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Abstract:  

This paper introduces a procedure to risk-based optimal design of fluid viscous dampers 

(FVDs). To this end, the exceedance probability of specific performance level during the 

design lifetime as a safety criterion of the entire building is intended to be minimized. This, 

along with the minimization of the total damping coefficient of FVDs as the cost criterion of 

the dissipation system, are the considered objective functions. The damping coefficient of 

FVDs have been considered as design variables and the efficient configurations of damper 

properties over the height of the building have been determined. A multi-objective 

optimization framework using the non-dominated sorting genetic algorithm version II (NSGA-
II) has been employed to solve the optimization problems and determine the set of Pareto 

optimal solutions. Linear and nonlinear FVDs with different capacities have been designed for 

an eight-story shear-type building with bilinear elastic-plastic stiffness behavior under 20 real 

earthquakes. The results show that the optimal FVDs reduce the seismic response and fragility 

of the building, while limiting the dampers’ cost.  

 

 

 

 

1. Introduction 

Among the natural hazards, earthquakes pose a threat to 

buildings and bridges and can cause severe losses and 

casualties. In recent years many studies focused on 

mitigating the earthquake consequences by using 

innovative methods. To this end, several novel structural 

protective systems have been proposed and developed to 

the level of practical implementation. The structural 

protective methods can be classified into three main 

categories: (1) Seismic isolation systems, (2) Passive 

energy dissipation systems, and (3) Active and semi-active 

systems. Particularly, passive energy dissipation devices 

have the advantages of not requiring external power 

sources and feasible installation to retrofit the existing 

buildings. 
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The fluid viscous dampers (FVDs) have appeared as a 

highly efficient energy dissipation system in reducing 

structural seismic demands. 

The effectiveness of these passive dampers has been 

demonstrated through different applications such as 

installation in bracing systems, base isolation systems, and 

tuned mass dampers and prompted more attention by 

researchers [1-4] and producers [5,6]. Several design 

methods of FVDs have been developed considering their 

distribution over the height of building and implementation 

costs. De Domenico et al. [7] have presented a brief review 

of the fundamentals of most of these methods. Although 

several methodologies have proposed optimal design of 

FVDs for seismically excited buildings, the key 

shortcoming of these methodologies is that they do not 

explicitly consider the uncertainties in earthquake 

excitation. Thus, they cannot directly control the seismic 

hazard risk and may not always yield a reliable design for 

the dampers. 
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More recent studies have demonstrated the effects of 

application of fluid viscous damper in a probabilistic 

framework [8-13]. Despite the importance of a probabilistic 

approach to design energy dissipation devices, few studies 

have addressed this issue which can be used to mitigate the 

seismic risk of buildings equipped with dampers. Shu et al. 

[14] have designed pendulum tuned mass damper systems 

for a coal-fired power plant building using performance-

based analysis. Different values for the parameters of this 

device have been considered and optimum values have 

been detected such that the direct loss is minimized. Radu 

et al. [15] have designed a tuned inerter damper that was 

installed between the base and first floor of a five-story 

structure. The performance of the system has been defined 

based on the probability distribution function of the top 

story displacement. Altieri et al. [16] have designed viscous 

dampers for a 3-story steel building using an optimization 

technique incorporating constraint on structural 

performance. The damper cost, which depends on the 

damper forces, has been considered as an objective 

function, and the constraint on the probability of 

exceedance of specific performance levels has been taken 

into account. In the light of these studies, designing FVDs 

considering the seismic risk of building as a control 

objective has not been accomplished previously.  

This study proposes a methodology for seismic risk-based 

optimal design of fluid viscous dampers for seismically 

excited buildings. To this end, the exceedance probability 

of the specific performance level during the design lifetime 

has been evaluated according to the performance-based 

earthquake engineering (PBEE) framework [17] and 

defined as one objective function. Further, the total 

damping coefficient of FVDs as the cost criterion of the 

dissipation system has also been considered as an alternate 

objective function. Since these objective functions conflict 

with each other, an efficient multi-objective optimization 

procedure has been employed to design linear and 

nonlinear FVDs for a sample case study building.  

The rest of the paper is organized as follows: in section 2, 

the formulation of PBEE framework to quantify the seismic 

risk of the seismically excited structure is described; in 

section 3, the equations of motion of the nonlinear structure 

equipped with fluid viscous dampers is presented; in 

section 4, the risk-based optimal design methodology using 

multi-objective optimization is explained; in section 5, the 

proposed method is applied to design fluid viscous dampers 

for a case study consisting of a nonlinear eight-story shear 

building frame, followed by discussion and conclusion. 

 

2. Risk formulation based on PEER PBEE 

framework 

The Performance-based earthquake engineering, PBEE, 

framework is a general probabilistic approach for the 

performance assessment and design of structures subjected 

to seismic hazards which has been proposed at the PEER 

center [17]. The framework incorporates the following four 

probabilistic analysis steps: (1) probabilistic seismic 

hazards analysis, which characterizes the uncertainty of the 

input excitation intensity measures (IMs); (2) probabilistic 

seismic demand analysis; which represents uncertain 

estimates of engineering demand parameters (EDPs) 

conditional on the IMs (3); probabilistic seismic damage 

analysis, denoting the uncertainty of damage measures 

(DMs) or damage states; and (4) probabilistic seismic loss 

analysis, which presents the uncertainty of the decision 

variable (DV). The PEER framework equation expresses 

the mean annual frequency (MAF) of exceedance of a 

decision variable as: 

 

( ) ( ). ( )

. ( ) . ( )

dm edp im
dv G dv dm dG dm edp

dG edp im d im





=   
 (1) 

 

For IM, EDP, DM, and DV, upper case letters signify 

random variables and lower case letters denote specific 

realizations. G(x│y)=P(x<X│Y=y) denotes the 

complementary (joint) cumulative distribution function of 

variable X conditional on Y=y. λ(im) denotes the MAF of 

an intensity measure which can be described by Eq. (2) by 

assuming that the occurrence of significant earthquakes 

follows a Poisson process. 

 

0

( ) 1 exp[ ( / ) ] ( / )

(at large values of IM)

k k

k

IM IM u IM u

k IM

 − −

−

= − − 

=
 (2) 

 

in which u is the scale parameter, k is shape parameter, and 

constant k0=uk. The performance-based procedure 

developed in this study requires the MAF of exceedance of 

specified damage states. Thus, only the first three steps of 

the framework are involved. This MAF can be expressed 

as: 

 

)(.)(.)()( imdimedpdGedpdmGdm
edp im

  =  (3) 

 

An important intermediate result of PBEE framework is the 

probability of exceedance of the considered damage states 

conditional on the intensity measure which is commonly 

called the fragility curve in the literature and is as follows: 

 

)().()( imedpdGedpdmGimdmP
edp=  (4) 
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Finally, assuming that a Poisson process can describe the 

failure occurrence of the system, the value of failure 

probability during the design lifetime, t, can be evaluated 

as: 

 

]).(exp[1, tdmP tf −−=  (5) 

 

This failure probability has been considered as an objective 

function to design FVDs. Actually, the first three 

performance evaluation steps of the PEER framework is 

required in this procedure. However, the life cycle cost 

could also be considered as the design objective which 

entails taking into account the full performance evaluation 

steps of the PEER framework. 

 

2.1 Closed-form solution 

To estimate the uncertain EDP, a relation between intensity 

measure and seismic demand of the structure should be 

established. In this regard, incremental dynamic analysis is 

a common approach that is based on scaling the set of 

ground motions to a specific IM and increasing them until 

the desired damage state is reached. However, this method 

may alter the frequency content of the earthquake records 

due to scaling. This limitation could be resolved by using 

the power model proposed by Cornell et al. [18] according 

to Equation (6) which is widely employed in many 

performance assessment studies concerning the structural 

control systems similar to those considered in this work 

[19-21]. In this procedure, only, the dynamic analysis at the 

original scale of earthquakes is required and therefore, a 

drastic reduction in computational costs is produced. 

 
bIMaEDP .=  (6) 

 

where a and b are model constants that could be evaluated 

by performing a linear regression analysis of ln(EDP) on 

ln(IM). The demand uncertainty or dispersion is obtained 

by: 

 

)1ln( 2SIMEDP +=  (7) 

in which S2 is the standard error as: 

 

( ) 2/)ln()ln(2 −−= nedpedpS pi  (8) 

 

where edpi and edpp are the observed and predicted demand 

of the structure, respectively, and n is the number of 

response sample data. Under the assumption that the 

seismic demand, EDP, and the capacity of the structural 

system, DM, follow the lognormal distribution, Equations 

(3) and (4) can be reformulated as follows [18]: 
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in which IMDM is the corresponding ground motion 

intensities to the DM based on inverting the power model 

of Equation (6) [18]. Φ denotes the standard normal 

cumulative distribution function. The damage measure 

terms, DM and βDM, depend on the performance level of 

interest and have been addressed in the next sub-section. 

 

2.2 Capacity and uncertainty of damage states 

The evaluation of the reliability of a structure equipped 

with a control system requires selecting proper damage 

states that are related to the performance of the entire 

structure. Regarding the whole structure, the inter-story 

drift ratio (IDR) has been adopted as a global EDP which 

correlates with the damage of structural components as a 

safety criterion. Analogous to FEMA 356 [22], capacity 

thresholds for inter-story drift ratio associated with steel 

moment frames have been selected as the values of 0.7%, 

2.5% and 5% related to Immediate Occupancy (IO), Life 

Safety (LS) and Collapse Prevention (CP) performance 

levels, respectively. It is noteworthy that to explain that for 

the procedure of performance-based design of the FVDs, 

the IO performance level has been considered for the case 

study of this research as an example. Also, this procedure 

could be applied for other performance levels, if satisfying 

another performance level is necessary. The capacity 

uncertainty has been selected as the value of 0.25 for IO 

performance level following [21].  

 
Fig. 1: Schematic of FVD-structure model 



  M. Mohebbi and S. Bakhshinezhad                                                  Numerical Methods in Civil Engineering, 6-2 (2021) 14-24 

17 

 

 

3. Motion equation of the structure equipped 

with FVD 

Fig. 1 schematically shows the N story shear building 

structure equipped with FVDs installed between all 

successive floors. The dampers are installed in a horizontal 

position by chevron bracings. In this figure, m and c are the 

mass and damping coefficients of the building. cd is the 

damping coefficient of the damper and x is the 

displacement with respect to the ground. 

 

 

The equation of motion of this shear-type building with 

nonlinear behaviour under ground acceleration 𝑥̈𝑔 is as 

follows: 

( ) ( )( ) ( ) ( ) ( ) ( )D S d gt t t t x t+ + = +Mx f x f x Df Me&& & &&  (11) 

 

where 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑁]
𝑇, 𝐱̇ = [𝑥̇1, 𝑥̇2,… , 𝑥̇𝑁]

𝑇, and 𝐱̈ =

[𝑥̈1, 𝑥̈2,… , 𝑥̈𝑁]
𝑇 are respectively the displacement, velocity, 

and acceleration vectors with respect to the ground. The 

vector 𝐞 = [−1,… , −1]𝑇 denotes the ground acceleration-

mass transformation vector. The diagonal mass matrix is 

as: 

1

2

0 0

0 0

0 0 N

m

m

m

 
 
 =
 
 
 

M

L

L

M M O M

L

 (12) 

 
By assuming a linear behaviour for the force-velocity of 

the building, the damping force vector could be written as: 

( )( ) ( )D t t=f x Cx& &  (13) 

where the damping matrix of the structure, C, is defined as: 

1 2 2

2 2 3

1

0 0

0 0

0 0

0 0
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N N
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c c c

c c c

c c
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 
− + 

 =
 

+ − 
 − 

C

L

L

M M O M M

L

L

 (14) 

 
in which ci denotes the damping coefficient of the i-th 

story. The restoring force vector, FS, is a function of 

displacement response of the building. It should be noted 

that the building even controlled by energy dissipation 

devices may undergo nonlinear behaviour under seismic 

excitations and thus the nonlinearity of the structural 

behaviour should be accounted for. To this end, the force-

displacement relationship should be defined to evaluate the 

restoring force at each time step. It is assumed that the 

structural stiffness model is consistent on bilinear 

hysteretic behaviour as shown in Fig. 2, which is described 

by the elastic stiffness KE, post-elastic stiffness KPE, and 

yielding drift uy.  

D is the location matrix of FVDs assuming to be installed 

in a horizontal position in all stories as: 

 

1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

− 
 

− 
 =
 

− 
 − 

D

L

L

M O O M M

O

L

 (15) 

 

 
Fig. 2: Bilinear elastic-plastic stiffness model 

 

𝐟𝑑 = [𝑓𝑑,1, 𝑓𝑑,2, … , 𝑓𝑑,𝑁]
𝑇 is the vector of FVDs control 

force applied to the successive floors of the structures 

which can be expressed as follows: 

, ,( ) ( ) 1,2,...,n
d i d i if t c v t i N= =  (16) 

in which vi is the relative velocity of the two ends of the i-

th damper and cd,i is the damping coefficient of the i-th 

damper. The velocity exponent of the damper is shown by 

n and relates to the passing quality of the fluid. The 

velocity exponent is usually between 0.15 and 1 in 

structural engineering applications [3], and describes the 

linear or nonlinear behaviour of FVDs. The linear FVD has 

the velocity exponent equal to n=1, while the nonlinear 

FVD has the velocity exponent lower than one (n<1). In 

this study, FVDs with both linear and nonlinear behaviour 

have been designed for the building. For the nonlinear 

FVDs different values of n=0.6, 0.3 and 0.15 have been 

considered. It should be noted that increasing the 

nonlinearity level of FVDs causes a remarkable reduction 

in damper force, and thus in manufacturing cost. 

 

4. Risk-based optimal design method 

This section describes the proposed method to risk-based 

optimal design of the FVDs using an optimization 
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technique. This method incorporates two main phases 

including the risk analysis to determine the exceedance 

probability of specific performance level during lifetime 

(inner loop) and optimization process (outer loop). 

 

4.1 Risk analysis based on PBEE framework 

The direct solution of the risk-based optimal design 

problem entails performing a full performance analysis for 

each individual in optimization iterations. This process has 

been described in the following steps and Fig. 3. 

Step 1: Select a set of real probable earthquake records 

with different characteristics for the region that the 

structure is located in 

Step 2: Consider the site hazard properties including shape 

parameter, k, and scale parameter, k0, according to 

Equation (2) for the site of interest. 

Step 3: Conduct nonlinear dynamic analysis for the 

structure equipped with FVD system and determine 

maximum IDR subjected to each earthquake by solving the 

equation of motion of the structure presented in Equation 

(11).  

Step 4: Perform regression analysis to determine the 

parameters of the power model, a and b, according to 

Equation (6) and calculate demand uncertainties, 𝛽𝐼𝐷𝑅│𝐼𝑀 , 

according to Equation (7). 

Step 5: Consider the capacity thresholds and the related 

uncertainties for the IDR damage state according to sub-

section 2.2. 

Step 6: Calculate the probability of exceedance of the 

specific performance level during the design lifetime based 

on Equation (5). 

Uncertain demand (edp)

Multiple input earthquakes 
recommended for the site

Structural model

IDR demand

Uncertain capacity

Failure probability during design lifetime

Fig. 3: Description of the subset risk analysis of risk-based 

optimal design method 

It should be noted that the maximum IDR has been 

employed to risk-based optimal design in this paper 

following FEMA 356 [22] guidelines. Moreover, the 

maximum absolute acceleration of the building as a 

criterion of occupants’ convenience and safety of non-

structural components has been considered for risk-based 

assessment of the controlled buildings previously [23]. 

However, to focus on the main subject of this research 

which has been risk-based optimal design of FVDs, in this 

paper the maximum IDR has been used as design criterion 

and the performance evaluation considering absolute 

acceleration has been neglected in the present work, while 

this limitation could be resolved in further studies by 

considering both the maximum IDR and absolute 

acceleration in risk-based design procedure. 

 

4.2 Optimization process 

In the optimization phase, the probability of exceedance of 

the specific performance level during the design lifetime 

has been used as the objective function to be minimized. 

Indeed, the probabilistic performance of the structure is 

involved directly in design process of the FVD system to 

ensure a reliable design. As mentioned before, the 

maximum IDR response of the entire structure has been 

considered as the performance criterion, which is a safety 

criterion of the structural components. Alongside, 

regarding the cost criterion, the reduction in manufacturing 

cost of the damper has been widely intended in most of the 

previous studies on designing FVD systems. The 

manufacturing cost is a function of damper force and pro-

type testing [24]. Also, the total damping coefficient of 

dampers is an approximate estimate of initial cost of the 

FVDs. This quantity has been considered extensively as the 

objective function or constraint in optimization based 

procedures of designing FVDs in the literature [25, 26]. 

Hence, limiting the total damping coefficient of FVDs can 

reduce the cost of the control system and is desired in the 

design process. Therefore, in this paper, the following two 

objective functions have been considered: (1) minimization 

of the exceedance probability of the specific performance 

level during the design lifetime and (2) minimization of the 

total damping coefficient of the FVDs. These objective 

functions for designing FVD system are in conflict with 

each other. Solving such a problem entails the utilization of 

multi-objective optimization, which represents a set of 

optimal solutions known as Pareto front. Generally, the 

multi-objective optimization problem could be defined as: 

* * * *

1 2

1 2

: [ , ,..., ]

: ( ) [ ( ), ( ),..., ( )]

: ( ) 0, 1,2,...,

( ) 0, 1,2,...,

T

n

T

m

i

j

Find X X X

Optimize f f f

Subject to g i q

h j r

=

=

 =

= =

X

f X X X X

X

X

 (17) 

in which, X is the vector of design variables that may have 

several solutions, X*, to optimize the objective functions. f 
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denotes the vector of m objective functions. g and h are 

respectively q inequality and r equality constraints which 

should be satisfied. The multi-objective optimization 

problem for designing the FVDs with the aforementioned 

objective functions and the design variables of dampers’ 

damping coefficients is formulated as follows: 

 

,1 ,2 ,

1 ,

2 ,
1

,min , ,max

: , ,..., ( 1,2,..., )

:

:

d d d i

f t

N

d i
i

d d i d

Find c c c i N

Minimize f P

f c

Subject to c c c

=

=

=

=

 


 (18) 

 

where N is the number of stories and cd,i denotes the 

damping coefficient of the i-th fluid viscous damper. Also, 

cd,min and cd,max are respectively the minimum and maximum 

damping coefficient of the dampers that can be considered 

as construction constraints and are determined by the 

manufacturer. 

 

4.3 Optimization using NSGA-II 

Several metaheuristic algorithms have been introduced to 

solve the optimization problems in the scientific and 

industrial fields [27-29]. Genetic algorithm (GA) [30] is 

one of the most capable methods among several 

optimization methods and is effective for solving nonlinear 

optimization problems even with many design variables. 

This optimization method has been extensively employed 

in the field of civil engineering [31-33] as well as designing 

energy dissipation devices [34-36] and has three main 

operations including selection, crossover, and mutation 

[37].  

A multi-objective optimization problem could be converted 

to single objective problems and could be solved by 

classical optimization methods. However, several runs with 

different adjustments are required. Accordingly, different 

multi-objective optimization algorithms have been 

developed to solve these problems in a single run. The non-

dominated sorting genetic algorithm (NSGA) [38] was 

more efficient in solving such problems. Further, the 

improved versions of this algorithm including NSGA-II 

[39] and NSGA-III [40] have been proposed.  

For the problem at hand with two objective functions and a 

few design variables, the NSGA-II still seems proper and 

has been employed for solving the multi-objective 

optimization problem, as employed for designing 

dissipation devices previously [41]. The proposed multi-

objective optimal design of FVDs based on NSGA-II 

algorithm is shown in Fig. 4. This algorithm incorporates 

nine operations including: Initialization, fitness evaluation, 

non-dominated sorting, crowding distance calculation, 

selection, crossover, mutation, combination, and truncate. 

The readers are recommended to see [41] for more details 

of this algorithm. 

 

Start

Create initial population P of size N-ind 

for design variables (c-d,i)

 Use N-ind set of variables to design

FVD system

f_1=Exceedance probability of the specific 

performance level during the design lifetime

Perform nonlinear dynamic analysis and calculate 

structural responses under each earthquake using Eq . (13)

f_2 =Sum of damping 

coefficients of FVDs

Rank the solutions of each individual based on

non-dominated sorting and crowding distance

Conduct GA operators: Selection, Crossover, Mutation 

to create newborn population Q of size N-new

Combine current and newborn population to 

population R=P+Q of size (N-ind)+(N-new)

Truncate the population to size N-ind based on Rank

Exit condition

Show pareto 

optimal solutions

No

Determine optimal 

individuals on pareto front
Yes

Given multiple

input earthquakes

Conduct risk analysis to determine failure probability 

 

Fig. 4: Flowchart for multi-objective optimal design of FVD 

system based on NSGA-II algorithm 

 

5. Numerical analysis and discussion 

In this section, the methodology of risk-based optimal 

design of FVD systems for nonlinear structures has been 

explained through numerical analysis. The objectives of 

minimization of exceedance probability of the specific 

performance level during the design lifetime and total 

damping coefficient of FVDs have been considered in a bi-

objective optimization problem. The NSGA-II method has 

been utilized to solve the optimization problem and design 

of FVD systems with linear and nonlinear behavior. The 

FVDs installed in each story of an eight-story nonlinear 

shear building frame with bilinear hysteretic model is 

shown in Fig. 2. The structural properties are identical in 

building height. The mass and damping coefficient are 

respectively m=345.6 ton and c=734.3 kN.s/m. The height 

of each story is 3.2 m. The elastic stiffness, post-elastic 

stiffness, and yielding drift are KE=3.404×105 kN/m, 
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KPE=3.404×104 kN/m, and uy=2.4 cm, respectively. The 

fundamental period of the building is T1=1.087 sec 

considering the elastic stiffness. It should be noted that the 

other sources of uncertainties such as building and damper 

properties can affect the probabilistic performance of the 

controlled structure [42]. However, for the preliminary 

design of FVDs only the uncertainty of earthquake 

excitation can be more important in the risk-based optimal 

design method. 

 

 

5.1 Earthquake ground motions set used in this study 

To account for record-to-record variability [43], it is more 

appropriate to select a set of different earthquakes with 

different characteristics for the performance assessment of 

seismic structures. The application of 7 pairs of 

earthquakes would be sufficient to accurately estimate the 

structural responses [44]. A set of 10 pairs of earthquakes 

with the probability occurrence of 10% in 50 years 

proposed for SAC project for Los Angeles area have been 

used for performance analysis. These earthquakes have 

different frequency contents, intensities and duration to 

represent the variability of the seismic source. The 

characteristics of the selected ground motion records have 

been presented in Table 1. Fig. 5 shows the acceleration 

response spectrum of the selected earthquakes and the 

mean spectrum for 5% critical damping. As mentioned in 

sub-section 4.1, the estimation of the exceedance 

probability of a specific performance level requires 

descriptions of the seismic hazard. For the Los Angeles 

area, the region of interest in this study, the shape 

parameter is k=2.69 and the constant is k0=1.66×10-4 [21]. 

 

Table. 1: Selected earthquakes records used in this study 
Earthquake 

code 

Earthquake 

name 

Station 

 

PGA 

(g) 

La01 Imperial Valley-fn El Centro 0.46 

La02 Imperial Valley-fp El Centro 0.68 

La03 Imperial Valley-fn Array #05 0.39 

La04 Imperial Valley-fp Array #05 0.49 

La05 Imperial Valley-fn Array #06 0.30 

La06 Imperial Valley-fp Array #06 0.23 

La07 Landers-fn Barstow 0.42 

La08 Landers-fp Barstow 0.43 

La09 Landers-fn Yermo 0.52 

La10 Landers-fp Yermo 0.36 

La11 Loma Prieta-fn Gilroy 0.67 

La12 Loma Prieta-fp Gilroy 0.97 

La13 Northridge-fn Newhall 0.68 

La14 Northridge-fp Newhall 0.66 

La15 Northridge-fn Rinaldi RS 0.53 

La16 Northridge-fp Rinaldi RS 0.58 

La17 Northridge-fn Sylmar 0.57 

La18 Northridge-fp Sylmar 0.82 

La19 North Palm Springs-fn - 1.02 

La20 North Palm Springs-fp - 0.99 

 

 
Fig. 5: Acceleration response spectrum of the selected earthquake 

records and the mean acceleration response spectrum 

 

5.2 Risk-based optimal design of FVD system using 

NSGA-II 

In this section, the fluid viscous dampers with linear and 

nonlinear behaviour installed on successive floors have 

been designed for the nonlinear building through solving 

multi-objective optimization problems using NSGA-II 

method. The probability of exceedance of different 

performance levels during the lifetime of the uncontrolled 

reference building are about 67.03%, 2.89% and 0.34% 

respectively at IO, LS and CP performance levels. As this 

value is remarkable only for IO performance level here, it 

has been focused on FVD design for this performance 

level. Note that the minimum and maximum damping 

coefficient of the dampers, cd,min and cd,max, should be 

selected considering the FVDs manufacturers’ constraints. 

These values have been selected equal to 0 and 20,000 

kN.s/m according to Moradpour and Dehestani [3]. The 

optimization algorithm is adjusted such that it searches for 

design variables within this pre-defined boundary and 

therefore satisfies the constraints in Equation (18). For 

different values of velocity exponent regarding linear (n=1) 

and nonlinear (n=0.6, 0.3, 0.15) FVDs, the optimization 

problem defined in Equation (18) has been solved 

frequently by NSGA-II. The parameters of the NSGA-II 

have been selected as reported in Table 2. To ensure the 

accuracy of the optimization method, at least four different 

simulation runs of NSGA-II with different initial random 

populations have been performed for the optimization 

problems. 

The Pareto optimal solutions related to linear FVDs with 

the maximum force capacity of Fmax=1000 kN for four 

different simulation runs are shown in Fig. 6. It is observed 

that the Pareto fronts of different runs stand almost close to 



  M. Mohebbi and S. Bakhshinezhad                                                  Numerical Methods in Civil Engineering, 6-2 (2021) 14-24 

21 

 

each other, which offers several optimal solutions for the 

FVD system. Compared with the uncontrolled case, the 

optimal FVDs have shown the capability to reduce the 

exceedance probability of the IO performance level during 

the lifetime close to 14%, as compared to 67% for the 

uncontrolled building. 

 
Fig. 6: Pareto fronts of linear FVDs with Fmax=1000 kN  

 

Table. 2: Parameters of NSGA-II method 
Nind Number of individuals in each generation 25 

NNew Number of newborns 18 

mr Mutation rate 0.02 

Nmax Maximum number of generation 50 

Fig. 7 shows the Pareto fronts correspond to linear FVDs 

with velocity exponent n=1as well as nonlinear FVDs with 

velocity exponent n=0.6, 0.3, and 0.15 with the maximum 

force capacity of Fmax=1000 kN. It should be noted that the 

damping coefficients for different velocity exponents have 

different units and are not directly comparable. However, it 

seems that nonlinear FVDs can also reduce seismic hazard 

risk of the building significantly. In particular, linear FVDs 

with velocity exponent of n=0.3 decreased the exceedance 

probability of the IO performance level during the lifetime 

close to 12%. As an example, linear FVDs require a total 

damping coefficient of 6.75×104 kN(s/m) to provide an 

exceedance probability of 15%, while the nonlinear FVDs 

with n=0.3 enables this level of risk enhancement by total 

damping coefficient of 2×104 kN(s/m)n. 

 
Fig. 7: Pareto fronts of linear and nonlinear FVDs  

Along with the total damping coefficient, the damper force 

capacity heavily affects the manufacturing cost of the 

FVDs and has been defined as design objective in some 

studies [16]. In this research, although the maximum 

damper force has not directly minimized, some pre-defined 

values have been considered for this property. The pre-

defined values of maximum damper force includes 

Fmax=500, 750, 1000, and 1500 kN. The proposed method 

has been applied to design FVDs with different capacities 

and the resulted Pareto fronts for linear FVDs are 

illustrated in Fig. 8. It is observed that higher damper force 

capacity has led to more mitigation in risk of the building.  

5.3 Probabilistic performance of FVDs designed by 

the risk-based optimal design method 

In this section, the probabilistic performance of the linear 

and nonlinear FVDs designed by the risk-based optimal 

design method has been assessed and compared with that 

of uncontrolled structure. As shown in the previous section, 

the Pareto fronts contain several optimal solutions for the 

designed FVDs. In this section, one optimal solution has 

been selected for each of the linear and nonlinear FVDs 

and has been used to control the structural responses. As a 

sample, the solution related to the total damping coefficient 

of 3×104 kN.s/m is selected. This total damping coefficient 

corresponds to the exceedance probability of the IO 

performance level during the lifetime as approximately 

equal to 22.4%, 15.8%, and 12.6% respectively for linear 

FVD (n=1), and nonlinear FVD with n=0.6 and n=0.3, as 

can be seen in Fig. 7. Table 3 reports the optimal damping 

coefficients of each floor for linear and nonlinear FVDs. 

 

Table. 3: Optimal damping coefficients of linear and nonlinear 

FVDs 

Story 

number 

Optimal damping coefficients kN(s/m)n 

n=1 n=0.6 n=0.3 

1 9370.4 7967.2 10020.4 

2 4360.6 4670.9 3314.6 

3 5479.6 5916.9 3265.7 
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4 2120.0 3006.3 3148.04 

5 5344.5 3221.0 4094.4 

6 2541.1 2863.6 3000.8 

7 796.2 443.0 3853.0 

8 536.4 1284.8 554.2 

For the sake of comparison, a simplified procedure 

proposed in FEMA 356 [22] and discussed in [7] has been 

used to design FVDs with uniform distribution over the 

building’s height. To this end, the total damping of 3×104 

kN.s/m, similar to those selected for the optimal dampers, 

has been considered for the uniform distributed (UD) 

FVDs. The mean responses under 20 earthquakes for the 

building equipped with optimal FVDs and UD FVDs have 

been compared with that of uncontrolled building in Table 

4. Also, the reductions of these responses with respect to 

the uncontrolled building have been compared in this table. 

It seems that the optimal FVDs have the capability of 

reducing the maximum IDR and absolute acceleration 

responses with respect to the uncontrolled structure. Also, 

from the results it is clear that using optimal FVDs has 

resulted in a slightly greater reduction in the maximum 

IDR compared to UD FVDs. The IDR response reduction 

as a safety criterion is enhanced by increasing the 

nonlinearity level of the FVDs. However, this effect for 

acceleration response is vice versa and the linear FVD has 

reduced the acceleration response more effectively. It 

should be noted that this study has focused on IDR demand 

by following FEMA356 [22] guidelines and other seismic 

demands such as acceleration as a convenience criterion, 

can be of interest in further studies. The fragility curves of 

the uncontrolled building as well as the building equipped 

with linear and nonlinear optimal and UD FVDs have been 

developed using Equation (10) and compared in Fig. 9. It 

can be observed that the optimal FVDs can reasonably 

reduce the seismic fragility of the building. The FVDs with 

nonlinear behaviour (n=0.3) have mitigated the fragility 

slightly more than the other FVDs.  

 
Fig. 8: Pareto fronts of the linear FVDs with different force 

capacities 

 
Table 4: The mean responses under 20 earthquakes 

Mechanism 
Maximum 

IDR 

Maximum 

absolute 

acceleration 

(cm/s2) 

Reduction with 

respect to 

uncontrolled (%) 

IDR acceleration 

Uncontrolled 0.0237 1191 - - 

Linear FVD 

(n=1) 

0.0192 896 19 25 

Nonlinear 

FVD (n=0.6) 

0.0194 921 18 23 

Nonlinear 

FVD (n=0.3) 

0.0185 1120 22 6 

UD FVD 

(n=1) 

0.020 841 16 32 

 

 
Fig. 9: Fragility curves of the uncontrolled building and the 

building equipped with linear and nonlinear optimal FVDs 

 

6. Conclusions 

In this study, the aim is to present a methodology for risk-

based optimal design of fluid viscous damper for 

seismically excited nonlinear structures to account for 

earthquake uncertainty. The exceedance probability of the 

specific performance level during the design lifetime as a 

safety criterion as well as the total damping coefficient of 

FVDs as the cost criterion have been considered as 

objective functions. The damping coefficients of FVDs 

over the height of the building have been considered as 

design variables. A multi-objective optimization problem 

has been defined and solved using non-dominated sorting 

genetic algorithm version II (NSGA-II). For illustration, 

the method has been applied to design linear and nonlinear 

FVDs for an eight-story shear-type building with hysteretic 

bilinear elastic-plastic behaviour subjected to 20 real 

earthquakes. The results of numerical simulations have 

shown that the capability and simplicity of the applied 

method which provides several optimal solutions 

minimizes both the seismic hazard risk of the building and 

dampers’ costs simultaneously throughout the Pareto 
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fronts. It has been shown that the optimal FVDs can reduce 

the exceedance probability of the performance level during 

the lifetime to almost 12%, which was conversely 67% for 

the uncontrolled building. Comparing the linear and 

nonlinear FVDs shows that nonlinear FVDs require 

approximately lower total damping coefficient than linear 

FVDs to limit the exceedance probability of the 

performance level during the lifetime. As an example, 

nonlinear FVDs with velocity exponent n=0.3 require the 

total damping coefficient of 2×104 kN(s/m)n to limit the 

exceedance probability of IO performance level to 15%, 

while the linear FVDs need the total damping coefficient of 

6.75×104 kN(s/m) to this level of seismic risk 

enhancement. Besides, the probabilistic performance of the 

designed linear and nonlinear FVDs have been assessed 

and compared through developing fragility curves. It is 

observed that the designed FVD systems can reasonably 

enhance the seismic fragility with respect to the 

uncontrolled building. 

 

References: 
 

[1] Shariati A, Kamgar R, Rahgozar R. Optimum layout nonlinear 

fluid viscous damper for improvement the response of tall 

buildings, Int J Optim Civil Eng 2020; 10(3): 411-431. 

[2] Hashemi MR, Vahdani R, Gerami M, Kheyrodin A. Viscous 

damper placement optimization in concrete structures using 

colliding bodies algorithm and story damage index, Int J 

Optim Civil Eng 2020; 10(1): 57-70. 

[3] Moradpour S, Dehestani M. Optimal DDBD procedure for 

designing steel structures with nonlinear fluid viscous 

dampers, Struct 2019; 22: 154-174. 

[4] Idels O, Lavan O. Optimization-based seismic design of steel 

moment-resisting frames with nonlinear viscous dampers, 

Struct Control Health Monit 2020; 28(1): e2655. 

[5] Taylor, Taylor Devices Inc, https://www.taylordevices.com/. 

[6] Tensa, Tensa Gruppo De Eccher, https://www.tensacciai.it/ 

[7] De Domenico, Ricciardi G, Takewaki I. Design strategies of 

viscous dampers for seismic protection of building structures: 

A review, Soil Dyn Earthq Eng 2019; 118(Mar) 144-165. 

[8] Di paola M, La Mendola L, Navarra G. Stochastic seismic 

analysis of structures with nonlinear viscous dampers, J Struct 

Eng 2007; 133(10): 1475-1478. 

[9] Tubaldi E, Barbato M, DallAsta A. Performance-based 

seismic risk assessment for buildings equipped with linear and 

nonlinear viscous dampers, Eng Struct 2014; 78: 90-99. 

[10] Dall’Asta A, Tubaldi E, Ragni L. Influence of the nonlinear 

behavior of viscous dampers on the seismic demand hazard of 

building frames, Earthq Eng Struct Dyn 2016; 45(1): 149-169. 

[11] Guneyisi EM, Altay G. Seismic fragility assessment of 

effectiveness of viscous dampers in R/C buildings under 

scenario earthquakes, Struct Saf 2008; 30(5): 461-480. 

[12] Lavan O, Avishur M. Seismic behavior of viscously damped 

yielding frames under structural and damping uncertainties, 

Bull Earthq Eng 2013; 11(6): 2309-2332. 

[13] Dall’Asta A, Scozzese F, Ragni L, Tubaldi E. Effect of the 

damper property variability on the seismic reliability of 

systems equipped with viscous dampers. Bull Earthq Eng 

2017; 15: 5025-5053. 

[14] Shu Z, Li S, Sun X, He M. Performance-based seismic design 

of a pendulum tuned mass damper system, J Earthq Eng 2019; 

23(2): 334-355. 

[15] Radu A, Lazar IF, Neild SA. Performance-based seismic 

design of tuned inerter dampers, Struct Control Health Monit 

2019; 26(5): e2346. 

[16] Altieri D, Tubaldi E, Angelis MD, Patelli E, Dall’Asta A. 

Reliability-based optimal design of nonlinear viscous dampers 

for the seismic protection of structural systems, Bull Earthq 

Eng 2018; 16(2): 963-982. 

[17] Kiureghian AD. Non-ergodicity and PEER's framework 

formula, Earthq Eng Struct Dynamics 2005; 34(13): 1643-

1652. 

[18] Cornell CA, Jalayer F, Hamburger RO, Foutch DA. 

Probabilistic basis for 2000 SAC federal emergency 

management agency steel moment frame guidelines, J Struct 

Eng 2002; 128(4): 526-533. 

[19] Bakhshinezhad S, Mohebbi M. Multiple failure function based 

fragility curves for structures equipped with TMD, Earthq End 

Eng Vib 2021; 20(2): 471-482. 

[20] Bakhshinezhad S, Mohebbi M. Fragility curves for structures 

equipped with optimal SATMDs, Int J Optim Civil Eng 2019; 

9(3): 437-455. 

[21] Ellingwood BR, Kinali K. Quantifying and communicating 

uncertainty in seismic risk assessment, Struct Saf 2009; 31(2): 

179-187. 

[22] FEMA 356. Prestandard and commentary for the seismic 

rehabilitation of buildings prepared by the American Society 

of Civil Engineers for the Federal Emergency Management 

Agency, Washington, D.C, 2000. 

[23] Mohebbi M, Bakhshinezhad S. Multiple performance criteria-

based risk assessment for structures equipped with MR 

dampers, Earthq Struct 2021; 20(5): 495-512. 

[24] Pollini N, Lavan O, Amir O. Optimization-based minimum-

cost seismic retrofitting of hysteretic frames with nonlinear 

fluid viscous dampers, Earth Eng Struct Dyn 2018; 47(15): 

2985–3005. 

[25] De Domenico D, Ricciardi G. Earthquake protection of 

structures with nonlinear viscous dampers optimized through 

an energy-based stochastic approach, Eng Struct 2019; 179: 

523-539. 

[26] Aydin E, Öztürk B, Dutkiewicz M. Analysis of efficiency of 

passive dampers in multistorey buildings, J Sound Vib 2019; 

439: 17-28. 

[27] Shabani A, Asgarian B, Salido M. Search and rescue 

optimization algorithm for size optimization of truss structures 

with discrete variables, Int J Numer Methods Civil Eng 2019; 

3(3): 28-39. 

[28] Shabani A, Asgarian B, Salido M, Gharebaghi SA. Search and 

rescue optimization algorithm: A new optimization method for 

solving constrained engineering optimization problems, Expert 

Systems with Applications 2020; 161: 113698. 

[29] Shabani A, Asgarian B, Salido M, Gharebaghi SA, Salido 

MA, Giret A. A new optimization algorithm based on search 

https://www.taylordevices.com/
https://www.tensacciai.it/


M. Mohebbi and S. Bakhshinezhad                                                  Numerical Methods in Civil Engineering, 6-2 (2021) 14-24 
 

24 

 

and rescue operations, Mathematical Problems in Engineering 

2019. 

[30] Holland JH. Adaptation in Natural and Artificial Systems, Ann 

Arbor: The University of Michigan Press, 1975. 

[31] Moradi M, Bagherieh AR, Esfahani MR. Damage and 

plasticity of conventional and high-strength concrete part1: 

statistical optimization using genetic algorithm, Int J Optim 

Civil Eng 2018; 8(1): 77-99. 

[32] Gholizadeh S, Kamyab R, Dadashi H. Performance-based 

design optimization of steel moment frames, Int J Optim Civil 

Eng 2013; 3(2): 327-43. 

[33] Biabani Hamedani K, Kalatjari VR. Structural system 

reliability-based optimization of truss structures using genetic 

algorithm, Int J Optim Civil Eng 2018; 8(4): 565-86. 

[34] Mohebbi M, Moradpour S, Ghanbarpour Y. Improving the 

seismic behavior of nonlinear steel structures using optimal 

MTMDs, Int J Optim Civil Eng 2014; 4(1): 137-50. 

[35] Mohebbi M, Bagherkhani A. Optimal design of Magneto-

Rheological Dampers, Int J Optim Civil Eng 2014; 4(3): 361-

80. 

[36] Mohebbi M, Dadkhah H. Optimal smart isolation system for 

multiple earthquakes, Int J Optim Civil Eng 2019; 9(1): 19-37. 

[37] Goldberg DE. Genetic Algorithms in Search, Optimization and 

Machine Learning, Reading MA: Addison-Wesley, 1989. 

[38] Srinivas N, Deb K. Multiobjective optimization using 

nondominated sorting in genetic algorithms, Evol Comput 

1994; 2(3): 221-248. 

[39] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist 

multiobjective genetic algorithm: NSGA-II, IEEE T Evolut 

Comput 2002; 6(2): 182-197. 

[40] Deb K, Jain H. An evolutionary many-objective optimization 

algorithm using reference-point-based nondominated sorting 

approach, Part I: Solving problems with box constraints, IEEE 

T Evolut Comput 2014; 18(4): 577-601. 

[41] Bakhshinezhad S, Mohebbi M. Multi-objective optimal design 

of semi-active fluid viscous dampers for nonlinear structures 

using NSGA-II, Struct 2020; 24: 678-689. 

[42] Bakhshinezhad S, Mohebbi M. Multiple failure criteria-based 

fragility curves for structures equipped with SATMDs, Earthq 

Struct 2019; 17(5): 463-475. 

[43] Iervolino I, Cornell CA. Record selection for nonlinear seismic 

analysis of structures, Earthq Spectra 2005; 21(3): 685-713. 

[44] Kiani J, Camp C, Pezeshk S. On the number of required 

response history analyses, Bull Earthq Eng 2018; 16: 5195-

5226. 

 

 This article is an open-access article 
distributed under the terms and 
conditions of the Creative Commons 
Attribution (CC-BY) license. 

 


