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Abstract: 

This paper investigated the sensitivity of the seismic performance of quay wall system to changes in 

the modulus of elasticity of the body concrete Monte Carlo probabilistic analysis, which is a new 

method for parametric study and sensitivity analysis. Monte Carlo method presents an 

appropriate solution to consider a specified range for various parameters effective in 

analyzing. The ANSYS software which is based on finite element method is applied for 

analysis considering fluid-structure interaction effect. In the uncertainty analysis, modulus of 

elasticity of the quay wall body concrete is a parameter indicating the stiffness and strength of 

body in design of concrete structures and has been selected as input variable parameter. 

Additionally, the maximum displacement of the crest and the maximum tensile principal stress 

in critical point of the body has been selected as output variables. The model is analyzed in 

time domain by applying the horizontal and vertical components of El Centro earthquake. 

Finally, the effect of the modulus of elasticity on the maximum responses at each stage is 

shown as sensitivity curves. According to the results, an optimal value is obtained for the 

modulus of elasticity of quay wall concrete to ensure system safety.  

1. Introduction 

One of the structures used to protect beaches are quay 

walls. A number of researchers have already studied the 

seismic behavior of gravity quay walls. For example, 

Madabhushi and Zeng (1998) numerically studied the 

seismic response of gravity quay walls [1].   

Dynamic behavior of caisson type quay walls was studied 

by Kuwano et al. (1999). Parameters such as the width and 

the unit weight of the quay wall and the magnitude of the 

input excitation were examined. According to their results, 

with increase in the quay wall width and its unit weight, a 

significant reduction in wall tilting and horizontal 

displacement can be achieved [2]. Chen (1995) and Lee et 

al. (1999) conducted studies on effects of earthquakes on 

marine structures and quay walls. In their studies they 

failed to exactly incorporate the interaction effects [3-4]. 

Gharabaghi et al. (2007) used a finite element modelling 

approach to simulate the dynamic behaviour of gravity 
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Gharabaghi et al. (2007) used a finite element modelling 

approach to simulate the dynamic behaviour of gravity 

quay-walls during earthquakes. They reported that the 

structure-fluid interaction had negligible effects on the wall 

seismic response [5].  

One of the new techniques considered in design is based on 

the possibilities and a variable range for design parameters. 

Similarly, one important aspect of performance-based 

earthquake engineering is an accurate estimate of seismic 

response and structural capacity [6]. 

There are two major sources of uncertainty in seismic 

performance of the structure: the uncertainties associated 

with randomness and physical uncertainties caused by 

modeling assumptions, deletions or existing errors [7]. 

Adequate understanding of responses expected from the 

structure can be influential on the probabilistic analysis 

regarding the structure of the uncertainty [8]. Calculating 

different types of seismic performance, given the physical 

uncertainty, commonly involves the use of safety factors or 

standard dispersion criteria [9]. 

A very robust method, given both sources of uncertainty in 

earthquake engineering, is probabilistic analysis using 

Monte Carlo simulation [10]. Several studies have been 
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conducted on this type of analysis. Carvajal et al. (2009) 

proposed a probabilistic analysis for assessment of 

hydraulic load and shear strength acting on some hydraulic 

structures [11]. Altarejos-Garcia et al. (2011) conducted a 

study to validate this analysis on a series of hydraulic 

structures under hydraulic loading and estimate their 

probability of failure as a case study [12]. Calabrese and 

Lai (2016) presented sensitivity analysis of the seismic 

response of gravity quay walls, wherein the effects of 

inherent variations of ground motions and geotechnical 

quantities are investigated. Results showed that the 

uncertainties associated with the seismic input, i.e. intensity 

level and ground motion definition, are the most relevant 

ones. Then, there are the effects of the geotechnical 

parameters, the largest of which is given by the friction 

angle of the backfill and foundation soil shear modulus 

[13]. 

In the field of probabilistic method application in hydraulic 

structures analysis, Pasbani Khiavi (2017) investigated the 

influence of concrete stiffness on the seismic performance 

of concrete gravity dams [14]. Also, Pasbani Khiavi et al. 

(2020) simulated the effect of reservoir length on seismic 

behavior of concrete gravity dams. The Monte Carlo 

simulation was used in the sensitivity analysis using 

probabilistic model [15]. 

In this research, the Monte Carlo method is used to study 

the changes in modulus of elasticity parameter on seismic 

behavior of quay wall model and to optimize the dynamic 

performance. A key feature of the Monte Carlo simulation 

is that, sampling points are located in the space of random 

input variables. The Monte Carlo simulation produces a 

random sample of N points for each input variable and 

specifies the corresponding result for each of the N values. 

Then it processes and displays the results as standard 

deviations, sensitivity, and probability density curves.  

This paper presents the Monte Carlo method as an effective 

tool for optimizing and designing the uncertainty space by 

FE-ANSYS. ANSYS is a software program based on the 

finite element method and is used to give more accurate 

results for complicated geometries. In this method, the 

geometry is divided into small parts and the boundary 

conditions are applied. Finally, the results are obtained for 

each node or element.  

 

2. Governing Equation 

In this section, structural and hydrodynamic considerations 

are described. Fluid is considered as non-viscous and 

uncompressible, with minor displacement, whereas, quay 

wall and foundation are considered as solid and elastic with 

linear behavior of materials. 

Considering the behavior and geometry of the quay wall 

system, the finite element model is assumed as two-

dimensional and the plane stress model is used for the quay 

wall body elements. 

Also, the main purpose of study is to present the probabilistic 

model application in seismic analysis and optimization of the 

quay wall model. Due to the high computational effort in this 

field, the linear behavior is assumed for the body. The results 

can be generalized to nonlinear behavior.  

 

2. 1 Fluid equation 

In problems related to the acoustic interaction between 

structure and fluid, equation of the structure needs to be 

considered together with Navier-Stokes, momentum and 

continuity equations of the fluid. Assuming a non- viscous 

and compressible fluid with small displacements, 

continuity and momentum equation are summarized to 

wave equation. Furthermore, applied pressure on the 

structure from fluid at the interface is considered to form 

the interaction matrix. The hydrodynamic pressure 

equation will be (Helmholtz equation) [16]: 

1

𝐶2

𝜕2𝑃

𝜕𝑡2 − 𝛻2𝑃 = 0                                                       (1) 

 In above equation, 𝐶 is velocity of sound in fluid, 𝑃 is 

hydrodynamic pressure, and t  is time.  

  

2.2 Finite element formulation of governing equations 

The governing equations corresponding to the fluid-

structure system can be presented in the matrix form using 

the finite element method. 

 

2.2.1 Finite element equation of structure 

The equation of discretized structural dynamics can be 

expressed with the structural components.  The addition of 

fluid pressure load on the interface to structural equation, is 

currently performed for describing the fluid-structure 

interaction problem completely. Therefore, the structural 

equation is expressed subsequently as: 

[𝑀𝑒]{𝑢̈𝑒} +  [𝐶𝑒]{𝑢̇𝑒} +  [𝐾𝑒]{𝑢𝑒} =  {𝐹𝑒} +  {𝐹𝑒
𝑃𝑟}     (2) 

In which the fluid’s compressive load vector {𝐹𝑒
𝑃𝑟} at the 

contact point is obtained with vector integration (ANSYS 

user manual, 2007): 

{𝐹𝑒
𝑃𝑟} =  ∫ {𝑁´}𝑃{𝑛}𝑑𝑠

𝑠
                                                     (3) 

Where {N} and {𝑁´} represent the function of element shape 

for pressure and displacement, and {n} represents the 

normal vector at the contact surface. Replacing the finite 

element estimating function of pressure into Eq. (3): 

{𝐹𝑒
𝑃𝑟} =  ∫ {𝑁´}{𝑁}𝑇{𝑛}𝑑𝑠

𝑠
{𝑃𝑒}                     (4)  

Or 

{𝐹𝑒
𝑃𝑟} =  [𝑅𝑒]{𝑃𝑒}                                   (5) 
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Where  [𝑅𝑒]𝑇 = ∫ {𝑁´}{𝑁}𝑇{𝑛}𝑑𝑠
𝑠

. Replacing equation (5) 

in (4) results in the dynamic finite element equation of the 

structure as follows: 

[Me]{üe} +  [Ce]{u̇e} +  [Ke]{ue} − [Re]{Pe} =  {Fe}    (6)  

 

2.2.2 Finite element model of water domain 

The subsequent matrix operators (gradient and divergence) 

are presented to be used in Eq. (1) (ANSYS user manual): 

𝛻. () =  {𝐿}𝑇 =  [
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
]                                                     (7) 

And 

𝛻. () =  {𝐿}                                                                        (8) 

 

Eq. (1) is as subsequent: 

1

𝐶2

𝜕2𝑃

𝜕𝑡2 −  𝛻. 𝛻𝑃 = 0                                                     (9) 

 

Using the schemes presented in Eq. (9) and (10), Eq. (11) 

in matrix scheme becomes: 

1

𝐶2

𝜕2𝑃

𝜕𝑡2 − {𝐿}𝑇({𝐿}𝑃) = 0                                                (12) 

The element matrices are achieved using discretization of 

the wave Eq. (12) by the Galerkin process. Multiplication 

of Eq. (12) by a virtual variation in pressure and integration 

over the domain volume with several manipulation results 

in: 

∫
1

𝐶2 𝛿𝑃
𝜕2𝑃

𝜕𝑡2 𝑑𝑉
𝑉

+  ∫ ({𝐿}𝑇𝛿𝑃)({𝐿}𝑃)𝑑𝑉
𝑉

=

 ∫ {𝑛}𝑇𝛿𝑃({𝐿}𝑇𝛿𝑃)𝑑𝑠
𝑆

                                                   (13) 

 

Where V refers to the domain volume, 𝛿𝑃 represents the 

virtual variation of pressure, S refers to the surface where 

the pressure normal derivative is acted on the surface, and 

{n} represents the unit normal to the interface S. In the 

problem of fluid-structure interaction, the treatment of 

surface S is performed as the interface. In order to simplify 

the assumptions, the equations of fluid momentum yield 

the subsequent relations between the slope of fluid pressure 

and the solid acceleration at the fluid-structure interface: 

{𝑛}. {𝛻. 𝑃} = − 𝜌0{𝑛}.
𝜕2{𝑢}

𝜕𝑡2                                              (14) 

In which {u} refers to the movement vector corresponding 

to structure at the interface. 

In matrix scheme, Eq. (14) is expressed as: 

{𝑛}𝑇({𝐿}𝑃) = − 𝜌0{𝑛}𝑇 . (
𝜕2

𝜕𝑡2
{𝑢})                                   (15) 

After replacing Eq. (15) into Eq. (13), the integral is 

expressed as (Hanna, 1982): 

∫
1

𝐶2 𝛿𝑃
𝜕2𝑃

𝜕𝑡2 𝑑𝑉
𝑉

+  ∫ ({𝐿}𝑇𝛿𝑃)({𝐿}𝑃)𝑑𝑉
𝑉

=

 ∫ − 𝜌0𝛿𝑃{𝑛}𝑇 (
𝜕2

𝜕𝑡2
{𝑢}) 𝑑𝑠

𝑆
                                   (16) 

 

Eq. (16) comprises the pressure of fluid P and the structural 

movement components as the dependent parameters of the 

solution. The finite element estimating functions of shape 

for the spatial change of the pressure and movement 

components are expressed as follows: 

𝑃 =  {𝑁}𝑇{𝑃𝑒}                                                                   (17) 

And 

𝑢 =  {𝑁´}
𝑇

{𝑢𝑒}                                                                   (18) 

 

Where {𝑃𝑒} represents the vector of nodal pressure and  

{𝑢𝑒} refers to the vectors of nodal displacement 

component. 

Using Eq. (17) and Eq. (18), the second time derivative of 

the parameters and the virtual alteration in the pressure can 

be expressed subsequently as: 

 

𝜕2𝑃

𝜕𝑡2 =  {𝑁}𝑇{𝑃̈𝑒}                                                                   (19) 

𝜕2

𝜕𝑡2
{𝑢} =  {𝑁´}

𝑇
{𝑢̈𝑒}                      (20) 

𝛿𝑃 =  {𝑁}𝑇{𝛿𝑃𝑒}                                                                   (21) 

 

Allowing the matrix operator {L} act on the functions of 

element shape {N} can be indicated as: 

[𝐵] =  {𝐿}{𝑁}𝑇           (22) 

By replacing Eq. (17) over Eq. (20) into Eq. (16), the finite 

element statement relating to the wave equation is obtained 

as: 

∫
1

𝐶2
{𝛿𝑃}𝑇{𝑁}{𝑁}𝑇𝑑𝑉 {𝑃̈} +

𝑉
∫ {𝛿𝑃𝑒}𝑇{𝐵}𝑇[𝐵]𝑑𝑉 {𝑃𝑒}

𝑉
+

∫ 𝜌0{𝛿𝑃𝑒}𝑇{𝑁}{𝑛}𝑇{𝑁´}𝑑𝑠 {𝑢̈𝑒}
𝑆

= 0                                       (23) 

Where {n} refers to the normal vector in the fluid 

boundary. 

{𝛿𝑃} represents  a randomly introduced virtual alteration in 

nodal pressure, and can be factored out in Eq.(23). As  
{𝛿𝑃} is not zero, Eq. (23) is expressed as: 

1

𝐶2 ∫ {𝑁}{𝑁}𝑇𝑑𝑉 {𝑃̈}
𝑉

+  ∫ {𝐵}𝑇[𝐵]𝑑𝑉 {𝑃𝑒}
𝑉

+

 𝜌0 ∫ {𝑁}{𝑛}𝑇{𝑁´}𝑑𝑠 {𝑢̈𝑒}
𝑆

= 0     (24) 

Eq. (24) can be presented in matrix notation to obtain the 

equation corresponding to the discretized wave: 

[𝑀𝑒
𝑃]{𝑃̈𝑒} + [𝐾𝑒

𝑃]{𝑃𝑒} + 𝜌0[𝑅𝑒]𝑇{𝑢̈𝑒} =  0    (25) 

Where [𝑀𝑒
𝑃] =

1

𝐶2 ∫ {𝑁}{𝑁}𝑇𝑑𝑉 
𝑉

refers to the matrix of 

fluid mass, [𝐾𝑒
𝑃] = ∫ {𝐵}𝑇[𝐵]𝑑𝑉

𝑉
 represents the matrix of 
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fluid stiffness, and 𝜌0[𝑅𝑒]𝑇{𝑢̈𝑒} = 𝜌0 ∫ {𝑁}{𝑛}𝑇{𝑁´}𝑑𝑠
𝑆

 is 

the matrix of mass corresponding to fluid-structure 

interaction. 

 

3. Model Analysis 

In this analysis, quay wall is considered as concrete type 

unreinforced elastic, which is made from material with 

homogenous, linear, and isotropic behavior; fluid behind 

the peripheral quay wall is considered as homogenous, 

compressible, non-viscous, and non-rotational with minor 

displacement; soil and sediment is considered as 

homogenous; effects of surface wave were ignored and 

pressure at free surface of fluid and Sommerfeld boundary 

condition was used for infinite truncated boundary. 

Given the applicable conditions on the behavior of quay 

wall, this system is considered as a two-dimensional model. 

System specifications are summarized as follows [17-18]: 

Specific weight, Poisson's ratio and modulus of elasticity 

of quay wall concrete is assumed to be 2400 3kg / m , 

0.2,and 30.5Gpa  respectively. For water, density is 1000 
3kg / m , height is 14m ; for sediment, height is 3m and 

density is 1926 3kg / m . The velocity of pressure wave in 

fluid was taken as 1440 m / s . For soil, modulus of 

elasticity is 0.1 GPa , Poisson's ratio is 0.3, density is 2000 
3kg / m . Dimensions of case study model has been shown in 

Figure 1 

 

 
Fig. 1: Quay wall geometry 

 

 
Fig. 2: Finite element model of system 

The finite element model of quay wall system is shown in 

Figure 2. For these cases, the maximum horizontal 

displacement at the crest and maximum 1st principle stress at 

Point A were selected as the output parameters.  

In this paper, the finite element method is used for seismic 

analysis of quay wall considering variation in modulus of 

elasticity.  

The horizontal and vertical components of El Centro 

earthquake, which is one of the strongest ground motions, 

are applied to the entire body of the system to perform 

seismic performance of the studied model according to the 

ANSYS software capabilities. The maximum horizontal 

acceleration of the earthquake is 0.35 g. Newmark method 

was used for numerical integration, time step was selected 

as ∆t=0.02sec. Figures 3 and 4 show El Centro earthquake 

records that occurred in 1940. 

 

 
Fig. 3: Horizontal component of El Centro earthquake 

 
Fig. 4: Vertical component of El Centro earthquake 

In this research, the modulus of elasticity of quay wall 

concrete was considered as input variable to evaluate the 

effect of concrete strength in probabilistic analysis given 

the logarithmic distribution as probabilistic function. The 

model has been analyzed using the Monte Carlo method 

and the following results were obtained. 

To describe the scatter of the data, the lognormal 

distribution has been used. The lognormal distribution is 
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particularly suitable for phenomena that arise from the 

multiplication of a large number of error effects. It is also 

appropriate to use the lognormal distribution for a random 

variable that is the result of multiplying two or more 

random effects. 

In probabilistic analysis, the number of required 

simulations should be such that the average value of the 

output variable reaches the appropriate convergence 

according to the number of simulations. So, in this study 

the ANSYS software settings are selected for Monte Carlo 

probabilistic method according to Table 1: 

Table. 1: Monte Carlo probabilistic analysis settings in ANSYS 

software 

 

Number of 

iterations 

 

Number 

simulation 

loops 

Distribution 

type 

Random 

variable 

 

2 22 Lognormal 

Modulus of 

elasticity of 

concrete 

 

4. Results 

 

4.1 Finite element model validation 

The finite element model is validated considering the 
comparison of hydrostatic pressure value obtained from 

analytical method and static analysis of the model under 

gravity acceleration. The hydrostatic pressure contour 

obtained from the static analysis of finite element model 

has been shown in Figure 5. 

 

 

 
Fig. 5: Hydrostatic pressure contour obtained from the static 

analysis of finite element model (Pa) 
 

The maximum value of hydrostatic pressure obtained from 

equation (26) compares the analytical and numerical 

model: 

𝑃 = 𝜌𝑔ℎ = 1000 × 9.8 × 17 = 166770 𝑃𝑎                        (26)                                                                  

In which, P is the hydrostatic pressure (𝑃𝑎), ρ is the water 

density ( 𝑘𝑔 𝑚3⁄ ), and h is the height of the water in front 

of quay wall (meter). The comparison of the result shows 

that the value obtained from the static analysis of the model 

did not differ much from the calculation of equation (8). 

 

4. 2 Cumulative distribution function 

  In this section, the cumulative distribution functions of 

output parameters are presented. On the other hand, CDF in 

the literature is referred to as distribution function, 

cumulative frequency function or cumulative probability 

function. Cumulative distribution function represents the 

possibility which assumes a value less than or equal to the 

value. In terms of continuous random variables, cumulative 

distribution function is obtained from probability density 

function by integration or by summation of discrete random 

variables [20]. Figures 6 and 7 show the cumulative 

distribution function of the selected responses of the model. 

 

 
Fig. 6: The cumulative distribution function of the maximum 

horizontal displacement of crest 
 

 
Fig. 7:  The cumulative distribution function of the maximum 

principal tensile stress (node 46) 

 

The cumulative distribution function is a probability which 

presents the values remaining lower than a certain amount. 

The curves show that: 

- There is about 40% probability that the maximum 

displacement of top of quay wall remains less than 1.84 cm 

during an earthquake. 

 - There is about 70% probability that the maximum main 

tensile stress of quay-wall remains less than 7.25 Mpa 

during an earthquake. 
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4. 3 Sensitivity analysis of the model 

Sensitivity refers generally to the changes in the output of a 

mathematical model due to the changes in the input 

quantities. Sensitivity analysis attempts to provide the 

ranking input assumptions of the model regarding their 

contribution to the variability or uncertainty [19]. The 

effect of modulus of elasticity of quay wall concrete as 

random input variable on outputs were evaluated and 

shown in Figures 8 and 9. 

 

 
Fig. 8: Sensitivity curve of maximum horizontal displacement of 

crest to the modulus of elasticity of the wall 

 

 
Fig. 9: Sensitivity curve of the main tensile stress to the modulus 

of elasticity of the wall (node 46) 

 

Figure 8 illustrates that the graph is a linear curve whose 

slope is decreased from the modulus of elasticity of 26.4 

Gpa onwards, and the displacement of the top of the wall is 

reduced due to an increase in modulus of elasticity. 

As shown in Figure 9, the graph is almost a linear curve 

and the slight change in slope is observed in the modulus of 

elasticity of 26.7 Gpa onwards. 

Subsequently, the maximum principal tensile stress in other 

parts of the structure body, which is more critical than 

others, was investigated according to contour of tension 

stress in Figure 10 and then displayed in Figure 11. 

 

 
Fig. 10: The contour of the main tensile stress of the quay wall 

 

 
Fig. 11: Nodes with the highest main tensile stresses 

 

The results given below allow tracing the extent of the 

concrete cracks compared to the principal allowed tensile 

stress. The modulus of elasticity of concrete approved by 

American Concrete Institute (ACI) is equal to: 
1.5

c cE 0.043W f=                                                        (27) 

cf  is the compressive strength of concrete and
cW  is the 

Specific weight of concrete. 
 Where the tensile strength (

tf ) is equal to [20]: 

2/3

t cf 0.324f=                                                                                      (28) 

the dynamic tensile strength shall be equivalent to the 

direct tensile strength multiplied by a factor of 1.50 [21]. 

Sensitivity curves of the principal tensile stress to the 

modulus of elasticity of the quay wall for nodes 47 and 48 

and 49 are presented in Figures 12 to 14, respectively. 

 

 
Fig. 12: The sensitivity curve of the main tensile stress to the 

modulus of elasticity of the wall node 47 

 



 

 
M. Kouchaki et al.                                                                            Numerical Methods in Civil Engineering, 6-1 (2021) 77-84 

83 

 

 
Fig. 13: The sensitivity curve of the main tensile stress to the 

modulus of elasticity of the wall in the node 48 

 

 
Fig. 14: The sensitivity curve of the main tensile stress to the 

modulus of elasticity of the wall in the node 49 
 
 

Figure 15 shows the sensitivity graphs of the critical points 

as well as the seismic tensile stress of the concrete with 

respect to the modulus of elasticity. 

According to Figure 15, it seen that in node 46 for the 

modulus of elasticity less than 39, in node 49 for the 

modulus of elasticity less than 37.2 Gpa, in node 48 for the 

modulus of elasticity less than 33 and in node 47 for the 

modulus of elasticity less than 30 Gpa, the concrete cracks. 

 

 

 
Fig. 15: Comparison of sensitivity curves with seismic tensile 

stress 

 

 

 

5. Conclusion 

Considering the importance of the effect of quay wall body 

strength on the seismic performance of model during an 

earthquake, this research evaluated the effect of Young 

Modulus of body concrete as strength parameters on 

seismic performance of quay wall model and examined the 

responses to achieve the optimal body stiffness using 

probabilistic analysis. Output parameters obtained from the 

analysis are maximum horizontal displacement of the 

structure and the maximum tensile stresses which are 

considered as the critical response. In addition, other 

critical points from the wall body were selected and studied 

to determine the location of the tensile cracks. Following 

results were achieved according to the model analysis and 

sensitivity curves: 

1- Modulus of elasticity of concrete indicates the stiffness 

and strength of quay wall body and is an important 

parameter in the analysis and design of the system. 

Considering the sensitivity curves of responses to variation 

of Modulus of elasticity, it is possible to investigate the 

safety status of quay wall body for different values of this 

parameter. 

2- According to the graphs it is concluded that if the 

maximum tensile stress is the main design criteria, the 

optimal value for the modulus of elasticity is about 30 Gpa. 

If the design criteria changes, according to the sensitivity 

curves, the optimal value of modulus of elasticity can be 

selected in a way that ensures safety.  

3- According to tensile stress calculations in critical points 

of the quay wall and comparison with allowable seismic 

tensile stress, it was shown for which modulus of elasticity 

the cracks occur in the body.  
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