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Abstract: 

This study aims to develop an efficient and accurate analytical-numerical model to analyze full 

interaction between seawater waves and cylindrical floating breakwaters in an infinite fluid 

domain of finite arbitrary water depth. Based on potential flow assumption, a semi-analytical 

Scaled Boundary Finite Element Method (SBFEM) in a two-dimensional vertical plane has been 

used to solve governing Laplace equations. The final equation in the scaled boundary 

coordinate system has been homogenized by locating the scaling center within each sub-domain. 

Hence, a diversity of particular solutions are omitted, leading to a unified solution process for 

radiation/different modes and wave diffraction problems. The accuracy, generality and 

robustness of the proposed SBFEM model have been evaluated by comparing the results of the 

proposed model with the reported results from the literature. By implementing the current 

SBFEM model, simulation results for radiation and diffraction problems are highly accurate 

compared to the result of other solutions.

1. Introduction 

Floating breakwaters (FBWs) have been widely constructed 

all around the world for sheltering port basins, especially in 

deep-water areas. As these structures are fully exposed to 

surrounding water waves, there is always an interaction 

between FBWs and incident waves [1-4]. 

During past decades, many researchers have carried out 

numerical and experimental studies to investigate the wave 

interaction with FBWs [5-11]. Among different numerical 

approaches, the Scaled Boundary Finite Element Method 

(SBFEM) has been developed, perfected and extended in 

recent years to analyze the interactive systems in an infinite 

solution domain [12-17]. 

The SBFEM is a novel and emerging semi-analytical 
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dynamics areas that combines the advantages of both the 

finite element and the boundary element methods [18]. 

In SBFEM, the spatial dimension is reduced by one, leading 

to the weakening of the governing differential equation in 

the circumferential direction, and then solving the weakened 

equation in the radial direction analytically. As the solution 

in the radial direction is analytical, the simulation is accurate 

and more importantly, fewer elements are needed to achieve 

a precise solution. The SBFEM has the inherent advantage 

of solving the unbounded fluid interaction problems in an 

accurate and efficient approach, and has been extended to 

solve water-structure interaction problem [17, 19]. 

In recent years, many researchers have carried out studies to 

investigate the interaction between FBWs and the wave 

domains using SBFEM. Critically related work can be found 

in [12]. Although remarkable research efforts have been 

performed on the wave interaction with FBWs, relatively 

limited attention has been given to the “full interaction” of 

wave domain with the FBWs. In other words, the 

understanding of the problem, however, is still far from 

being complete. One of the most evident limitations in the 

previous studies is that the interaction problem has not been 
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considered in a comprehensive way. The SBFEM-based 

studies have mainly focused on wave diffraction and 

radiation problems, rather than the problem of water wave 

full interaction with free-floated or moored FBW. 

Among the rare ones, Fouladi et al. [12] studied the wave 

full interaction with a moored FBW with rectangular cross 

section. The current study aims to develop and extend the 

previous research by implementing the SBFEM-based 

model to solve the full interaction of FBW with a circular 

shape in a finite arbitrary depth. The results demonstrate that 

the proposed method by Fouladi et al. [12] can be extended 

efficiently to solve wave interaction problems with FBW 

having other types of cross sections, resulting in direct 

engineering applications. 

As outlined in detail by Fouladi et al. [13], in the proposed 

model, the scaling centers of the bounded sub-domains are 

located within the associated solution domain, leading to the 

homogenization of the governing equations in the scaled 

boundary coordinate systems, and thus eliminating the need 

for organizing different forms of particular solutions.  

“This study aims to develop an efficient and accurate 

analytical model to analyze full interaction between 

seawater waves and cylindrical floating breakwaters in an 

infinite fluid domain of finite arbitrary water depth.” 

 

2. Governing equation 

The problem of interaction between a wave and a circular 

floating breakwater is illustrated in Fig.1 schematically. The 

wave is considered linear with a frequency of  , 

propagating in water with a depth of H . It is assumed that 

the length of the breakwater is infinite, thus the effect of 

wave diffraction around the breakwater can be ignored. In 

order to define the governing equations of the surrounding 

wave domain, a Cartesian coordinate system o xyz−  is 

defined as shown in Fig. 1.  

For a non-viscose fluid, the irrotational flow field can be 

expressed in terms of velocity potential. As a common 

practice, for a periodic motion, the time and space variables 

can be segregated, resulting in the following equation for 

velocity potential in an ideal fluid:  

( , , ) Real{ ( , ) }i tx z t x z e  − =  (1) 

 

Fig. 1: Definition sketch of wave-floating breakwater interaction 

in infinite fluid domain 

As per linear wave theory, the total velocity potential, 
T , 

is summation of three velocity potentials as shown below: 

3

1

T I s R I s j j

j

s      
=

= + + = + +  (2) 

The terms I , s , and R  stand for the incident wave 

potential, the diffraction, and the radiation velocity 

potentials, respectively. The term js  denotes the amplitude 

of the thj  mode of motion where 1,2,3j =  represents 

heave motion, sway motion and roll motion respectively.  

It is required that the potential   satisfy Laplace equation 

within the fluid domain which can be described as follows: 

2 0 =  (3) 

The fluid domain under study can be expressed using 

following boundary conditions: 

2

z g
   =


 , at the free surface ( 0z = ) 

 

(4) 

0
z

 =


, at the bottom ( z H= − ) (5) 

nv
n

 =


, on the solid surfaces 

 

(6) 

Where nv  is the normal velocity on a solid surface and g  

is the gravitational acceleration.  

The incident wave potential, I , can be calculated as:  

' cosh  ( )

cosh  ( )

ikx

I

gA k z H
i e

k H




+
= −  (7) 

Where k  and 
'A  denote wave number and wave amplitude, 

respectively. As the potential should result in finite values 

on the infinite boundary, the Sommerfeld boundary 

condition is applied as expressed below: 

lim( ) 0i
i

x

ik
x




→


=


m  

(8) 

 The term i  is potential of each mode which has been 

defined in Equation (2). 

 

3. Scaled boundary finite element method 

(SBFEM) 

In the current study, SBFEM has been used to solve 

governing Laplace equation together with the boundary 

conditions discussed. In this regard, the unknown velocity 

potentials are solved numerically on the discretized 
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boundaries, S , of the domain under consideration. 

Analytical solutions are utilized within each domain along 

radial lines connecting the central point called the scaling 

center 
0 0( , )x y  to any point on the boundaries. The 

governing equations are required to be transformed from 

Cartesian coordinate system into a new coordinate system 

( , )s  (shown on Fig. 2) in such a manner that the 

coordinate   is zero at the scaling center, while it is 1 on the 

boundaries. The circumferential coordinate, s , is defined 

along the boundaries. The scaling center should be placed in 

such a manner that all points on the boundaries are visible 

from the scaling center. To achieve this for the problem 

under study, the whole analytical domain is divided into four 

sub-domains. Ω1 and Ω4  are considered as unbounded sub-

domains whereas 2 and 3  are bounded sub-domains. As 

shown in Fig. 2, the scaling center is located within each sub-

domain, which leads to the homogeneity of the final 

equation in scaled boundary coordinate system, and can be 

used for non-rectangular objects (e.g. circular object). 

 
 

Fig. 2: Definition sketch of establishing scaled boundary 

coordinate system 

 

3.1. Formulation for bounded sub-domains 

For the purpose of formulation, two bounded sub-domains 

are considered in such a manner, that they have a common 

boundary at one side and each of them share a boundary with 

the unbounded sub-domains ( int1 int3,  ), on the other side 

(Error! Reference source not found.3). Considered 

discretization nodes on the boundaries of each bounded 

subdomain are shown in Error! Reference source not 

found.3. 

 

Fig. 3: Discretization of domain boundaries for bounded sub-

domain 

Each discretization node is defined by { }x  and { }y  

vectors in Cartesian coordinate system. With the aid of shape 

functions, the coordinate of an arbitrary point within an 

element can be calculated. By applying the scaling 

coordinate  , any random point within the domain can be 

defined as a function of a point on the boundary S and the 

position of scaling center. Accordingly, the coordinate of an 

arbitrary point within each sub-domain ˆ ˆ( , )x y , can be 

defined by: 

0
ˆ [ ( )]{ }x x N s x= +  (9) 

0
ˆ [ ( )]{ }y y N s y= +  (10) 

Where [ ( )]N s  stands for the shape functions.  

The velocity potential at any arbitrary point on a sector can 

be termed using the potential values of the nodes as follows: 

  ( , ) ( ) ( )s N s a  =  (11) 

The term { ( )}a   denotes the potential function along the 

lines connecting the discretization nodes to the scaling 

center.  

As noted by Fouladi et al.[12], in scaled boundary 

coordinate system, the governing equations in terms of the 

potential function { ( )}a   and node flow function 

{ ( )}q  , can be expressed as: 

2

0 , 0 1

1 , 2

[ ] { ( )} ([ ] [ ]

[ ]) { ( )} [ ]{ ( )} 0

TE a E E

E a E a





 

  

+ +

− − =
 (13) 

0 , 1{ ( )} [ ] { ( )} [ ] { ( )}Tq E a E a   = +  (14) 

 

3.2. Solution for the unbounded sub-domains 

In order to solve far-field unbounded sub-domains using 

SBFEM, a modified coordinate system is defined as 

illustrated in Error! Reference source not found.4. The 

origin is placed on the interface of unbounded and bounded 

sub-domains. As shown in Fig. 4, unbounded sub-domains 

share parallel top and bottom side faces. It should be noted 

that only the boundary on the interface of unbounded and 

bounded sub-domains is considered to be discretized 

Introducing the s  coordinate along the mentioned interface 

boundary and   parallel to the bottom and to side faces and 

towards infinity, the modified coordinate system is formed. 

Thus,   changes from zero at the interface boundaries int1  

or int3  to infinity at far end of  . 

The Cartesian and modified scaled boundary coordinate 

system can be related as: 

ˆ [ ( )]{ }x N s x = +  (15) 

ˆ [ ( )]{ }y N s y=  (16) 
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Fig. 4: Applying SBFEM for semi-infinite sub-domains with 

parallel side-faces   

 

As reported by Fouladi et al. [13], the governing equations 

in the modified SBFEM coordinate system can be expressed 

as follows: 

0 , 1 1 ,

2

0 2

[ ]{ ( )} ([ ] [ ]){ ( )}

( [ ] [ ]){ ( )} 0

TE a E E a

k M E a

  



+ −

+ − =
 (17) 

0 , 1{ ( )} [ ]{ ( )} [ ] { ( )}Tq E a E a  = +  (18) 

 

3.3. Solution Process 

To solve the governing equations in the scaled boundary 

coordinate system, a new variable
( )

{ ( )}
( )

a

q


 



 
= 
 

 has been 

employed in Equation (13). Accordingly, Equation (14) can 

be re-written as:  

,{ ( )} [ ]{ ( )}Z    =  (19) 

Using Equation (17) and the variable { ( )}  , Equation 

(18) is converted to: 

,{ ( )} [ ]{ ( )}Z   =  (20) 

Where [ ]Z  stands for Hamilton matrix.  

Solving this system of standard Eigen-value problems, gives 

the relation between { ( )}a  and { ( )}q  . The algorithm 

developed for the process of this solution is demonstrated in 

Fig 5. Where [ ]bK and [ ]Un bK −  are the stiffness matrices for 

bounded and unbounded sub-domains, respectively. Based 

on the matching conditions at the interfaces between the sub-

domains n and 1n+  (shown on eq. 21 and 22), the sub-

domains are assembled. 

1n n  += ,  at the interface between sub-

domains 
(21) 

1n n

n n
  + = −

 
,  at the interface between 

sub-domains 

(22) 

While the nodal potentials based on the assembled equations 

are solved, the wave pressure and subsequently the exciting 

forces and hydrodynamic coefficients can be determined. 

4. Equations of motion (full wave-rigid body 

interaction) 

The system of equations of motion describing sway, heave 

and roll modes, can be expressed as follows: 

2[ ( ) ( )]   ( , 1,2,3)ij ij ij ij i im i c F i j  − + − +  = =  (23) 

Where the values associated with i and j respectively 

represent the components of each parameter with respect to 

sway, heave and roll movements of FBW. 
i  is amplitude of 

motion vector, 
iF  represents the resulting wave exciting 

force vector. 
ijm , 

ijc , 
ij  and 

ij are  the mass, hydrostatic 

stiffness, damping and added mass matrices of the floating 

body, respectively. Calculation of wave exciting forces, 

added mass and damping matrices will be discussed in 

section 5.1 as follows. 

5. Results and Discussion 

This section is divided into two parts. The first part deals 

with verification of the SBFEM model. For this purpose, 

both radiation and diffraction problems are simulated and 

compared against the same cases in other studies. In the 

second part, simulations are carried out for the problem of 

wave-floating breakwater interaction.   

 

5.1. Radiation and Diffraction problems 

In order to evaluate the current SBFEM-based model, the 

radiation problem is considered in the first step. For a 

structure with / 2.0H R = , with R and H defined in Fig. 

(1), hydrodynamic coefficients (added mass and radiation 

damping) are calculated. In this modeling approach, there is 

a need for discretization of the structure surface boundaries. 

Different mesh densities are incorporated for discretization 

of these boundaries. Non-structural boundaries consist of 

two three-node quadratic elements on each boundary. The 

"26 Elements" and "50 Elements" mesh densities, consist of 

12 and 36 three-node quadratic elements on body 

boundaries, respectively. Also, the unbounded sub-domains 

are modeled by two elements. The hydrodynamic forces 

applied to the structures are defined as: 

0

( )wj w j

s

F i n ds=   (24) 

Where jn is the generalized normal with 1 zn n=  , 

2 xn n=  and 3 0 0( ) ( )x zn z z n x x n= − − − . 0 0( , )x z  is 

the rotation center,  is the fluid density, 0s is the wetted 

surface in o xz− plane, and 
wjF is the force in j  direction 

caused by heave, sway and rotational movements (

1,2,3w = ) of the floating body, respectively. In order to 

calculate the integral in equation (24), the 13- points and 37-
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points Newton–Cotes method were employed for the "26 

Elements" and "50 Elements" mesh densities, respectively. 

The added mass, 
wj , and damping coefficients, 

wj , per 

unit length of the structure are calculated as follows: 

2

1
Re( )jw wjF


= −  (25) 

1
Im( )wj wjF


= −  (26) 

The non-dimensional added mass, aC , and damping, dC , 

coefficients can be defined as: 

2

1
Re( )

0.5
awj wjC F

R
= −  (27) 

2

1
Im( )

0.5
dwj wjC F

R 
= −  (28) 

Where s  is amplitude of forced displacement in radiation 

problem. As shown in Error! Reference source not found. 

6 and Fig. 7, the results of added mass and damping 

coefficients in heave and sway movements are compared 

with the analytical solution proposed by Kwang [8] to 

demonstrate the accuracy of SBFEM-based model. 

Fig. 5: The solution procedure of SBFEM-based model for 2DV analysis 
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Fig. 6: Dim Dimensionless added mass and damping coefficients 

for circular structure heaving in calm water 

 

 

 
Fig. 7: Dimensionless added mass and damping coefficients for 

circular structure swaying in calm water 

 

It is clear that the results are in good agreement with the 

bench mark [8] solution. For the purpose of evaluating the 

generality and robustness of the proposed model, the current 

SBFEM-based model is examined for wave diffraction 

problem with a circular cross-section. The incident wave at 

left boundary, 
int1 generates normal velocities. Therefore, 

this problem could be solved using the same approach as 

radiation problem. The hydrodynamic loads that resulted 

from the incident wave on the stationary structures in k  

direction are calculated as: 

0

( )k I S k

s

F i n ds=  +  (29) 

The above exiting loads will be used for the simulation of 

full interaction between incident waves and floating 

breakwater. The components of forces applied on the 

structure are compared with the analytical results of [20]  as 

illustrated in Error! Reference source not found.8. The 

dimensionless forces are calculated by 
'

1w gA R= . As is 

seen, the results of the developed model are in good 

agreement with the results of the analytical work.  

 

 

 
Fig. 8: Dimensionless wave forces for a circular structure 

 

There are some differences between the calculated results 

and the results in the literature. Estimating the curve surface 

by linear elements and calculating the numerical integration 

in each element are the causes of these differences. These 

discrepancies can be eliminated by increasing the number of 

elements. 

5.2. Full interaction between wave and floating 

breakwater 

Considering the discussed problems in the previous sections, 

the hydrodynamic forces exerted on the floating object could 

be estimated by solving diffraction/radiation problems. In 

this section, the floating breakwater responses, interacting 

with incident waves are obtained from the proposed model 

and illustrated in Fig. 9. 
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Fig. 9: RAOs in heave and sway as a function of normalized 

wave frequencies   

 

6. Conclusion 

The SBFEM method is used as a novel method to solve the 

problem of wave interaction with a circular cross section 

floating breakwater in an infinite fluid domain. By locating 

the scaling center within the bounded sub-domains, the 

governing equation in the scaled boundary coordinate 

system becomes homogeneous. This implementation 

eliminates the need for a variety of particular solutions and 

provides a unified solution process for different radiation 

modes and wave diffraction problems. By implementing the 

current SBFEM model, simulation results for radiation and 

diffraction problems are highly accurate when compared to 

the results of other solutions.  
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