used for solving the bi-objective 

optimization problem and determine the Pareto optimal 

solutions. The cross-section areas of the truss elements have 

been considered as design variables. Also, the nodal 

displacements and stress of elements have been constrained.  

 

5.1 Twenty five-bar spatial truss 

In this paper, a 25-bar benchmark spatial truss structure has 

been considered as the case study structure. This benchmark 

truss structure has been previously studied in several 

researches [1-7]. The topology and nodal and element 

numbers of this truss structure have been illustrated in 

Figure 2. This truss structure has been subjected to two 

different load cases as represented in Table 1. The density 

and elasticity modulus of the material are considered the 

values of 0.1 lb/in3 (2767.99 kg/m3) and 10000 ksi (68950 

Mpa), respectively. The elements of the truss have been 

categorized into eight groups in terms of cross-section area, 

including: (1) A1, (2) A2-A5, (3) A6-A9, (4) A10-A11, (5) A12-

A13, (6) A14-A17, (7) A18-A21, (8) A22-A25. The maximum 

displacement of all nodes is imposed to be within ± 0.35 in 

(8.89 mm) in every direction. The tensile stress is 

constrained to be below the value of 40 ksi (275.8 Mpa) and 

the limitations of the compressive stress are considered 

according to Table 2. The cross-section area varies in the 

range of 0.01 to 3.4 in2 (0.6452-21.94 cm2). 

 
Fig. 2: The 25-bar spatial truss [7] 

Table 1: The load case for the spatial truss 
Load 

case 

Nod

e 

PX kips 

(kN) 

PY kips (kN) PZ kips (kN) 

Case 1 
1 0 20 (89) -5 (22.25) 

2 0 -20 (89) -5 (22.25) 

Case 2 

1 1 (4.45) 10 (44.5) -5 (22.25) 

2 0 10 (44.5) -5 (22.25) 

3 0.5 (2.22) 0 0 

6 0.5 (2.22) 0 0 
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Table 2: The limitations of compressive stress for the spatial 
truss members 

Element group  Compressive Stress ksi (Mpa) 

1 A1 35.092 (241.96) 

2 A2~A5 11.590 (79.913) 

3 A6~A9 17.305 (119.31) 

4 A10~A11 35.092 (241.96) 

5 A12~A13 35.092 (241.96) 

6 A14~A17 6.759 (46.603) 

7 A18~A21 6.959 (47.982) 

8 A22~A25 11.082 (76.410) 

 

5.2 Uncertainties of load and resistance 

Properly accounting on the effects of uncertainties is a 

crucial task in the reliability assessment of truss structures. 

The significant uncertainties involved in this problem are 

uncertainties of the applied load and the resistance of the 

truss members. The effects of load uncertainties are taken 

into account by modeling them as random variables. 

Therefore, random variables with normal distribution have 

been generated for all loads applied to the truss structure. 

According to Table 1, two load cases including 11 separate 

loads, have been applied to the truss structure. It has been 

assumed that these loads are statistically independent. For 

each of these loads, 50 normal random numbers with the 

mean values according to Table 1 and different coefficient 

of variations (CoVs), including 0.1, 0.2, 0.3, and 0.4, have 

been generated.  

The uncertainty in the resistance of the truss members has 

been considered by taking into account the allowable stress 

of truss members as random variables. The mean value of 

tensile stress has been taken 40 ksi (275.8 Mpa) and the 

mean values of compressive stresses have been considered 

according to Table 2. Different CoVs, including 0.01, 0.05, 

and 0.1, have also been considered for them.  

 

5.3 Reliability assessment of the truss structure 

In this section, the reliability of the 25-bar spatial truss with 

the previously designed cross-sectional area of the members 

has been assessed. Several studies have been addressed the 

optimal design of this truss structure in a deterministic 

framework [1-7]. In these studies, the optimization problem 

of equation (8) without consideration of the second objective 

function, the failure probability of the truss, has been 

evaluated. Thus, only the objective function of minimization 

of the truss weight under the assumption of deterministic 

load and resistance has been intended. As sample, the results 

of works performed by Kaveh and Talatahari [7] have been 

assessed. The optimal cross-section areas of the eight groups 

of truss members and the corresponding truss weight of 

these works have been reported in Table 3.  

 

Table 3: Optimal cross-sectional area of truss members and truss 
weight 

Element group  
Kaveh and Talatahari [7] 

in2 cm2 

1 A1 0.010 0.065 

2 A2~A5 1.993 12.856 

3 A6~A9 3.056 19.717 

4 A10~A11 0.010 0.065 

5 A12~A13 0.010 0.065 

6 A14~A17 0.665 4.293 

7 A18~A21 1.642 10.594 

8 A22~A25 2.679 17.281 

weight  545.16 lb 2425 N 

 

The uncertainties of the applied load and members’ 

allowable stress have been considered by generating normal 

random numbers. The failure probability of each member 

has been calculated by equation (4) and the failure 

probability of the entire truss has been evaluated by equation 

(6). Table 4 represents the failure probability of each 

member and the entire truss system by considering the CoV 

of 0.2 and 0.05 for load and resistance, respectively.  

The failure probabilities of the entire truss structure with 

different CoVs for load and resistance have also been 

reported in Table 5. It seems that generally, the failure 

probability of the truss is amplified by increasing the level 

of uncertainties in resistance. 

Table 4: The failure probability of each member under two load 
cases 

Element 

number 

Pf under load 

case 1 

Pf under load 

case 2 
Maximum Pf 

1 3.22657e-60 1.58599e-59 1.58599e-59 

2 0.00037 6.38464e-22 0.00037 

3 6.02146e-46 8.34645e-27 8.34645e-27 

4 1.16521e-45 9.76495e-73 1.16521e-45 

5 0.00041 5.85352e-72 0.00041 

6 1.01730e-51 8.42004e-35 8.42004e-35 

7 9.38051e-14 3.99225e-70 9.38051e-14 

8 3.99817e-14 4.77697e-34 3.99817e-14 

9 1.28088e-50 3.42804e-68 1.28088e-50 

10 1.47452e-76 6.70770e-77 1.47452e-76 

11 1.44007e-77 1.25741e-76 1.25741e-76 

12 6.93282e-71 6.92197e-65 6.92197e-65 

13 4.16909e-69 1.50471e-80 4.16909e-69 

14 0.00053 0.02703 0.02703 

15 2.21834e-60 2.952317e-61 2.21834e-60 

16 7.38021e-61 0.07453 0.07453 

17 0.00109 1.01778e-63 0.00109 

18 8.09802e-50 1.75182e-06 1.75182e-06 

19 0.58134 2.02725e-05 0.58134 

20 0.62966 1.36176e-71 0.62966 

21 9.95950e-49 4.74842e-71 9.95950e-49 

22 2.82709e-13 1.43733e-61 2.82709e-13 

23 2.37910e-17 3.11733e-11 3.11733e-11 

24 4.13807e-14 4.57208e-09 4.57208e-09 

25 2.69044e-16 2.03856e-64 2.69044e-16 

Failure probability of the entire truss (%) 86.07 



 
R. B. Semiromi and A. Keyhani                                                         Numerical Methods in Civil Engineering, 7-2 (2022) 68-76 
 

73 

 

Table 5: The failure probability of the entire truss (%) 
 CoV of allowable stress  

0.01 0.05 0.1 

 

CoV of 

the load 

0.1 81.58 81.26 81.87 

0.2 86.03 86.07 86.42 

0.3 83.69 84.05 85.23 

0.4 81.49 82.02 83.52 

 

5.4 Reliability-based multi-objective optimal design of 

truss structure 

In this section, the reliability-based multi-objective method 

has been used to design an optimal cross-sectional area of 

the 25-bar spatial truss. According to Equation (8), the two 

objective functions of minimization of the truss weight and 

minimization of the failure probability of the entire truss 

system have been considered in the multi-objective 

optimization problem. The cross-sectional areas of the truss 

members are the design variables. The optimal values of the 

design variable are searched within the pre-defined domains 

in the optimization process. The upper and lower bounds of 

these domains affect the convergence speed. However, if 

they include the optimal answer, they have no significant 

effect on the final answer. In order to provide an acceptable 

convergence speed, the search domain of design variables 

has been selected 0.01 to 3.4 in2 (0.6452-21.94 cm2) 

according to [7]. The multi-objective optimization has been 

solved frequently, where the parameters of the GA have 

been selected as presented in Table 6.  

Table 6: Parameters of GA 
Nind Number of individuals in each generation 50 

Nnew Number of newborns 18 

mr Mutation rate 0.02 

Nmax Maximum number of generations 300 

 

In order to ensure an accurate design, at least ten discrete 

simulation runs of NSGA-II with different initial individuals 

have been performed. The optimization process has been 

conducted for different levels of uncertainties for both the 

applied load and allowable stress. Figure 3 shows the Pareto 

optimal answers of four different runs correspond to CoV of 

applied load equal to 0.2 and CoV of allowable stress equal 

to 0.1. It is observed that all 50 individuals have stood on 

Pareto front. Also, it seems that different Pareto fronts are 

almost coincident with each other, which confirms the 

convergence of the algorithm. It is also evident that the 

lower values of failure probability of the truss structure 

could be obtained. As an example, the failure probability of 

25% is obtained with the truss weight near 575 lb and the 

failure probability of 10% is provided with the truss weight 

about 600 lb.  

 
Fig. 3: The Pareto optimal answers of the multi-objective 

optimization problem for CoV load=0.2 and CoV allowable 
stress=0.1 

In comparison with the previously designed truss, by 

considering only the minimization of the truss weight, it 

could be stated that assessing only the truss weight as a cost 

criterion will devote the safety of the truss. As an example, 

the failure probability of the truss structure with this level of 

uncertainty in load and resistance has been evaluated about 

86% according to Table 5.  Note that the weight of truss 

structure was achieved about 545 lb. For instance, by 

comparing this solution with the optimal truss with the 

weight of 575 lb and the failure probability of 25% it could 

be concluded that the optimal solution determined by the 

proposed method can reduce the failure probability about 

61% while the truss weight has increased only 5%. 

Accordingly, the reliability-based multi-objective optimal 

design of truss structure can provide several design scenarios 

via the Pareto fronts, which can consider the safety criterion 

along with the cost criterion. The multi-objective 

optimization problem of designing the spatial truss has been 

solved frequently, considering different levels of 

uncertainties within the applied loads and allowable stress of 

truss members. Figures 4 to 7 show the Pareto fronts of the 

optimal truss structures with different levels of uncertainties 

for the applied load, including the CoVs of 0.1, 0.2, 0.3, and 

0.4, respectively. Each of these figures contains the Pareto 

fronts with the uncertainties of allowable stress, including 

the CoVs of 0.01, 0.05, and 0.1. Also, the Pareto fronts of 

the optimal truss structures with different level of 

uncertainties for the allowable stress including the CoVs of 

0.01, 0.05, and 0.1, respectively, are compared in Figures. 8 

to 10. As a main result, it could be concluded that increasing 

the level of uncertainty of the resistance leads to an 

increment in the failure probability of the entire truss system 

which is more evident in Figures 7 and 10. It is noteworthy 

to mention that, for the reliability-based design of truss 

structures, it is more appropriate that the reliability index is 

greater than 2.5, which corresponds to the failure probability 

of 0.00621. As a sample, according to the results, the 
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designed trusses with the failure probability of 0.6% have 

the weight of 601 lb, 603 lb, 721 lb and 683 lb, respectively, 

for load CoVs of 0.1, 0.2, 0.3, and 0.4 with allowable stress 

CoVs of 0.05. 

 
Fig. 4: The Pareto optimal answers of the multi-objective 

optimization problem for CoV load=0.1 

 
Fig. 5: The Pareto optimal answers of the multi-objective 

optimization problem for CoV load=0.2 

 
Fig. 6: The Pareto optimal answers of the multi-objective 

optimization problem for CoV load=0.3 

 
Fig. 7: The Pareto optimal answers of the multi-objective 

optimization problem for CoV load=0.4 

 
Fig. 8: The Pareto optimal answers of the multi-objective 

optimization problem for CoV allowable stress=0.01 

 
Fig. 9: The Pareto optimal answers of the multi-objective 

optimization problem for CoV allowable stress=0.05 
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Fig. 10: The Pareto optimal answers of the multi-objective 

optimization problem for CoV allowable stress=0.1 

 

6. Conclusions 

This paper presents a reliability-based multi-objective 

optimal design method to design spatial truss structures 

while accounting for the uncertainties of the applied load 

and allowable stresses of the truss members. The 

methodology is based on defining a multi-objective 

optimization problem and solving it using an improved 

version of the non-dominated sorting genetic algorithm, 

NSGA-II. The aim is to provide both cost criterion by 

minimizing the truss weight as well as safety criterion by 

minimizing the failure probability of the entire truss 

structure. For illustration, the method has been applied to 

design optimal cross-sectional areas of the members of a 25-

bar benchmark spatial truss structure. The Pareto fronts of 

the optimal truss have been derived for different uncertainty 

levels of load and resistance. Numerical studies have shown 

the capability and simplicity of the applied method in 

designing cross-sectional areas of the truss elements. This 

method has led to derive a wide range of optimal design 

solutions throughout the resulted Pareto fronts, which 

provide various optimal choices regarding both cost and 

safety criteria. The results show that the failure probability 

of the truss structure reduces by increasing the uncertainty 

level of the resistance. The failure probability of the 25-bar 

truss structure under the considered load cases with the 

previously deterministic design was about 86%, while the 

proposed method has introduced an optimal solution with 

the failure probability of 25% and only with 5% increment 

in truss weight.  
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