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Abstract: 

Compared to traditional methods based on mean response evaluation of seismic parameters 

with significant confidence margin, the growing use of the new generation of performance-

based design methods, which are based on loss and financial assessment, necessitates an 

increase in accuracy and reliability in probabilistic evaluation of structural response for all 

values of seismic parameters. Even with the same limited number of common nonlinear 

analyses, utilizing the Bayesian approach, which allows the use of diverse and even inaccurate 

data to form beliefs, is a powerful method to predict and enhance seismic response results. In 

this paper, the practicability of using linear analysis data in a Bayesian inference model to 

predict nonlinear responses is evaluated. A 20-story reinforced concrete special moment 

resisting frame is being considered, and a Bayesian model for prediction of the maximum story 

drift and the peak floor acceleration has been investigated. The Bayesian model was developed 

on linear results and finally updated with a limited number of nonlinear results. The 

predictability power of predictors, Bayesian model comparison among different likelihood 

functions, and common diagnostics tools in numerical solution of the Bayesian model developed 

on linear results, have all been examined. The results demonstrate a significant improvement in 

the outcomes, while proving the practicability of developing a stable and reliable model based 

on linear analysis data. 

D

D 

1. Introduction 

With the introduction of the new generation of performance-

based design methods in recent years [1], assessing the 

financial damage caused by earthquakes has consistently 

been one of the concerns for engineers. However, the 

combination of multiple epistemic and aleatory uncertainties 

strongly affects the accuracy of the results. In addition, to 

appropriately assess loss and damage, there is a need to 

obtain the Probability Density Function (PDF) curves, and 

not just the mean of responses. As a result, one of the 

appropriate solutions is to incorporate statistical inference 

approaches and probabilistic methodologies to improve the 

performance evaluation of buildings and consequently 

enhance corresponding loss assessment. 
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The introduction of two distinct philosophies in the field of 

statistical inference has led to the development of two 

different problem-solving paradigms: 

• The traditional Frequentist inference approach; 

• The Bayesian inference approach. 

Despite the fact that the Bayesian paradigm is as old as the 

frequentist one and has even simpler roots, the challenges of 

tackling its problems mathematically and explicitly, were 

not well-known until recently. In recent years, rapid and 

continuous advances in processing power have a significant 

impact on computational statistics practice [2]. Increased 

processing power has also contributed to the increased 

prevalence of computationally more complex approaches 

based on resampling, such as Gibbs sampling via the 

Markov Chain Monte Carlo (MCMC) algorithm [3], which 

makes use of Bayesian inference methods more practical [4, 

5]. A Markov chain is a series of events in which the 
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probability of the next event is solely determined by the 

current event's state [6].  

After acquiring fresh data, Bayesian inference methods use 

Bayes' theorem to compute and update probabilities. The 

Bayes' theorem can directly assign a probability distribution 

that quantifies the belief to a parameter or set of parameters. 

Therefore, it can be said that Bayesian statistics interprets 

probability as a degree of belief. In contrast to frequentist 

statistics, Bayesian philosophy is based on the assumption 

that there may have been more evidence about a physical 

situation than was included in a single experiment's data, 

since, Bayesian methods can be used to combine results 

from different experiments or even scarce, sparse, noisy or 

biased sources, or unexpectedly all of them [7, 8]. 

In recent years, several studies have concentrated on the use 

of the Bayesian approach to assess buildings and structures, 

especially under seismic loads.  

Esmaeili, Ludwig and Zareian used the results of Linear 

Response Spectrum Analyses (LRSAs) in a Bayesian 

inference model based on joint probability distribution to 

form a prior damage distribution and update the damage 

function by analyzing the Nonlinear Time History Analyses 

(NTHAs) with a limited number of Ground Motions (GMs) 

to enhance results [9]. On nuclear research reactors, Kwag, 

Lee and Ryu suggested a Bayesian-based seismic margin 

quantitative evaluation using seismic fragility data and fault 

tree analysis [10]. Erazo, Moaveni and Nagarajaiah used 

Bayesian method in accordance with a full-scale piece of a 

seven-story shear wall building with an array of sensors to 

measure the dynamic reactions. Following that, the 

estimated demands are utilized to compute damage 

measures in order to undertake a quantitative assessment of 

the structural integrity subjected to strong earthquake GMs 

[11]. On the basis of Bayesian networking, Gholami, 

Asgarian and Asil Gharebaghi provide a probabilistic 

approach for inspecting, maintaining, and repairing jacket 

platforms [12]. 

In contrast to frequentist approaches, Bayesian inference 

replaces the quantity of data with the following two 

fundamental assumptions: 

• The likelihood function which is used as a proper 

distribution for the observations; 

• Prior distribution for model or unknown 

parameters. 

The authors of this paper, in another study, introduced a 

Bayesian-based inference method in which LRSA results are 

employed as belief to form informative prior distributions in 

a generalized linear regression model [13]. Artificially 

generated responses could then be generated by the Monte 

Carlo method to build a significantly more accurate and 

reliable PDF of demand parameters by updating the 

Bayesian model based on a limited number of NTHAs as 

new fresh evidence. The PDF obtained using this method 

can lead to a significant increase in accuracy and a sharp 

decrease in uncertainty associated with GM selection.  

The practicability of just using LRSA results in determining 

the likelihood function and developing the model in a 

Bayesian generalized regression model is investigated in the 

present study, particularly concentrating on the 

technicalities. Using conventional diagnostic tools, the 

predictability power of the predictors, as well as the stability 

and reliability of the generated model based on the LRSAs, 

were also examined. 

 

2. Methodology 

There is no necessity for the correctness of the introduced 

fundamental assumptions in Bayesian inference, and 

depending on circumstances, accurate results can be 

achieved even though the wrong assumptions about the prior 

distributions or likelihood function are chosen. In most 

cases, the penalty for choosing the incorrect belief presents 

itself as uncertainty in the subsequent distribution of 

unknown parameters in Bayesian inference which leads to 

an increase in variation in predicted values [14]. Thus, one 

of the concerns in this research is concentrated on improving 

the accuracy of results by picking the appropriate likelihood 

function and examining the reliability of the model.  

In the proposed Bayesian inference method, two distinct sets 

of observations are used as evidence: 

• 994 LRSAs results to form an initial belief and 

model developing; 

• 11 NTHAs results as proposed by most codes for 

Bayesian updating of the model [15]. 

However, in this study, 994 NTHAs were performed only to 

validate the final outcomes.  The posterior distribution of the 

unknown parameters is estimated in the first step, utilizing 

the results of the 994 LRSAs as evidence. Given the large 

amount of data in this step, the suitable distribution for the 

likelihood function can also be determined directly from the 

results. In the second step, we do a Bayesian update on the 

posterior distribution obtained in the previous step, based on 

the results of 11 NTHAs, and we get a new posterior 

distribution of unknown parameters. 

However, according to the following points, it seems that the 

determination of the likelihood function should either be 

determined by default and without using any evidence, or 

only the results of LRSAs can be employed: 

• The distribution of structural responses under 

LRSAs and NTHAs will not always be the same, as 

will be shown later. 

• Full NTHAs data can not be utilized to determine 

the appropriate distribution for the likelihood 

function, despite the fact that 994 NTHAs were 

utilized in the research process to validate the 

outcomes because it is assumed that this 

information isn't readily available in practice. 

• A set of eleven NTHAs can not be utilized to 

choose the appropriate likelihood function 

distribution because, while this number of data is 
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reasonably accurate in predicting the mean of 

responses, it is not only accurate, but also error-

prone in determining the appropriate distribution. 

• Even if the appropriate distribution is chosen, an 

eleven NTHAs set is only sufficient to estimate the 

parameters of maximum three-parameter 

distributions and causes errors in distributions with 

more parameters. 

As a result, in practice, the likelihood function must always 

be determined using the LRSAs results. In this paper, the 

likelihood function is evaluated using a Bayesian approach 

and LRSA observations and the correctness of the 

assumption will next be assessed due to the availability of 

994 NTHA results. 

The generated model is then presented in greater detail, 

followed by a discussion of common diagnostics tools for 

conforming the predictability power of the model and 

validating the Bayesian model's numerical solution. 

 

3. Bayes’ theorem 

3.1 Bayesian inference 

The Bayesian approach to statistical problem solving is 

founded on a mindset that is completely different from the 

frequentist methods. Existing information or beliefs are 

merged with new information in this way to generate a new 

degree of knowledge. One of the most important advantages 

of this method is the ability to update and use different and 

even distinct layers of information. In statistical analysis, the 

Bayesian method can produce different outcomes than the 

classical method. Even when using the Bayesian technique, 

the sequence in which evidence is entered to update the 

initial belief might have an impact on the ultimate outcome. 

The steps of Bayesian inference can be stated in three basic 

phases: 

• A probability density function (),  called the prior 

distribution is selected, which expresses our belief 

in the parameter  before observing and receiving 

any new data. 

• A probability distribution is selected as p(x|),  

which represents the likelihood function between 

the observations and the model parameter. 

• The initial belief will be updated and the posterior 

distribution as p(|Dn) will be obtained after 

making a series of observations and receiving data 

as Dn={X1,…,Xn}. 

 

ℙ(𝜃|𝐷𝑛) =
𝑝(𝑋1, … , 𝑋𝑛|𝜃)𝜋(𝜃)

𝑝(𝑋1, … , 𝑋𝑛)
=

ℒ𝑛(𝜃)𝜋(𝜃)

𝑐𝑛

            (1) 

where Ln is the likelihood function and cn is a normalizing 

constant value, often known as evidence or marginal 

likelihood. Calculating this value explicitly, which entails 

solving a multiple integral, is one of the most difficult 

aspects of this procedure, necessitating the use of numerical 

and simulation approaches. Therefore, in this study, the 

MCMC approach for chain generation and the Gibbs 

sampling algorithm, a well-known method for high-

dimensional problems as a specific example of the 

Metropolis-Hastings algorithm technique in which the 

model parameters will be altered in a series of stochastic 

stages, are used to numerically solve the Bayesian model [3]. 

There are two main advantages using Gibbs sampling: 

• It is unnecessary to design a proposal distribution; 

• Proposals are always accepted [6]. 

 

3.2 Bayesian model comparison 

The Bayesian Model Comparison (BMC) method can also 

be used to validate the likelihood function. If Dn is the 

observation in different Bayesian models with different 

likelihood functions, based on the Bayes rule, the posterior 

distribution of each model, ℳ𝑗, according to the observation, 

can be stated as follows: 

ℙ(ℳ𝑗|𝐷𝑛) =
ℒ (ℳ𝑗)π(ℳ𝑗)

𝑝(𝐷𝑛)
                                               (2) 

where (ℳ𝑗) and ℒ(ℳ𝑗) are prior distribution and the 

likelihood function of each models, respectively. The Bayes 

factor, BF, between two models is defined as follows if the 

prior distributions are the same: 

𝐵𝐹 =
𝑝(𝐷𝑛|ℳ𝑗)

𝑝(𝐷𝑛|ℳ𝑘)
=

∫ p(𝜃𝑗|ℳ𝑗)𝑝(𝐷𝑛|𝜃𝑗 , ℳ𝑗)𝑑𝜃𝑗𝐷𝑛

∫ p(𝜃𝑘|ℳ𝑘)p(𝐷𝑛|𝜃𝑘 , ℳ𝑘)𝑑𝜃𝑘𝐷𝑛

    (3) 

where  are model parameters and ℳ is added as the new 

parameter representing of the rival models. Kas and Raftery 

interpretated the Bayesian factor based on the common 

logarithm of Bayes factors according to Table. 1 [16]. 

Table. 1: Interpretation of Bayes factor results [16] 

LOG BF Strength of Evidence 

<-2 Decisively Model 2 

-1 to -2 Strongly Model 2 

-0.5 to -1 Substantially Model 2 

-0.5 to 0.5 Not worth more than a bare mention 

0.5 to 1 Substantially Model 1 

1 to 2 Strongly Model 1 

>2 Decisively Model 1 

 

Although the mathematical definition of the BMC method is 

simple, its implementation using the MCMC method with 

the Gibbs sampling is not without flaws. As previously 

stated, the Gibbs sampling method only selects one variable 

at a time. Given that the model type is also entered as a 

variable ℳ in the model, other parameters are likely to be 

set on the previous model in the step that is to be taken to a 

new step on ℳ, and the modification of ℳ in most cases 

will not be accepted. In MCMC, this dramatically reduces 

the effective chain length, and consequently lowers the 
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model's validity. However, numerous strategies have been 

offered in this area, such as the pseudo-prior distribution 

approach which has been implemented in this research [17]. 

 

4. Case study description 

A 20-story reinforced concrete special moment resisting 

frame designed by Haselton et al. [18] has been selected for 

2D models. Details for structural modeling have been 

provided in Fig. 1. The Opensees software is used to prepare 

the numerical model of the buildings [19]. The fundamental 

period of the structure is 2.36 sec. The numbers above the 

elements are the dimensions (width * height in inches), and 

the numbers below them represent the percentage of 

reinforcement. 

Based on 68 earthquake events, represented in Table. 2, 994 

GMs were chosen from the NGA-WEST2 GM database 

[20]. A three-dimensional space comprising magnitude, 

distance, and duration was used to choose GMs that are 

uniformly distributed in this space. Fig. 2 shows the 

distribution of the selected GMs. based on the above 

parameters. Also, in accordance with TBI task 12, the 

reaction of structures at DBE hazard level is evaluated using 

the site-specific hazard spectrum [21] as represented in Fig. 

3. 

While various demand parameters can be considered, the 

most common ones are Maximum Story Drift (MSD) and 

Peak Floor Acceleration (PFA), which correspond to 

structural and non-structural loss assessment in the new 

generation of performance-based design approaches, ATC-

58 [1], and are investigated in this study. 

 

5. Identification of predictors 

Intensity Measures (IMs) are used to quantify records in the 

proposed Bayesian model. Due to the fact that the Bayesian 

model is to be developed only based on linear results, it is 

not possible to evaluate the accuracy, sufficiency and 

efficiency of the IMs and consequently, the desired number 

of IMs are selected. Bayesian approach, unlike traditional 

frequentist methods, is not very sensitive to the correlation 

of predictors, although increasing the number of predictors 

(even uncorrelated) or strong correlation only leads to a 

decrease in the Credible Interval (CI) of the posterior 

distributions. Therefore, in order to reduce the dimensions 

of the model, the Principal Component Analysis (PCA) 

method is used. Predictors will also be standardized to 

reduce the correlation of model parameters, termed 

unknown parameters. 
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Fig. 2: Distribution of selected ground motions based on 

distance (Rjb), magnitude (M) and duration (Ds) 
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Table. 2: Earthquake events and number of selected GMs from each event 

No.  Earthquake Name Year Magnitude Mechanism No. of GMs 

1  "Kern County" 1952 7.4 Reverse 6 

2  "Parkfield" 1966 6.2 strike slip 2 

3  "San Fernando" 1971 6.6 Reverse 12 

4  "Sitka_ Alaska" 1972 7.7 strike slip 2 

5  "Friuli_ Italy-02" 1976 5.9 Reverse 2 

6  "Tabas_ Iran" 1978 7.4 Reverse 2 

7  "Coyote Lake" 1979 5.7 strike slip 4 

8  "Imperial Valley-06" 1979 6.5 strike slip 4 

9  "Montenegro_ Yugoslavia" 1979 7.1 Reverse 10 

10  "Irpinia_ Italy-01" 1980 6.9 Normal 8 

11  "Irpinia_ Italy-02" 1980 6.2 Normal 2 

12  "Livermore-01" 1980 5.8 strike slip 6 

13  "Mammoth Lakes-01" 1980 6.1 Normal Oblique 4 

14  "Mammoth Lakes-02" 1980 5.7 strike slip 2 

15  "Mammoth Lakes-03" 1980 5.9 strike slip 2 

16  "Mammoth Lakes-04" 1980 5.7 strike slip 4 

17  "Mammoth Lakes-06" 1980 5.9 strike slip 2 

18  "Victoria_ Mexico" 1980 6.3 strike slip 2 

19  "Corinth_ Greece" 1981 6.6 Normal Oblique 2 

20  "Coalinga-01" 1983 6.4 Reverse 28 

21  "Coalinga-05" 1983 5.8 Reverse 4 

22  "Morgan Hill" 1984 6.2 strike slip 10 

23  "Pelekanada_ Greece" 1984 5.0 Normal 2 

24  "Nahanni_ Canada" 1985 6.8 Reverse 4 

25  "Chalfant Valley-02" 1986 6.2 strike slip 2 

26  "Kalamata_ Greece-01" 1986 6.2 Normal 2 

27  "N. Palm Springs" 1986 6.1 Reverse Oblique 4 

28  "San Salvador" 1986 5.8 strike slip 4 

29  "Taiwan SMART1(45)" 1986 7.3 Reverse 2 

30  "Baja California" 1987 5.5 strike slip 2 

31  "New Zealand-02" 1987 6.6 Normal 2 

32  "Superstition Hills-02" 1987 6.5 strike slip 2 

33  "Whittier Narrows-01" 1987 6.0 Reverse Oblique 2 

34  "Loma Prieta" 1989 6.9 Reverse Oblique 44 

35  "Upland" 1990 5.6 strike slip 2 

36  "Big Bear-01" 1992 6.5 strike slip 10 

37  "Cape Mendocino" 1992 7.0 Reverse 10 

38  "Joshua Tree_ CA    " 1992 6.1 strike slip 2 

39  "Landers" 1992 7.3 strike slip 26 

40  "Northridge-01" 1994 6.7 Reverse 46 

41  "Kobe_ Japan" 1995 6.9 strike slip 4 

42  "Kozani_ Greece-01" 1995 6.4 Normal 2 

43  "Umbria Marche (aftershock 1) Italy" 1997 5.5 Normal 2 

44  "Umbria Marche (aftershock 2) Italy" 1997 5.6 Normal 4 

45  "Umbria Marche (aftershock 3) Italy" 1997 5.3 Normal 2 

46  "Umbria Marche_ Italy" 1997 6.0 Normal 6 

47  "Chi-Chi_ Taiwan" 1999 7.6 Reverse Oblique 268 

48  "Chi-Chi_ Taiwan-03" 1999 6.2 Reverse 34 

49  "Chi-Chi_ Taiwan-04" 1999 6.2 strike slip 14 

50  "Chi-Chi_ Taiwan-05" 1999 6.2 Reverse 4 

51  "Chi-Chi_ Taiwan-06" 1999 6.3 Reverse 2 

52  "Duzce_ Turkey" 1999 7.1 strike slip 12 

53  "Hector Mine" 1999 7.1 strike slip 44 

54  "Kocaeli_ Turkey" 1999 7.5 strike slip 12 

55  "Tottori_ Japan" 2000 6.6 strike slip 42 

56  "Denali_ Alaska" 2002 7.9 strike slip 6 

57  "Bam_ Iran" 2003 6.6 strike slip 4 

58  "San Simeon_ CA" 2003 6.5 Reverse 12 

59  "Niigata_ Japan" 2004 6.6 Reverse 30 

60  "Parkfield-02_ CA" 2004 6.0 strike slip 24 

61  "Chuetsu-oki_ Japan" 2007 6.8 Reverse 58 

62  "14383980" 2008 5.4 Reverse Oblique 2 

63  "Iwate_ Japan" 2008 6.9 Reverse 74 

64  "L'Aquila (aftershock 1) Italy" 2009 5.6 Normal Oblique 2 

65  "L'Aquila_ Italy" 2009 6.3 Normal 10 

66  "Darfield_ New Zealand" 2010 7.0 strike slip 6 

67  "El Mayor-Cucapah_ Mexico" 2010 7.2 strike slip 20 

68  "Christchurch_ New Zealand" 2011 6.2 Reverse Oblique 6 
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5.1 Intensity measures 

Description and formulation of selected IMs is provided in 

Table. 3. 

5.2 Principal component analysis 

PCA is a statistical technique which involves converting a 

set of data of potentially correlated variables into a set of 

data of linearly uncorrelated variables via orthogonal 

transformation. PCA is also a tool for condensing 

multivariate data into smaller dimensions while maintaining 

the majority of the information [22]. In fact, it is a 

multivariate methodology for analyzing a given data in 

which observations are represented by a set of interrelated 

dependent variables [23]. What this means is that, we begin 

with a high number of variables, such as 20, and by the 

conclusion of the process, we have a lower number of 

variables that also express a significant amount of the 

information in the original sample. 

Additional suggestions have been provided regarding the 

sample size (N) to the number of components proportion (p) 

by some researchers. Some of them offered an N/p ratio of 

3:1 to 6:1 or a ratio of at least 10:1 ratio [24, 25]. 

Factor Analysis is in fact a technique used to reduce a large 

number of variables in a statistical model. In this way, the 

linear combination of the variables reconstructs each of the 

main factors and they can be representative of model 

changes instead of primary variables. In fact, dimensionality 

reduction emphasizes on performing computations with the 

fewest possible dimensions so that their attributes are 

preserved [26]. 

With 21 input variables, PCA initially extracted 21 factors 

or "components". Each component has a quality score called 

eigen value. Only components with large eigen values are 

likely to represent a real main factor. Finally, 21 components 

are aggregated into four principal components following the 

PCA analysis, each of which is a combination of other 

components prior to the study. Table. 4 represents the 

component matrix. 

Table. 3: Selected IMs 

IM No. Description Formulation Reference 

IM.01 Spectral acceleration at the fundamental period Sa(T1) - 

IM.02 Spectral acceleration at the 2nd period Sa(T2) - 

IM.03 Spectral acceleration at the 3rd period Sa(T3) - 

IM.04 DSI ∫ 𝑆𝑑(𝑇, 5%)𝑑𝑡
5

2

 [27] 

IM.05 SI ∫ 𝑆𝑣(𝑇, 5%)𝑑𝑡
2.5

0.1

 [28] 

IM.06 ASI ∫ 𝑆𝑎(𝑇, 5%)𝑑𝑡
0.5

0.1

 [29] 

IM.07 Np 
(∏ 𝑆𝑎(𝑇1)𝑛

𝑖=1 )
1
𝑛

𝑆𝑎(𝑇1)
 [30] 

IM.08 Peak ground acceleration PGA - 

IM.09 Peak ground velocity PGV - 

IM.10 Peak ground displacement PGD - 

IM.11 Peak ground acceleration to velocity ratio PGA / PGV - 

IM.12 Peak ground acceleration to displacement ratio PGA / PGD - 

IM.13 Peak ground velocity to displacement ratio PGV / PGD - 

IM.14 Arias Intensity 
𝜋

2𝑔
∫ 𝑎𝑡

2𝑑𝑡 [31] 

IM.15 2nd to 1st spectral acceleration ratio Sa(T2) / Sa(T1) - 

IM.16 S 1...n ∏ 𝑆𝑎(𝑇𝑖)𝑀𝑀𝑃𝑅𝑖

𝑛

𝑖=1
 [32] 

IM.17 IM(1E+2E) √𝑃𝐹12𝑆𝑑(𝑇1, 𝜁1)2 + 𝑃𝐹22𝑆𝑑(𝑇1, 𝜁1)2 [33] 

IM.18 Duration Ds (5-95) - 

IM.19 Magnitude M [34] 

IM.20 Distance Rjb - 

IM.21 Shear wave velocity over the upper 30 meters Vs (30) - 

Fig. 3: Site specific hazard levels 
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 .6. Likelihood function 

6.1 Evaluate linear and nonlinear results 

Here, considering that 994 LRSAs and the same number of 

NTHAs have been performed, there is a significant amount 

of data from which it is possible to achieve the most 

appropriate and accurate probability distribution in terms of 

results.  

The best distribution of results is chosen and represented in 

Fig. 4 and Figure. 5, based on the results of goodness of fit 

tests. The Kolmogorov-Smirnov test is examined to select 

the best distribution. The largest distance between the 

experimental cumulative distribution function and the 

theory is defined as the Kolmogorov-Smirnov statistic, 

which is based on the following equation: 

𝐷𝑛,𝑛𝜏= 𝑠𝑢𝑝
𝑥

|𝐹1,𝑛(𝑥) − 𝐹1,𝑛𝜏(𝑥)|                                             (4)                                            

where 𝐹1,𝑛 is the experimental cumulative distribution and 

𝐹1,𝑛𝜏 is the theoretical cumulative distribution; the sup 

represents the supremum function [35]. 

In Table. 5, the best fitted distribution for LRSA and NTHA 

results are shown. As can be observed, the Dagum, Burr, and 

Pearson 6 probability distributions have a large frequency 

after the dominant Wakeby probability distribution, which 

has a clear advantage over other distributions. Next on the 

list is the well-known log-normal distribution and its 

counterpart the log-logistic distribution. A brief explanation 

of the functions mentioned is provided below : 

• Wakeby: a five-parameter distribution that belongs 

to the advanced distribution category. It is a 

popular tool for predicting flood flows. Due to the 

presence of three shape and two location 

parameters, there is a lot of flexibility in adapting 

to the data. Its drawbacks include the parameters' 

dependence on one another and the lack of an 

explicit relationship with the PDF. The inverse 

cumulative density function can be defined as: 

𝑥(𝐹) = 𝜉 +
𝛼

𝛽
(1 − (1 − 𝐹)𝛽) −

𝛾

𝛿
(1 −

1

(1 − 𝐹)𝛿
)    (5) 

 

Where α and  are location parameters, and   ،  &  

 are shape parameters. The Wakeby distribution, 

even if not selected as the best distribution, has 

always been considered as the first few options and 

its selection has never been rejected using goodness 

of fitness tests. 

Table. 4: Component matrix of factors  

 F1 F2 F3 F4 

IM.01 0.97 
   

IM.02 
  

0.86 
 

IM.03 
  

0.65 
 

IM.04 
 

0.83 
  

IM.05 0.78 
 

-0.51 
 

IM.06 0.89 
   

IM.07 
 

-0.77 
  

IM.08 0.93 
   

IM.09 0.83 
   

IM.10 
 

0.82 
  

IM.11 -0.63 0.42 
  

IM.12 -0.52 0.67 
  

IM.13 -0.41 0.77 
  

IM.14 0.88 
   

IM.15 -0.49 
 

0.71 
 

IM.16 0.98 
   

IM.17 0.62 
  

-0.49 

IM.18 0.34 -0.48 
 

0.56 

IM.19 0.35 -0.69 
  

IM.20 
 

-0.36 
 

0.73 

IM.21 
   

-0.59 

• Burr: a four-parameter distribution and also known 

as Burr Type XII, is a generalization of the log-

logistic distribution family. k & α are two shape 

parameters, β is the scale parameter and γ is the 

position parameter [36]. The PDF is defined as 

follows: 

𝑃(𝑥) =
𝛼𝑘

𝛽
(
𝑥 − 𝛾

𝛽
)𝛼−1 (1 + (

𝑥 − 𝛾

𝛽
)𝛼)

1−𝑘

                        (6) 

 

• Dagum: a four-parameter distribution which is 

developed by changing the burr distribution and is 

widely used in economics today [37]. Its PDF is 

defined as follows: 

Fig. 4: Comparison of MSD results between LRSA and NTHA (994 analyses) 
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𝑃(𝑥) =
𝛼𝑘(

𝑥−𝛾

𝛽
)𝛼𝑘−1

𝛽 (1 + (
𝑥−𝛾

𝛽
)𝛼)

1+𝑘                                           (7) 

• Pearson 6: a four-parameter distribution of the 

Pearson family of distributions. Because of its 

similarity to the beta distribution, it is sometimes 

called the second type of beta distribution. α1 & α2 

are the shape parameters, β is the scale parameter 

and γ is the location parameter [38]. The PDF is 

written as follows: 

𝑃(𝑥) =
1

𝛽𝐵(𝛼1,𝛼2)
(
𝑥 − 𝛾

𝛽
)𝛼1−1

1

(1 +
𝑥−𝛾

𝛽
)

𝛼1+𝛼2
                (8) 

• Log-normal: a three-parameter distribution from a 

series of log distributions. In this distribution, the 

logarithms in the natural data base follow the 

normal distribution. This distribution, along with 

the normal distribution, is one of the most widely 

used distributions of natural events. Some natural 

variables, which are themselves the product of 

other natural variables, follow the log-normal 

distribution. Usually, for natural variables that have 

a minimum value but not a maximum value, by 

leaning towards infinity, the probability of their 

occurrence decreases and can be modeled with this 

distribution. Α is the shape parameter, β is the scale 

parameter and γ is the location parameter. Unlike 

the normal distribution, the kurtosis in the log-

normal distribution is not constant. The PDF is as 

follows: 

𝑃(𝑥) =
1

(𝑥 − 𝛾)𝜎√2𝜋

1

𝑒
1

2
(

𝑙𝑛(𝑥−𝛾)−𝜇

𝜎
)

2                                     (9) 

• Log-logistic: a three-parameter distribution from a 

series of log distributions. In this distribution, 

logarithms follow the logistic distribution in the 

natural data base. Some natural variables, which 

are themselves the product of other natural 

variables, follow the log-normal distribution. 

However, if the upstream variables are correlated 

and the results have less kurtosis than the log-

normal distribution, the log-logistic is used. This 

distribution is a special case of burr distribution. 

The distribution has a larger tail than the gamma 

distribution and is widely used in modeling 

economic and insurance variables. Unlike the 

logistics distribution, the kurtosis is not constant. 

The PDF is as follows: 

𝑃(𝑥) =
𝛼

𝛽
(
𝑥 − 𝛾

𝛽
)𝛼−1

1

(1 + (
𝑥−𝛾

𝛽
)𝛼)

2                                 (10) 

 

Table. 5: Comparison of Kolmogorov-Smirnov goodness of fit test between LRSA and NTHA results (994 analyses) 

Rank 

 

MSD Responses PFA Responses 

NTHA Results LRSA Results NTHA Results LRSA Results 

Distributions* (statistics**) Distributions (statistics) Distributions (statistics) Distributions (statistics) 

1 Dagum )0.0149 ( Wakeby )0.0210 ( Frechet )0.0148 ( Log-logistic )0.0133 ( 

2 Log-logistic )0.0159 ( Burr )0.0219 ( Log-logistic )0.0149 ( Burr )0.0156 ( 

3 Wakeby )0.0164 ( Log-normal )0.0231 ( Pearson 5 )0.0155 ( Wakeby )0.0199 ( 

4 Burr )0.0176 ( Pearson 5 )0.0243 ( Pearson 6 )0.0156 ( Pearson 6 )0.0292 ( 

5 Frechet )0.0191 ( Pearson 6 0.0252 Wakeby )0.0163 ( Pearson 5 )0.0293 ( 

6 Pearson 5 )0.0245 ( Log-logistic )0.0281 ( Burr )0.0295 ( Log-gamma )0.0346 ( 

7 Log-Pearson 3 )0.0247 ( Dagum )0.0286 ( Log-normal )0.0302 ( Log-normal )0.0350 ( 

8 Pearson 6 )0.0260 ( Inv. Gaussian )0.0297 ( Log-Pearson 3 )0.0340 ( Inv. Gaussian )0.0448 ( 

9 Log-normal )0.0369 ( Fatigue life )0.0310 ( Inv. Gaussian )0.0487 ( Fatigue life )0.0455 ( 

10 Inv. Gaussian )0.0469 ( Log-Pearson 3 )0.0339 ( Fatigue life )0.0636 ( Erlang )0.0525 ( 

* On the basis of the Kolmogorov-Smirnov statistics, the probability distributions are sorted ascending. 

** The numbers in parentheses represents the Kolmogorov-Smirnov statistic for the probability distribution. 
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Figure. 5: Comparison of PFA results between LRSA and NTHA (994 analyses) 
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6.2 Bayesian model comparison 

Although the Wakeby distribution has a clear advantage 

over other distributions having 994 analysis results 

available, the correlation of the distribution parameters, and 

more particularly the implicit PDF formulation, makes it 

nearly impossible to use this distribution to solve Bayesian 

problems numerically. On the other hand, using only 11 

NTHAs is insufficient to improve and enhance parameters 

in most distributions. As a rule of thumb, the number of 

observations should be more than 2n, where n represents the 

number of distribution parameters. Therefore, using Burr, 

Dagum and Pearson 6 are not recommended unless the 

increase in the number of NTHAs is accepted. 

In the regression model, the relationship between 

independent or predictive variables and dependent or 

predictable variables through unknown parameters based on 

log-logistic or log-normal distribution is defined as follows: 

ℳ1: Ln 𝑌𝑖~𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (𝛽0 + ∑ 𝜷𝑗𝑿𝑗,𝑖

𝑗

, 𝑧𝜎)                        (11) 

ℳ2: 𝑌𝑖~𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙 (𝛽0 + ∑ 𝜷𝑗𝑿𝑗,𝑖

𝑗

, 𝑧𝜎)                      (12) 

Y is the predicted variable (here demand parameters) and X 

is the predictor variables (here PCA factors). All variables 

have been standardized, which simply means rescaling the 

data relative to its mean and standard deviation. 𝜷 is the 

unknown parameter vector in the standard space of 

variables. 𝛽𝟎 represents the intercept. 

By adding the parameter m, as an indicator of the selected 

model, according to Bayesian rule, the subsequent 

distribution of unknown parameters can be written as 

follows: 

p(𝛃, ℳ|𝐷𝑛) =
ℒ(𝐷𝑛|𝛃, ℳ, σ)π(𝛃, ℳ, σ)

∫ ℒ(𝐷𝑛|𝛃, ℳ, σ)π(𝛃, ℳ, σ)d𝛃dℳdσ𝐷𝑛

          (13) 

As can be seen in Table. 6, although there is not absolute 

superiority between the two rival models, log-logistic 

distribution is more appropriate for the likelihood function. 

The relative superiority of log-logistics over log-normal was 

also evident from Fig. 4 and Figure. 5 because the log-

logistics has a heavier tail that is evident in the NTHA. 

Note that full NTHA results are not available in practice, so  

BMC should be based on LRSA results. It should be noted,  

 

the use of eleven NTHA data is not sufficient for executing 

BMC and sometimes leads to completely erroneous results. 

Therefore, it is valid only to estimate the mean value of the 

response. It can be concluded that the use of LRSA evidence 

is suitable for implementing BMC of Bayesian probabilistic 

modelling. A flowchart depicting the steps involved in 

developing a Bayesian model is shown in Fig. 6. The LRSA 

results are used to develop an informative prior in the first 

step, the NTHA results are used for Bayesian updating of the 

model in the second step, and the updated model predicts the 

responses in the third step. 

 
Fig. 6: The proposed Bayesian model flowchart 

 

Table. 6: BMC results using LRSA and NTHA results (994 analyses) 

 MSD PFA 

 NTHA (BF*) LRSA (BF) NTHA (BF) LRSA (BF) 

SLE 
Both models 

are equal 
(0.79) 

Both models 

are equal 
(0.80) 

Strongly Log-

logistic 
(18.1) 

strongly 

Log-logistic 
(22.2) 

DBE 
Substantially 

Log-logistic 
(4.45) 

Both models 

are equal 
(0.57) 

Substantially 

Log-logistic 
(4.28) 

Substantially 

Log-logistic 
(5.77) 

MCE 
Strongly Log-

logistic 
(25.6) 

Both models 

are equal 
(0.62) 

Substantially 

Log-logistic 
(5.15) 

Substantially 

Log-logistic 
(4.82) 

** The numbers in parentheses represents the Bayes factor. 
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7. Bayesian model diagnostics  

In Fig. 7 and Fig. 8, posterior distributions for 95% High 

Density Interval (HDI) of MSD predictors are shown. As 

demonstrated, the ratio of 95% HDI of priors to posteriors 

are very high, which indicates the high predictability power 

of the selected predictors. 

The more challenging problem in the MCMC method is to 

determine how many steps are needed to converge to the 

stationary distribution within an acceptable error. 

The values in the Markov chain must be representative of 

the posterior distributions. They should not be influenced 

heavily by the random starting value of the chains or be 

orphaned and end up in strange parts of the parameter space. 

Furthermore, the chains should be large enough and formed 

swiftly to ensure that estimations are accurate and reliable. 

A visual assessment of the chain trajectory was performed 

in order to detect unrepresentativeness (See Fig. 9(a) to Fig. 

14(a)). 

 

 

 

Fig. 7: Posterior distributions of predictors (mode and 95% HDI of predictors have been specified (for PFA). 

 

 

Fig. 8: Posterior distributions of predictors (mode and 95% HDI of predictors have been specified (for MSD). 
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Fig. 9: Diagnostic testing for unknown parameter 𝛃𝟎 (for MSD). 

(a): The trace plot shows that throughout all iterations, all three 

chains are close to the mean value, with no sudden changes, 

orphaned chains, or reliance on the initial stating point. 
(b): All three chains have low autocorrelations to previous values, 

and after about 50 lag, there is no significant dependency on 

previous values. Effective Size Sampling (ESS) has a reasonable 

value. 

(c): The shrink factor is close to one, indicating that there are no 

discernible differences between the values obtained from different 

chains. 

(d): The PDFs generated in each of the three chains are identical. 

The Monte Carlo Standard Error (MSCE) is very close to zero. 

In addition to trace plots, which demonstrate the dispersion 

of parameter values in all iterations, generating and 

inspecting PDF for parameters, in which the probability 

density for each value in each chain is specified separately, 

might provide useful information on the representativeness 

of the chains. The chains should overlap if they are all 

representative of the posterior distributions (See Fig. 9(d) to 

Fig. 14(d)). 

The Gelman-Rubin statistics, also known as the “shrink 

factor”, is a popular method for testing the MCMC 

convergence by having a look at Markov multiple chains, 

simultaneously. This method assesses convergence by 

comparing variances calculated in two different ways [39]. 

It is to be done for each model parameter, and it re-estimates 

the target distribution for the model parameter using the last 

n iterations of the Gibbs sampler among m multiple parallel 

chains. Between-chains variance, BC, and within-chains 

variance, WC, are calculated as follows: 

𝐵𝐶 =
𝑁

𝑀 − 1
∑ (�̂�𝑚 − �̂�)

2
                                             (14)

𝑀

𝑚=1

 

𝑊𝐶 =
1

𝑀
∑ �̂�𝑚

2

𝑀

𝑚=1

                                                              (15) 

 

Fig. 10: Diagnostic testing for unknown parameter 𝜷𝟏(MSD 

model) 

where �̂�𝑚  is the mean estimated value for model parameters 

within each chain and �̂� is the mean estimated value for 

model parameters among all chains. �̂�𝑚 is the standard 

deviation of the model parameter in each chain. The shrink 

factor, �̂�, is calculated as follows: 

𝑉𝑎�̂�(𝜃) = (1 −
1

𝑛
) 𝑊𝐶 +

1

𝑛
𝐵𝐶                                       (16) 

�̂� = √
𝑉𝑎�̂�(𝜃)

𝑊𝐶
                                                                      (17) 

Because the chain starting points are over-dispersed in 

relation to the target density, BC is initially much greater 

than WC. If no chains become orphaned or stuck in a 

particular region of parameter space, the BC aims at WC and 

the shrink factor tends to 1, indicating that all chains have 

stabilized into a representative sampling (See Fig. 9(c) to 

Fig. 14(c)). 

 

Fig. 11: Diagnostic testing for unknown parameter 𝛃𝟐(MSD 

model) 
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Fig. 12: Diagnostic testing for unknown parameter 𝛃𝟑(MSD 

model) 

 

Fig. 13: Diagnostic testing for unknown parameter 𝛃𝟒(MSD 

model) 

 

Fig. 14: Diagnostic testing for unknown parameter 𝛔 (MSD 

model) 

The second core objective is to have a large enough sample 

for stable and reliable numerical estimations of the 

distribution with some assurance that the chains are truly 

representative samples of the posterior distribution. The 

larger the sample, the more consistent and accurate the 

estimations will be (on average). Here, for this purpose, the 

ESS means the effective sample size.  

Apart from the ESS, whose higher values are more 

favorable, the Monte Carlo Standard Error (MSCE), with 

more favorable lower values, is an important tool for 

justifying the efficiency and accuracy of chain length. 

MSCE represents the estimated standard deviation of the 

sample mean in the chain on the scale of parameter value 

[40]. In addition, the PDF generated by each chain must be 

identical See Fig. 9(c) to Fig. 14(c)). 

Three chains have been used to reduce the sensitivity to the 

starting point and also to compare the results of the chains 

for diagnostic testing. 500 first steps of chains have been 

deleted for burn-in stage. 20000 steps have been saved 

during the MCMC process while 5 thin steps, which are 

performed but not saved, is the process between saved steps. 

As shown in Fig. 9 to Fig. 14, ESS is very high and, 

consequently, autocorrelation is near zero in all chains for 

all predictors. The shrink factor is absolutely near one and 

there are no significant differences between different chain 

results which indicate high predictability power of the 

model. In Fig. 15 and Fig. 16, the correlation matrix of 

predictors is shown. As is clear, there is no detectable 

correlation between predictors. 

 

8. Verification of results  

Fig. 17 and Fig. 18 demonstrate the results of applying the 

proposed model to six suites consisting of 11 GMs for PFA 

and MSD, respectively. Suites were chosen at random from 

a database of 994 ground motions (see Table. 2) using the 

setseed (2019) command in the R programming language 

[41]. The graphs are PDF curves that are used in loss 

assessment and show the probability of each level of seismic 

demand. The reciprocal of the units of horizontal axis is the 

units of probability density and the area below the PDF 

curve is equal to one. 

The black dashed line represents the PDF of 994 LRSA 

results. This line is used to form an initial belief or 

informative prior distribution about unknown parameters in 

the Bayesian model. The blue dashed line represents the 

PDF of 11 NTHA results for each suite. This line is used for 

Bayesian updating of the model. This line is utilized in 

practice for structural assessment with no post-processing of 

the results. While the mean of responses in each suite is 

similar, the PDF is highly sensitive to ground motion 

selection, as shown. The blue solid line represents the results 

after applying the Bayesian model based on the LRSA 

results as informative prior distributions and Bayesian 

updating the model with a limited number of NTHAs. The 

thick red line indicates the actual response of the structure or 

NTHAs based on the 994 GMs available in this study. 
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Fig. 16: Correlation matrix of predictors (for PFA). 

Fig. 15: Correlation matrix of predictors (for MSD). 
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Fig. 17: Comparison of PFA results before and after of implementation of Bayesian model (DBE hazard level)

 

The Bayesian model has greatly improved the outcomes in 

all cases, as can be observed.  

The method's processing time is independent of the building 

and site's parameters, and developing and training the model 

takes roughly 4 hours in all circumstances. As a result, it is 

extremely computationally efficient, and it is particularly 

well-suited to complicated and tall structures. 

A comparison between non-informative prior distributions 

for model parameters and the posterior distributions is 

shown.  

Despite the fact that the vertical axis is drawn 

logarithmically, the posterior distribution diagrams are still 

spike-shaped, showing the model's great predictability, as 

shown in Fig. 19. 

9. Conclusion  

A simplified model was utilized in this research since the 

objective was to investigate the ability to exploit linear 

results to develop an accurate and reliable Bayesian model. 

For other techniques, including Bayesian model averaging, 

inclusion of predictors' nonlinear interaction, and sequential 

Bayesian updating, which can enhance the model's quality 

and robustness, refer to other researches published by the 

authors of this article [13]. Clear results were obtained from 

this research which are briefly summarized below: 

• To develop an accurate PDF of seismic demand 

characteristics, hundreds or even thousands of 

NTHA are necessary, which is nearly impossible to 

achieve in practice. This is especially true in the 

new generation of performance-based design 

methodologies that are primarily concerned with.
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Fig. 18: Comparison of MSD results before and after of implementation of Bayesian model (DBE hazard level) 

• loss estimation. Implementation of the Bayesian 

method, which was based on forming an 

informative prior distribution with LRSA results 

and updating the model with a limited number of 

NTHAs, led to impressive results 

• According to the analysis of a significant number 

of LRSA & NTHA in this research (about 1000) 

and despite the significant difference between 

LRSA & NTHA results, the predictability of LRSA 

results for building a generalized regression 

Bayesian model is very high. This can be assessed 

by examining the final results as well as the very 

high ratio of 95% HDI of priors to posteriors. 

• Using both LRSA & NTHA results nearly led to the 

selection of the same likelihood functions. It seems 

using the log-logistic likelihood function is more 

appropriate for selected demand parameters.  

• It is possible to select the likelihood function 

without presumption based on the Bayesian model 

comparison and only LRSA observations. It was 

demonstrated that the limited number of NTHA 

results is not sufficient for decision-making for 

BMC. 

• Implementation of different diagnostic tests 

indicates the stability and reliability of the 

developed Bayesian model. No disruption was 

observed in any of the chains in any of the unknown 

parameters.  
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Fig. 19: Comparison of prior and posterior distributions 
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