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Abstract:   

The main purpose of this study is to compare the lateral buckling behavior of laterally 

unrestrained Fiber-Metal Laminate (FML) and composite thin-walled beam with varying cross-

section under transverse loading. It is supposed that all section walls (the web and both flanges) 

are composed of two metal layers at the outer sides of the fiber-reinforced polymer laminates. 

The classical lamination theory and Vlasov’s model for thin-walled cross-section have been 

adopted to derive the coupled governing differential equations for the lateral deflection and 

twist angle. Employing an auxiliary function, the two governing equations are reduced to a 

single fourth-order differential equation in terms of twist angle. To estimate the lateral buckling 

load, Galerkin’s method is then applied to the resulting torsion equilibrium equation. 

Eventually, the lateral stability resistance of FML and laminated composite web-tapered I-beam 

under uniformly distributed load has been compared to each other considering the effects of 

some significant parameters such as laminate stacking sequence, metal volume fraction, 

transverse load position, and web tapering ratio. The results show that increasing the metal 

volume fraction leads to enhance the linear buckling strength of glass-reinforced aluminum 

laminate I-beam under transverse loading. For the optimum lamination, it is seen that the lateral 

buckling load increases approximately 25% by raising the metal volume percentage from 0% 

to 20%. 

 

1. Introduction 

Thin-walled members comprise a wide range of structural 

elements. The profile of these elements includes connected 

thin plates encompassing open, closed, or a combination of 

both. These members are increasingly used in various 

industries and engineering structures such as civil 

engineering and aerospace due to their ability to consume 

materials economically and optimize the weight of the 

structure. Today, the fabrication of thin-walled beams 

from various materials such as steel, wood, fiber-

reinforced composite materials, and functionally graded 

materials has become possible by developing pultrusion 

and assembly methods. Fiber metal laminations (FMLs) 

are a new class of hybrid materials built from several thin 

sheets of metal alloys and fiber-reinforced epoxy 

composite plies. These laminates possess the desirable 

features of metal such as ductility, damage tolerance,  
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excellent resistance to impact and environmental 

conditions, and advantages of the reinforced polymeric 

composites such as good fatigue resistance, durability, and 

high value of stiffness-to-weight and strength-to-weight 

ratios. Due to the conspicuous characteristics of FMLs, the 

use of fiber-metal hybrid composite structures in the 

design of submarine and aircraft industries has become 

increasingly common throughout the years. A literature 

review shows that several investigations have been 

performed on the behavior of laminated composite 

components such as thin-walled beams, cylinders, shells, 

and plates. In the following, a short description of some of 

these studies is presented. 

A new finite element formulation applicable for stability 

analysis of arbitrary cross-sections of the tapered thin-

walled beams was described by Rajasekaran [1]. Nam et 

al. [2] used a genetic algorithm to optimize the 

arrangement of metal-fiber multilayer composite shells 

under different loading cases. They indicated that metal-

fiber multilayer shells made of carbon fiber-reinforced 

polymer laminates are more resistant to random and 

unforeseen forces in most loading conditions. Based on the 
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classical lamination theory, Lee et al. [3-6] studied flexural 

behavior, dynamics, and stability of thin-walled open and 

closed beam profiles made of symmetrical multilayer fiber 

composite using finite element method and cubic shape 

function. Vibration and instability analyses of FGM 

spinning circular cylindrical thin-walled beams were 

performed by Oh et al. [7]. Rajasekaran and Nalinaa [8] 

assessed the vibrational characteristics and buckling 

behavior of non-prismatic composite spatial members 

having generic thin-walled sections via the finite element 

method within the context of the non-linear strain 

displacement relationship. Magnucka-Blandzi [9] 

examined the lateral stability limit state of simply 

supported I-beam under combined loads, including 

uniformly distributed load, longitudinal force, and gradient 

moment. With the finite element methodology, the 

flexural-torsional coupled free vibrational behavior and 

buckling problem of thin-walled composite beams were 

precisely investigated by Vo and Lee [10], considering the 

impacts of axial load on the vibration characteristics. In 

another study, Moon et al. [11] evaluated the buckling 

behavior of a medium-thickness carbon-epoxy composite 

cylinder under external hydrostatic pressure by modeling 

in Nastran finite element software. To estimate the 

buckling resistance of simply supported thin-walled 

structural members made of Fiber Reinforced Polymer 

(FRP) loaded by axially and uniformly transverse forces, 

Ascione et al. [12] developed a mechanical model based 

on the assumptions of small strains and moderate rotations. 

Further, Arajo et al. [13] dynamically analyzed sandwich 

sheets using natural materials and piezoelectric composite 

layers by applying the finite element method. In another 

study, Ravishankar et al. [14] reported the influence of 

type fiber-reinforced epoxy composite materials, Metal 

Volume Fraction (MVF), and angular velocity on the free 

vibrational response of rotating beams made of FMLs and 

or functionally graded materials using finite element 

software. Banat et al. [15-17] evaluated the buckling 

behavior of FMLs composite thin-walled beams with C- 

and Z-shaped sections under axial compressive force using 

ANSYS finite element software. Further, they perused the 

effect of layer arrangement on the compressive capacity 

and compared the outcomes of software modeling with 

laboratory results. In addition, Hallival et al. [18], in a 

laboratory study, investigated the behavior of fiber-metal 

multilayers by adding resin under an impact force and 

reported that adding resin between the layers results in 

decreasing the separation by 40-50% and increasing the 

compressive strength by approximately 30%. Based on a 

generalized layered global-local beam (GLGB) theory, 

Lezgy-Nazargah [19] proposed an efficient finite element 

model for the elasto-plastic analysis of beams with thin-

walled cross-section. Mohandes and Ghasemi [20] 

employed finite strain theory on free vibration of 

microlaminated composite Euler-Bernoulli beam in a 

thermal environment. Mohandes et al. [21] extracted the 

equations governing the free vibration of the cylindrical 

shell made of metal-fiber composite layers based on the 

first-order shear deformation theory. Their work evaluated 

various parameters such as different material properties of 

composite fibers, lay-up arrangement, fiber angle, 

boundary conditions, number of vibrational modes, and 

metal volume fraction. In another study, Ahmadi and 

Rasheed [22] employed the generalized semi-analytical 

technique to analyze the lateral-torsional buckling of 

anisotropic laminated beams with rectangular thin-walled 

cross-section subjected to simply supported end supports 

based on the classical laminated plate theory.  Within the 

context of first-order shear deformation theory and using a 

semi-analytical solution methodology, the mechanical 

response of thin-walled laminated beams with constant 

open and/or closed cross-sections was assessed by 

Wackerfuß and Kroker [23]. Through a one-dimensional 

finite element model, Asadi et al. [24] analyzed the linear 

stability behavior of laminated composite beams with thin-

walled open/closed sections under various boundary 

conditions. In their study, the impacts of transverse shear 

deformation and out-of-plane warping of the beam section 

are considered. Within the context of Love’s first 

approximation shell theory, Ghasemi and Mohandes [25] 

presented a comparative study between the vibrational 

responses of FML and composite cylindrical shells. Soltani 

[26] perused the flexural-torsional buckling behavior of 

the tapered sandwich I-beam with porous core using the 

differential quadrature method. Additionally, the 

mechanical responses of composite thin-walled beams 

with different geometries and subjected to various types of 

loading cases and end conditions were exhaustively 

assessed by Lezgy-Nazargah et al. [27-32] using the 

concept of equivalent layered composite cross-section. 

As mentioned earlier, most of the studies conducted on the 

behavior analysis of fiber/metal laminated composites 

have focused on cylindrical shells, while few laboratory 

studies have been performed on the stability characteristics 

of thin-walled FML beams [15-17]. Due to the application 

of hybrid fiber-metal composite thin-walled elements in 

aircraft and spacecraft structures and the blades of wind 

turbines and helicopters, there is a strong scientific need to 

precisely assess the lateral stability strength of thin-walled 

FML profile under transverse loads. Thus, the current 

research is aimed to probe the lateral-torsional buckling 

characteristics of FML tapered I-beams according to 

Vlasov’s assumptions [33]. Based on this model and using 

small displacements theory, the lateral-torsional stability 

behavior of thin-walled beams with arbitrary laminations 

is usually governed by three fourth-order differential 

equations coupled in terms of the lateral and vertical 

displacements as well as the torsion angle. Perusing the 

critical state of thin-walled composite members subjected 

to combined transverse loads and compressive axial force 

is complicated in the presence of flexural-torsional 

coupling. This procedure seems to be more problematic in 

the presence of thin-walled beams with varying web and/or 

flanges. To investigate the lateral buckling behavior of this 

type of member, the 12*12 static and buckling stiffness 

matrices can also be formulated based on twelve 

displacement parameters, namely: two translations, twist, 

two rotations, and warping at each end node [3-6, 10]. In 

the case of doubly-symmetric thin-walled composite 

beams with symmetric laminations under bending moment 

about the strong principal axis of the cross-section, a two-

noded element with four degrees of freedom at each node 



 
M. Soltani and A. Soltani                                                                 Numerical Methods in Civil Engineering, 6-1 (2021) 50-62 

52 

 

and resultantly 8*8 static element stiffness matrices are 

commonly required to study the lateral stability behavior 

[3-6, 10]. Although the finite element technique is capable 

of estimating the buckling loads with the desired precision, 

it requires a considerable amount of time to be executed. 

For this reason, the linear lateral buckling behavior of 

tapered thin-walled FML beam with doubly-symmetric I-

section is analyzed by means of Galerkin’s method. The 

main advantage of this methodology is simplicity, 

reducing computational effort, and consequently saving 

computing time. To this end, the following steps are 

considered: 

Using classical laminated theory and energy method, the 

coupled governing differential lateral-torsional stability 

equations for the lateral deflection and torsion are 

extracted by implementing Vlasov’s model for thin-walled 

cross-sections. Following the methodology expanded by 

Soltani et al. [34-36], the two lateral stability equations are 

uncoupled and reduced to a single fourth-order differential 

equation in terms of the twist angle. The resulting 

formulation can be applied for calculating the lateral-

buckling load of laminated composite I-beam under 

different boundary conditions and loading cases. However, 

only the simply supported beam with free warping at both 

supports is considered in this study. The trigonometric 

function, which satisfies the simply supported beam end 

conditions, is then used to acquire the analytical solutions 

with Galerkin’s method. To check the accuracy and the 

efficiency of the proposed methodology, our results are 

compared with numerical ones from the ANSYS code, and 

good agreement is observed. By performing a 

comprehensive parametric example, the outcomes of 

lateral buckling analysis of simply supported laminated 

web-tapered I-beam under uniformly distributed load is 

given in terms of the impacts of some representative 

parameters such as lay-up arrangement, metal volume 

fraction, web tapering ratio, and loading position. Finally, 

the best lay-up of the internal fiber composite layers is 

introduced by examining different stacking sequences. 

 

2. Formulations 

A schematic of thin-walled FML beam with length L 

varying I-section subjected to uniformly distributed load is 

shown in Fig. 1. The orthogonal right-hand Cartesian 

coordinate system (x, y, z) is adopted, wherein x denotes 

the longitudinal axis and y and z are the first and second 

principal bending axes parallel to the flanges and web, 

respectively. The origin of these axes (O) is located at the 

centroid of the cross-section. It is supposed that all section 

walls are composed of two metal layers at the outer sides 

of the fiber-reinforced polymer laminates. Based on small 

displacements assumption and Vlasov’s thin-walled beam 

theory for non-uniform torsion, the displacement fields can 

be expressed as [33]: 

0

( ) ( )
( , , ) ( )

( )
                  ( , )

dv x dw x
U x y z u x y z

dx dx

d x
y z

dx




= − −

−

 (1a)  

 

( , , ) ( ) ( )V x y z v x z x= −  (1b) 

( , , ) ( ) ( )W x y z w x y x= +  (1c) 

In these equations, U is the axial displacement and 

displacement components V and W represent lateral and 

vertical displacements (in direction y and z). The term 

( , )y z  signifies a cross-section variable that is called the 

warping function, which can be defined based on Saint-

Venant’s torsion theory and   is twisting angle. 

 
Fig. 1: Beam with variable doubly symmetric I-section under 

external distributed loads: Coordinate system, notation for 

displacement parameters, definition of load eccentricities, 

and web and flanges lay-up arrangement. 

 

The Green’s strain tensor components which incorporate 

the large displacements including linear and non-linear 

strain parts are given by: 
*     , , ,l

ij ij ij i j x y z= + =    (2a) 

1
( )    , , ,

2

ji

ij

j i

UU
i j x y z

x x
= + =




 
 (2b) 

* 1
   , , , ,

2

k k

ij

i j

U U
i j k x y z

x x

 
= = 

 
 

 


 
 (2c) 

l

ij
 
denotes the linear parts and 

*

ij
 
the quadratic non-

linear parts. Using the displacement field given in Eq. (1), 

the non-zero constituents of linear and non-linear parts of 

strain-displacement are derived as 

'

0

1 1

2 2

1

2

xy

xz

l

xx

l

l

U
u yv zw

x

U V
z

y x y

U W
y

z x z


  = = − − −



   
= + = − +   

   

   
= + = −   

   

 

  
 

 

  
 

 

 (3a) 
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( )

( )

* 2 2 2 2 2 2

*

*

1 1
( ) ( ) ' ' '

2 2

' ' ' '

1 1

2 2

1 1

2 2

xx

xy

xz

V W
v w r

x x

yw zv

V V W W
w y

x y x y

V V W W
v z

x z x z

  
= + = + +      

+ −

 
 = + = + 

 

 
 = + = − + 

 

 

 

   
  

   

   
  

   

 (3b) 

In Eq. (3b), the term 
2r represents 2 2y z+ . 

The resultants of classical stresses for beams with doubly-

symmetric I-section can be expressed as follows [26] 

( ) ( ), , , 1, , ,

( ) ( )

y z xx
A

sv xz xy

A

N M M B z y dA

M y z dA
z y

  

 
 

= − −

  
= − − + 

  




 (4) 

where N is the axial force. My and Mz denote the bending 

moments about major and minor axes, respectively. B is 

the bi-moment. Msv is the St-Venant torsion moment. The 

present model is applied in the case of balanced and 

symmetrical lay-ups of the web and both flanges. In the 

context of classical laminated plate theory and substitution 

Eq. (3a) into Eq. (4), the stress resultants of symmetrically 

balanced laminates are derived in terms of displacement 

components as [3] 

0
( ) ;  ( ) ;

( ) ;  ( ) ;

( )

com z z com

y y com com

sv com

N EA u M EI v

M EI w B EI

M GJ

 = =

 = − =

=

 




 (5) 

where ( )
com

EA denotes axial rigidity. ( )
y com

EI  and 

( )
z com

EI  represent the flexural rigidities of the y- and z-

axes, respectively. ( )
 com

EI  and ( )
com

GJ are, respectively, 

warping and torsional rigidities of composite thin-walled 

beams with doubly symmetric I-section, defined by: 

11 11

3

11 11

2 3

11 11 11

32 3

11 11 11

66 66

( ) 2 ;

( ) 2
12

( ) 2 2
4 12

( ) 2( ) ;
4 12 12

( ) 4(2 )

f w

com f

f wf

z com

f f w

y com f f

f f wf

com

f w

com f

EA b A dA

b
EI A dD

d d
EI b D b A A

bd d
EI A D D

GJ b D dD



= +

= +

= + +

= + +

= +

 (6) 

That indexes f and w refer to the web and the flange of the 

beam cross-section, respectively. 
ijA and 

ijD  are the 

matrices of extensional and bending stiffness, respectively. 

These stiffness quantities for composite multi-layer I-

section could be calculated as: 
2( , ) (1, )f f f

ij ij ij
A D Q z dz=   (7a) 

2( , ) (1, )w w w

ij ij ij
A D Q y dy=   (7b) 

where f

ijQ and w

ijQ  are the transformed reduced stiffness 

related to the flanges and web, respectively. In this 

research, equilibrium equations and boundary conditions 

are derived from stationary conditions of the total potential 

energy. Based on this principle, the following relation is 

obtained 

0 0l eU U W =  +  − =  (8) 

In this formulation,   denotes a variational operator. 
lU  

and 
0U  represent the elastic strain energy and the strain 

energy due to effects of the initial stresses, respectively. 

We denotes work done by external applied loads. Ul could 

be computed using the following equation 

0

0 0
2 2

L
l l

l ij ij xx xx
V A

L L
l l

xy xy xz xz
A A

U dV dAdx

dAdx dAdx

= =

+ +

  

   

    

   
 (9) 

in which, L expresses the element length. l

ij is the 

variation of the linear parts of strain tensor. Using Eq. (3a), 

the variation of the linear part of strain tensor components 

is given by: 
'

0

'

'

;  

1
;

2

1

2

xz

xy

l

xx

l

l

u y v z w

y
z

z
y

  = − − −

 
= − 

 

 
= − + 

 

    


 


 

 
(10) 

Substituting equation (10) into relation (9) and integrating 

over beam’s cross-section, the expression of the strain 

energy variation can be carried out as: 

( )

( )

( )

0
0

0

0

0

0

( )

( )

L

l xx
A

L

xy
A

L

xz
A

z y
L

L

sv

U u y v z w dAdx

z dAdx
y

y dAdx
z

N u M v M w B dx

M dx

   = − − −

 
+ − + 

 

 
+ − 

 

   = + − +

+

 

 

 







     


 


 

   



 (11) 

Substituting Eq. (5) into Eq. (11) yields:  

0 0
( ) ( )

( )

( ) ( )

com z com

l y com
L

com com

EA u u EI v v

U EI w w dx

EI GJ

    +
 

 = + 
    + + 




 

 

   

 (12) 

Also, the variation form of strain energy due to initial 

stresses can be stated as 

0 * 0 *

0
0

0 * 0 *

0 0
2 2

L

ij ij xx xx
V A

L L

xy xy xz xz
A A

U dV dAdx

dAdx dAdx

= =

+ +

  

   

    

   
 (13) 

In Eq. (13), 
0

xy
  and 0

xz
  indicate the mean values of the 

shear stress and 0

xx
  signifies initial normal stress in the 

cross-section. According to Fig. 1, it is contemplated that 

the external bending moment occurs about the major 

principal axis ( *

y
M ). Therefore, the magnitude of bending 

moment with respect to z-axis is equal to zero.  Regarding 

this, the most general case of normal and shear stresses 

associated the external bending moment *

y
M  and shear 

force Vz are considered as: 
* *

0 0 0;  ;  0 
y yz

xx xz xy

y

M MV
z

I A A
  


= − = = − =  (14) 
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Based on Eq. (3b), the first variation of non-linear strain-

displacement relations can be written as: 

( ) ( )

( ) ( )

* 2

*

*

' '

         ' ' ' ' ' '

1 1

2 2

1 1

2 2

xx

xy

xz

v v w w r yw

y w z v zv

w y w y

v z v z

     = + + +

+ − −

   = + + +

   = − + − +

     

    

     

     

 (15) 

Substituting equations (14) and (15) into relation (13) 

yields: 

* 2

0
0

*

0

( )
' ' ' '

' ' '

( )

L
y

A
y

L
y

A

v v w w

M r
U z dAdx

I y w yw

z v zv

M v v
dAdx

z zA

  + 
 

 + = −
 + +
  − − 

  − − 
+ −  

 − − 

 

 

 

 


  

  

 

  

 (16) 

In this stage, by integrating Eq. (16) over the cross-section 

area of the beam, the final form of the variation of strain 

energy due to the initial stresses is acquired as 

( )* *

0
0

L

y y
U M v M v dx   = − −  (17) 

The first variation of external load work (We) of the beam 

under distributed vertical forces qz applied along a line 

(PP′) on the section contour (Fig. 1a) can be written in the 

form of 

0

L

e z p
W q w dx =   (18) 

In Eq. (18), wP is the vertical displacement of point P. 

According to kinematics used in Asgarian et al. [34] and 

by adopting the quadratic approximation, the vertical 

displacement of the point P and its first variation are as 

follows: 
2

  
2

P P P P
w w z w w z= − → = −


    (19a, b) 

In this equation, zP is used to imply the eccentricity of the 

applied loads from the centroid of the cross-section. 

Substituting Eq. (19b) into Eq. (18) yields 

( )
0

L

e z t
W q w M dx  = −  (20) 

in which, 
t z P

M q z=  denotes the second order torsion 

moment due to load eccentricity. 

After inserting Eq. (12), (16) and (20) into Eq. (8), the 

expression of the firs variation of total potential energy can 

be written as 

( )

( )

0 0

* *

0

0

( ) ( )

( )

( ) ( )

0

com z com

y com
L

com com

L

y y

L

z t

EA u u EI v v

EI w w dx

EI GJ

M v M v dx

q w M dx

    +
 

  = + 
    + + 

 + − −

− − =









 

 

   

 

 

 

(21) 

Based on the equation presented above, the first variation 

of the total potential energy contains the virtual 

displacements ( , , ,u v w    ) and their derivatives. 

After appropriate integrations by parts, and after 

mathematical simplifications, we get the following 

equilibrium equations in the stationary state  

0
(( ) ) 0

com
EA u   =

 (22a) 

( )( )
y com z

EI w q
 =  (22b) 

( ) ( )*( ) 0
z com y

EI v M


 − =  (22c) 

( ) ( ) *( ) ( ) 0
com com y t

EI GJ M v M
 

  − − + =


    (22d) 

 

The related boundary conditions at the ends of balanced 

laminated beam with thin-walled cross-section can be 

expressed as 

0( ) 0comEA u  = or 
0

0u = (23a) 

( ) 0
z com

EI v  = or 0v  = (23b) 
*(( ) ) ( ) 0

z com y
EI v M  −  = or 0v = (23c) 

( ) 0
y com

EI w  = or 0w  = (23d) 

(( ) ) 0
y com

EI w   = or 0w = (23e) 

( ) 0
com

EI


 = or 0 = (23f) 

(( ) ) ( ) 0
com com

EI GJ


   −  = or 0 = (23g) 

In the equilibrium equations, the first and second ones are 

uncoupled and stable, and do not affect the lateral buckling 

behavior of I-beam subjected to transverse loading. The 

differential equations (22c, d) have a coupled nature due to 

the presence of the lateral deflection v  and torsion   

component, as well as the bending moment *

yM . Based 

on the straightforward methodology presented by Soltani 

et al. [34-36], the governing equilibrium equation for the 

lateral displacement (22b) can be rewritten as 

(24) 

*

( )

y

z com

M
v

EI
 =


 

whose substitution in the fourth equilibrium Eq. (22d) 

enables its redefinition in an uncoupled form as only 

dependent on the twist angle  , independent from the 

lateral displacement v , i.e. 

( ) ( )
* 2

( ) ( ) 0
( )

y

com com t

z com

M
EI GJ M

EI

 
 − − + =




    (25) 

Eqs. (23f) and (23g) are the corresponding boundary 

conditions of the resulting formulation.  

Since the flanges and/or web are variable, all stiffness 

quantities of the composite beam are functions of the x-

coordinate. In this regard, the solution of the resulting 

fourth-order differential equation in terms of the twist 

angle (25) is not straightforward and only analytical or 

numerical techniques such as Galerkin’s or Rayleigh-Ritz 

methods [37-39], the finite difference method [40, 41], the 

differential quadrature method [26, 36, 42, 43], and the 

power series method [44-46] are feasible. In the present 

work, Galerkin’s method as a highly accurate analytical 

methodology is used to solve Eq. (25) and obtain the lateral 

buckling load. Additionally, this analytical approach is one 

of the most easy-to-apply methodologies to exactly 

determine the lateral stability strength of unrestrained and 

braced continuous structural elements. Based on the 

assumptions of this technique, the differential equilibrium 
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equations and approximate displacement functions are 

required. Note that the assumed buckled deformations 

should satisfy the geometric boundary conditions of the 

beam. It is also necessary to mention that the resulting 

fourth-order differential equation (Eq. (25)) is applicable 

for lateral stability analysis of composited tapered I-beams 

that are restrained from the torsion at their ends 

( (0)= (L)=0  ). 

For simply supported beams with free warping at both ends 

( (0) (L) 0  =  = ), the twist angle also equals zero (

(0)= (L) 0  = ). For this condition, the first displacement 

mode in torsion after lateral buckling can be thus 

approximated by trigonometric function as [38, 39] 

1
( ) sin

x
x

L

 
=  

 


   (26) 

In the case of fixed-fixed members, both supports are 

prevented from freely warping. Therefore, the twist angle 

and the rate of twist at the fixed ends are restrained (

(0)= (L) (0) (L) 0   =  =  = ). The expression for the 

angle of twist can be approximated as [38, 39] 

1

2 3

2
( ) (1 cos )

3 5
(1 cos ) (1 cos )

x
x

L

x x

L L

 
= −  

 

   
+ − + −   

   


 

 
 

 (27) 

For the fixed-simply supported I-beams, the left end (fixed 

one) of the beam are prevented from freely warping (

(0)= (0) 0  = ), while, the right end of the element is free 

to warp but restrained from the torsion ( (0)= (L) 0  = ). 

One gets [38, 39]: 
4 3 2

1

2

( ) ( 2.5 1.5 )

sin

cos

x x x
x

L L L

kx x
k

L L

kx
k k

L

     
= − +     

     

    
−    

    +
  

+ −  
  

 



 (28) 

where ( 1,2,3)
i

i = is the associated displacement 

amplitude. 

In the current work, only simply supported beam with free 

warping and bending at both ends is considered. Following 

the rules of Galerkin’s method and by substituting the 

buckled shape function and its derivatives into Eq. (25) one 

gets 
* 2

2 2

2

(( ) )(sin( ))
( )

( ) (( ) sin( )) sin( )

( )(( ) cos( )) sin( )

y

P z
L

z com

com

L

com

M x
z q dx

L EI L

x x
EI

L L L
dx

x x
GJ

L L L

 
+ 

 

 
 

=  
 − 
 






 

  

  

 (29) 

By substituting the required stiffness coefficients as well 

as the bending and torsion moments expressions into the 

formulation presented above following an appropriate 

mathematical procedure, the lateral-torsional buckling 

load can be acquired. 

 

3. Findings and Discussion 

In the preceding section, an analytical methodology has 

been formulated to calculate the lateral-torsional buckling 

loads of thin-walled fiber metal laminates beam with 

varying I-section. In this section, a comprehensive 

example is conducted to show the effects of significant 

parameters such as laminate stacking sequences, metal 

volume fraction, loading position, and web tapering ratio 

on the lateral buckling capacity of multi-layered composite 

tapered I-beam. In this regard, the linear lateral buckling 

analysis is performed for a simply supported 10-layer FML 

web tapered I-beam with a span of 10m. All section walls 

(both flanges and web) are laminated symmetrically 

concerning its mid-plane and made of Aluminum alloy 

2024-T3 (outer metal layers) and E-glass/epoxy material 

(eight inner composite layers). The material features of the 

lamina are as follows [25]: for the aluminum plies, E = 

72.4 GPa and υ = 0.33; and for the fiber-reinforced 

composite layers, Ex = 38.6 GPa, Ey = 8.27 GPa, Gxy = 

4.14 GPa, and υxy = 0.26. 

 
Fig. 2: Simply supported FML I-beam with varying cross-

section subjected to uniformly distributed load: Geometrical 

properties, loading position, and web and flanges lay-up 

arrangement 

 

As shown in Figure 2, at the left end section, both flanges 

are assumed to be 180mm wide (bf), and the web of the I-

shape is 600mm deep (dL). It is also supposed that the web 

height of the I-section at the left end (dL) is made to 

diminish linearly to (dR) at the right one (Figure 2). 

Therefore, the web tapering ratio is defined as /R Ld d=

: Note that this parameter () is a non-negative variable 

and can change from 0.1 to 1.0. Moreover, I-beam with a 

uniform cross-section is achieved when the mentioned 
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parameter () equals one. For the above case, the required 

stiffness quantities presented in Eq. (6) can be rewritten as 

follows: 

11 11

1
( ) ( 1)( )

6

f w

z com f L L

x
EI b A d d D

L

 
= +  − + 

 
 

(30) 

3

11

2

3

11

3

11

1
( )

6

1
( 1)( )

24

1
( 1)( )

12

f

com f

f

L L f

w

L L

EI b D

x
d d b A

L

x
d d D

L


=

 
+  − + 

 

 
+  − + 

 

 

66 66
( ) 8 4 ( 1)( )f w

com f L L

x
GJ b D d d D

L

 
= +  − + 

 
 

As shown in Fig. 2, the selected simply supported web-

tapered beam is subjected to uniformly distributed load. 

For this loading case, the internal bending moment in the 

beam equals 
2 2

*

2
( )

2
y z

L x x
M q

L L
= −

 
(31) 

The uniformly transverse load is also supposed to be 

applied at three different positions: the top flange, the 

centroid (shear center), and the bottom flange. The load 

height parameter (zP) and, consequently, the second-order 

torsion moment can be written as: 

0.5 ( 1)( )
P L L

x
z d d

L

 
=  − + 

 
 

(32) 

0.5 ( 1)( )
t z L L

x
M q d d

L

 
=  − + 

 
 

Finally, the solution of Eq. (26) concerning transverse load 

qz, leads to the determination of the lateral buckling loads 

for the considered case by inserting the stiffness 

coefficients Eq. (30) and taking into account formulas (31-

32).  

The next part is divided into two different subsections; the 

first one for verification of the formulation proposed 

herein, and the latter aims to peruse the influence of the 

above-mentioned factors on the linear lateral buckling 

behavior of the considered member.  

Before presenting the results, it is important to note that 

shear deformations are neglected and the laminate consists 

of perfectly bonded layers. Additionally, based on 

Vlasov’s model, the cross-section is rigid in its own plane 

and consequently, no distortional deformations occur. This 

means that only overall buckling occurs. 

 

3.1. Verification  

As far as the authors know, no numerical and/or 

experimental studies have been published on the linear 

buckling analysis of thin-walled FML profile under 

transverse loading. Therefore, to investigate the accuracy 

of the formulation presented herein, the obtained results 

have been compared with those acquired with the finite 

element method, using ANSYS code. To that end, Table 1 

gives the estimated values of the lateral buckling load (qcr) 

of the contemplated beam with variable thin-walled I-

section for different tapering parameters ( 1= , 0.8, 0.6, 

0.5, and 0.3) by assuming MVF=0.2  when transverse loading 

is applied at the mid-height along the beam length. In this 

section, the web and flanges are assumed to have identical 

stacking sequences. The abovementioned thin-walled 

FML beams have been modeled using SHELL281 of 

ANSYS software. This element is suitable for analyzing 

thin to moderately-thick shell structures. SHELL281 has 

eight nodes with six degrees of freedom at each node: 

translations in the x, y, and z axes, and rotations about the 

x, y, and z-axes [47]. In all developed ANSYS models in 

this study, the applied aspect ratio of the mesh (length-to-

maximum width) was close to unity at the bigger cross-

section. In order to model pinned end condition, lateral and 

vertical displacements are null in both ends of the beam but 

flexural rotations and warping are free along the beam 

length. In order to restrain the beam from axial 

displacement, the longitudinal translation is prevented in 

one node at one of the end section. Fig. 3 shows the overall 

lateral buckling mode shape of uniform beam (a=1) and 

tapered one (=0.6) having unidirectional ([Al, (0)7]S) 

stacking sequence.  

 

 
Fig. 3: The uniform shell mesh used for FML beam with 

doubly-symmetric I-section subjected to uniformly 

distributed load on the centroid 

 

Additionally, the relative errors () associated with the 

present approach are given in Table 1 by the following 

expression: 

 

100

Galerkin ANSY S

cr cr

ANSY S

cr

q q

q

−
 =   

 

(33) 

Table. 1: The lateral buckling loads comparison between the 

present methodology and ANSYS code for distributed load 

applied at the centroid when MVF=0.2 

(%) ANSYS Present  
Stacking 

sequence 

6.221 365.096 389.316 1 [Al, (0)4]s 

(a) 1st buckling mode shape for 

prismatic beam (=1) 

(b) 1st buckling mode shape for 

tapered beam (=0.6) 
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6.357 330.687 353.136 0.8 

6.262 297.862 317.759 0.6 

7.048 279.285 300.461 0.5 

8.671 243.753 266.895 0.3 

3.782 189.697 197.155 1 

[Al, (90)4]s 

4.467 171.969 180.010 0.8 

4.699 155.618 163.291 0.6 

5.524 146.563 155.133 0.5 

6.660 130.060 139.339 0.3 

 

Table 1 shows that the critical load values calculated using 

the proposed technique are in good agreement with the 

results obtained by modeling in finite element software so 

that the error rate is less than 10%. 

3.2. Parametric Study 

After validating and verifying the methodology proposed 

herein, the impact of metal volume fraction on lateral 

stability capacity will be assessed in the following Section. 

The main objective of the current part is also to find out 

the optimal laminate stacking sequence of the inner 

composite layers of simply supported FML web-tapered I-

beam under uniformly distributed load that gives the 

highest lateral-torsional buckling resistance. In this regard, 

twelve different practical stacking sequences (Table 2) are 

considered. Note that the material for all the inner plies is 

E-glass/epoxy. 

Table. 2: Stacking sequence for doubly-symmetric I-section 

No. Top and bottom flanges Web 

1 ( )
2 s

0 / 90Al , 
 

 

( )
2 s

45Al , 
   

2 ( )
2 s

0 / 90Al , 
   

 
s

0 45 0Al / / /
 

3 ( )
2 s

0 / 90Al , 
   

 
s

90 45 90Al / / /
 

4 ( )
2 s

0 / 90Al , 
   

( )
2 s

0 / 90Al , 
   

5 3 s
0 / 90Al /    

( )
2 s

45Al , 
   

6 3 s
0 / 90Al /    

 
s

0 45 0Al / / /
 

7 3 s
0 / 90Al /    

 
s

90 45 90Al / / /
 

8 3 s
0 / 90Al /    3 s

0 / 90Al /    

9  4 s
0Al /

 
( )

2 s
45Al , 

   

10  4 s
0Al /

 
 

s
0 45 0Al / / /

 

11  4 s
0Al /

 
 

s
90 45 90Al / / /

 

12  4 s
0Al /

 
 4 s

0Al /
 

 

In Figs. 4-6, we plot the variations of the lowest lateral 

buckling load variations versus the metal volume fraction 

(varying from 0 to 1.0) for different laminate stacking 

sequences and web-tapering parameters, and for the three 

different load positions, namely the top flange, the centroid 

and the bottom flange, respectively. 

 

 

 

 
Fig. 4: Variation of the lateral buckling load with respect to 

metal volume fraction change: effect of different sequences 

of laminations, for different tapering ratios, and for a 

transverse load applied on the top flange 
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Fig. 5: Variation of the lateral buckling load with respect to 

metal volume fraction change: effect of different sequences 

of laminations, for different tapering ratios, and for a 

transverse load applied at the centroid 
 

 

 

 

 
Fig. 6: Variation of the lateral buckling load with respect to 

metal volume fraction change: effect of different sequences 

of laminations, for different tapering ratios, and for a 

transverse load applied on the bottom flange 
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Table. 3: Metal volume fraction and tapering parameter effects on the lateral-torsional buckling load (qnor) of simply supported thin-

walled FML beam with different sequences of lamination (transverse load on the top flange). 
Stacking 

sequence 
=0.4 =0.7 =1 

MVF=0 MVF=0.4 MVF=0.6 MVF=0 MVF=0.4 MVF=0.6 MVF=0 MVF=0.4 MVF=0.6 

No. 2 91.168 193.828 238.575 107.574 224.847 277.311 124.895 257.907 318.563 

No. 3 92.916 194.189 238.683 109.355 225.219 277.421 126.688 258.283 318.675 

No. 4 89.651 193.518 238.483 106.030 224.528 277.215 123.339 257.582 318.466 

No. 6 118.413 210.274 249.531 140.234 244.516 290.417 163.243 280.971 333.934 

No. 7 120.185 210.638 249.639 142.033 244.890 290.528 165.051 281.350 334.046 

No. 8 116.888 209.963 249.438 138.686 244.196 290.322 161.688 280.648 333.838 

No. 10 145.643 226.701 260.480 172.822 264.171 303.518 201.582 304.025 349.301 

No. 11 147.429 227.067 260.588 174.693 264.546 303.629 203.399 304.405 349.414 

No. 12 144.109 226.388 260.387 171.327 263.849 303.422 200.021 303.700 349.205 

Table. 4: Metal volume fraction and tapering parameter effects on the lateral-torsional buckling load (qnor) of simply supported thin-

walled FML beam with different sequences of lamination (transverse load on the centroid). 
Stacking 

sequence 
=0.4 =0.7 =1 

MVF=0 MVF=0.4 MVF=0.6 MVF=0 MVF=0.4 MVF=0.6 MVF=0 MVF=0.4 MVF=0.6 

No. 2 138.609 288.060 355.653 164.900 338.418 418.455 192.187 390.960 483.957 

No. 3 140.502 288.448 355.769 166.830 338.818 418.574 192.128 391.365 484.077 

No. 4 136.959 287.725 355.553 163.213 338.072 418.352 190.485 390.607 483.852 

No. 6 180.996 313.618 372.681 215.901 369.112 438.909 252.102 426.981 507.964 

No. 7 182.918 314.010 372.798 217.855 369.515 439.029 254.063 427.389 508.086 

No. 8 179.336 313.283 372.582 214.214 368.767 438.807 250.408 426.631 507.860 

No. 10 233.363 339.152 389.701 266.885 399.788 459.358 312.004 462.988 531.967 

No. 11 225.303 339.547 389.818 268.855 400.194 459.478 313.978 463.398 532.089 

No. 12 221.691 338.815 389.601 265.189 399.441 459.255 310.303 462.636 531.863 

Table. 5: Metal volume fraction and tapering parameter effects on the lateral-torsional buckling load (qnor) of simply supported thin-

walled FML beam with different sequences of lamination (transverse load on the bottom flange). 
Stacking 

sequence 
=0.4 =0.7 =1 

MVF=0 MVF=0.4 MVF=0.6 MVF=0 MVF=0.4 MVF=0.6 MVF=0 MVF=0.4 MVF=0.6 

No. 2 210.737 428.105 530.186 252.776 509.354 631.439 295.735 592.654 735.221 

No. 3 212.457 428.460 530.291 254.515 509.716 631.547 297.470 593.018 735.330 

No. 4 209.223 427.795 530.093 251.236 509.035 631.344 294.184 592.330 735.125 

No. 6 276.654 467.754 556.610 332.395 557.198 663.328 389.328 648.866 772.691 

No. 7 278.397 468.112 556.716 334.153 557.563 663.437 391.080 649.232 772.800 

No. 8 275.147 467.447 556.519 330.873 556.884 663.235 387.809 648.550 772.597 

No. 10 342.556 507.384 583.028 412.002 605.028 695.213 482.913 705.067 810.157 

No. 11 344.314 507.745 583.134 413.771 605.395 695.322 484.673 705.435 810.266 

No. 12 341.041 507.075 582.936 410.474 604.712 695.119 481.389 704.750 810.063 

 

At the same time, the magnitude of the lateral-torsional 

buckling load (qcr) for various lay-up arrangements, and 

three different web-tapering parameters (= 0.4, 0.7 and 1) 

with different metal volume fractions (MVF=0.0, 0.4 and 

0.6) are listed in Tables 3-5. The contribution of load 

height position from the cross-section centroid on the 

lateral buckling strength is also taken into account. The 

resulting lateral buckling loads are respectively illustrated 

in Tables 3 and 4 for load positions on the top flange and 

the shear center and Table 5 for the bottom flange load 

position. 

Based on the presented results, the endurable lateral 

buckling increases significantly with increasing the 

volume fraction of the metal. This result is predictable 

based on the material properties of E-glass/epoxy and 

aluminum. It should be noted that MVF=0 represents full 

fiber composite I-section in the absence of metal layers, 

and MVF=1 indicates that all cross-section walls are 

entirely made of aluminum. Also, according to these 

illustrations, it can be stated that as the percentage of 

aluminum increases, the effect of laminations on the lateral 

stability of FML web-tapered I-beam under transverse load 

decreases significantly. This trend can be explained based 

on the principle that the participation of glass fiber layers 

in determining lateral buckling strength decreases by 

increasing the volume fraction of metal. This is due to 

thickening aluminum sheets and thinning fiber reinforced 

epoxy composite layers. 

Moreover, it is seen that the uniformly transverse load 

position has a significant effect on the stability strength of 

unrestrained laminated composite beams with varying 

doubly-symmetric I-section. For these loading cases, the 

lateral buckling strength will be improved when the 

distributed load location is on the bottom flange due to the 

reduced rotation of the I-section from its original, and the 

lower values are obtained when the load is applied on the 

top flange position. Note also that the web non-uniformity 

parameter has a considerable impact on the lateral-
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torsional buckling strength. The tapering parameter 

weakens the web-tapered beam due to decreasing the 

member stiffness. Based on the results presented, it can be 

finally concluded that the optimum laminations for 

obtaining the highest lateral strength of simply supported 

web-tapered beam under distributed load are achieved by 

aligning the constituent fibers of both flanges at zero and 

the web fiber must be also placed at an angle of 45 o
 

between two metal sheets. In this regard, Fig. 7 

schematically shows the optimal lay-up arrangements of 

both flanges and the web of I-section by setting MVF=0.4. 

 

 
Fig. 7: Optimal ply stack of the web and both flanges 

(MVF=0.4) 

 

4. Conclusions  

The purpose of present paper is to investigate 

discrepancies between the elastic buckling behavior of 

fiber-metal laminate (FML) and composite thin-walled 

beam under transverse loading conditions. It is assumed 

that all section walls (the web and both flanges) are 

laminated symmetrically with respect to its mid-plane and 

consist of two metal layers at the outer sides of fiber 

reinforced epoxy composite laminates. The classical 

lamination theory conjugated with Vlasov’s model 

assumptions were employed to determine the coupled 

governing differential equations for the lateral deflection 

and twist angle. The Galerkin’s method is then employed 

for solving the resulting governing equations in term of the 

twist angle and boundary condition. In this research, 

glass/epoxy is considered for composite plies and 

aluminum for metal sheets. After verification with ANSYS 

software, the influence of several types of lay-up schemes, 

metal percentage, transverse loading position, and web 

tapering ratio on lateral-torsional stability strength of 

unrestrained simply supported composite 10-layer FML 

tapered I-beam is thoroughly measured. According to the 

numerical outcomes, it is concluded that the maximum 

lateral buckling load for simply supported FML web 

tapered I-beam subjected to uniformly distributed load is 

obtained by placing the fiber angle of each inner composite 

ply at 45 o  in the web and 0o in both flanges. It is also 

observed that the buckling capacity of simply supported 

laminated beam with doubly-symmetric I-section is best 

when the uniformly distributed load is applied on the 

bottom flange. Additionally, the results show that 

increasing the metal volume fraction leads to enhance 

linear buckling strength of glass-reinforced aluminum 

laminate I-beam under transverse loading. For the 

optimum laminate stacking sequence, the endurable lateral 

buckling load increases approximately 25% by raising the 

metal volume percentage from 0% to 20%.  
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