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Abstract: 
Although the finite element method (FEM) is a well-established method for modelling the thick 

plates, in some cases FEM encounters some difficulties such as shear locking and decrease in 

the accuracy of results caused by stress concentration around the openings. In this paper for 

the first time, the EFG method based on the higher-order shear deformation theories is 

developed for analysis of thick plates with cutout to overcome these drawbacks. It should be 

mentioned that the EFG method does not need any mesh generation in problem domain and its 
boundaries. The Radial Point Interpolation method (RPIM) is used to discrete the problem 

domain. Several numerical examples are analyzed using proposed method and effects of aspect 

ratios, boundary conditions and location of cutout are discussed in details. Results show that 

by choosing the appropriate shape functions for the deflection and rotations, the presented EFG 

method has successfully overcome the shear-locking problem. Based on numerical results, the 

best position of circular cutout, which minimizes the maximum deflection is determined. The 

approximate equations for determination of maximum deflection are presented using the cubic 

polynomial method. Numerical implementations show that the presented method has high 

efficiency, good accuracy and easy implementation.

1. Introduction 

In recent decades, thick plates have had various utilizations in 

retaining walls, rehabilitation of damaged structures, 

aerospace industry, marine structures and nuclear industry. 

Since the analytical solution of plates is limited to simple 

geometry and boundary conditions, a variety of numerical 

methods such as finite element have been proposed for 

analysis of plates with complex geometry and boundary 

conditions [1, 2]. In spite of the effective application of finite 

element method in many problems, this method has inherent 

shortcomings such as high cost in creating mesh, difficulty in 

adaptive analysis, requirement to predefined mesh, formation 

of shear lock phenomenon in higher order shear deformation 

and mesh complexity issue in plate with discontinuity in the 

domain. Hence, in recent years, the meshless methods have 

attracted significant attention of researchers [3, 4]. 
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The meshless methods have been developed and applied in 

many engineering problems, especially in structural analysis 

including beams, plates and shells since the middle of 1990s. 

Meshless is a method used to establish system algebraic 

equations for the whole problem domain without the use of a 

predefined mesh for the domain discretization. The ideal 

feature for this technique is that, no mesh is required 

throughout the process of formulating and solving the problem 

of a given arbitrary geometry governed by partial differential 

system equations subject to boundary conditions [5, 6]. In this 

method, the discretization of the domain of the problem takes 

place using nodal points, and the shape function of each node 

is defined using the nodal points of the domain covered by that 

node. This feature allows for a more accurate solution to the 

issues of discontinuity in the domain, such as the cutout, 

cracks and corrosion in thick plates.  

Meshless methods can be roughly divided into three groups 

namely; strong form, weak form and the last one is associated 

with weak and strong ones of system equations [5, 7]. The 

strong forms are directly implemented from governing 

differential equations consisting of the general finite 

difference method [8,9], the smooth particle hydrodynamic 
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method [10] and the meshless collocation method [11]. The 

weak form includes the element-free Galerkin (EFG) method 

[12], the reproducing kernel particle method [13,14], the 

meshless local Petrov–Galerkin method [15], the radial point 

interpolation method (RPIM) [5,16,17] and the moving 

Kriging interpolation (MKI) method [18,19]. The last one 

which is mostly considered, is the meshless weak–strong form 

(MWS) method [20, 21]. Meshless methods based on the 

Galerkin weak form require a background mesh to compute 

the quadrature integrations [22-24]. Generally speaking, 

meshless shape functions are rational and hence the higher-

order quadrature needs to be employed to achieve stable and 

accurate solutions, however, computation cost is very 

expensive. The lower order quadrature retains less CPU times 

but the solutions cannot be converged and stabilized [25,26]. 

The nodal integration technique is found to be an appropriate 

choice.  

Sladek et al. [27] presented a new meshless method to solve 

bending problems of thin elastic plates with large deflections 

but, contrary to the conventional boundary integral equation 

method all integrals in the present formulation are regular and 

no special computational techniques are required to evaluate 

the integrals. Alihemmati et al. [28] developed the 3D 

meshless Galerkin method for structural analysis of general 

polygonal geometries. They showed this method can cover the 

plates with considerable thickness, that the classical plate 

theories cannot solve them with accurate results. Cao et al. 

[29] compared the results of meshless method with coupled 

FEM-EFG and coupled BEM-EFG methods. Choi et al [30] 

presented the analysis of Mindlin plate by the EFG procedure-

applying penalty (EFGMP) technique. They showed the 

EFGMP is much more accurate than FEM for Mindlin plate 

even when linear basis functions are used.  

Donning et al. [31] proposed the meshless method for shear-

deformable beams and plates. They used this method to 

eliminate shear and membrane locking in beams and plates 

using an unmodified displacement-based vibrational 

principle. Gulizzi et al. [32] presented an implicit mesh 

discontinuous Galerkin formulation for higher-order shear 

deformation plate theories. Khezri et al. [33] presented a 

unified approach to meshless analysis of thin to moderately 

thick plates based on a shear-locking-free Mindlin theory. 

They extended the modified Mindlin formulation so as to 

completely suppress shear-locking effects. Konda et al. [34] 

proposed a meshless Reissner plate bending procedure using 

local radial point interpolation with an efficient integration 

scheme. Li, Y et al. [35] presented an element-free smoothed 

radial point interpolation method (EFS-RPIM) for 2D and 3D 

solid mechanics problems. Liu, X et al. [36] suggested a 

wavelet multiresolution interpolation Galerkin method. Rad et 

al. [37] developed the meshless local Petrov–Galerkin method 

for nonlinear dynamic analyses of hyper-elastic FG thick 

hollow cylinder with Rayleigh damping. They demonstrated 

that when the cylinder is thick enough, the results of nonlinear 

analysis are close to the results of linear ones. Thai et al. [38] 

investigated a moving Kriging interpolation meshless method 

based on naturally stabilized nodal integration scheme for 

plate analysis. They showed the complexity of the 

heterogeneous structure could be treated via the concept of 

homogenization. Thai, H. T et al. [39] developed an analytical 

solution for refined plate. Ferreira et al. [40] presented a 

meshless strategy using the Generalized Finite Difference 

Method (GFDM) for plate bending problems. They showed 

that by using this method, the original fourth-order differential 

equation could be substituted by a system composed of two 

second-order partial differential equations. 

In this paper, the EFG method is developed to analyze thick 

plates with and without cutout. It should be mentioned that the 

EFG method is one of the most popular meshless methods 

because of its similarities with FEM. This technique is based 

on global weak form of governing differential equation. 

Though there exists a background cell for integration, there is 

no need to refine the integration cell when decreasing nodal 

distance for more accurate field approximation. Thus, the EFG 

method has high convergence rate and the computational time 

required for this method is less than other meshless methods. 

The radial basis functions with Kronecker delta function are 

used as the shape functions. The first and third deformation 

theories are implemented in analysis of thick plates. Effects of 

plate dimensions, boundary conditions and location of circular 

cutout on maximum transverse displacement of plates are 

determined by several numerical examples. Finally, 

interpolation equations for determination of maximum 

deflection of plates with and without cutouts are presented 

using the cubic polynomial method.  

 

2. Fundamental equations of thick plates 

In higher order shear deformation theories of first order shear 

deformation theory (FSDT) and third order shear deformation 

theory (TSDT), in contrast with the Classical Plate Theory 

(CPT) method the transverse shear strains are considered 

using the first and third functions in thickness direction 

[41,42]. Actually, the FSDT develops the kinematics of the 

CPT by relaxing the normality restriction and authority for 

arbitrary but constant rotation of transverse normal [42,43]. 

The FSDT formulation is very similar to that of the 

Timoshenko beam, but is extended in one more dimension. 

The TSDT subsequent the kinematics hypothesis by 

eliminating the transverse normal straightness hypothesis; i.e., 

the straight normal to the middle plane before deformation 

develops into cubic curves after deformation (See Fig. 1) [34, 

44]. Considering a thick plate element as shown in Fig. 2, it is 
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assumed that the vertical load perpendicular to the plate is only 

resisted by flexure and shear stresses (i.e., 0zz ).  

  

 

 (a) CPT                (b) FSDT                   (c) TSDT 

Fig. 1: Deformation of a transverse normal to the middle plane 

with different plate theories [42] 

 

 

Fig. 2: Stresses representation 

 

Therefore, the non-zero stresses can be expressed by [33, 45]: 
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where   is the Poissons ratio,   is the Youngs modulus, D  

is the flexural rigidity of the plate,   is the shear correction 

factor for thick plates that can be expressed by the following 

equation [33]: 
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2.1. FSDT formulation for thick plate 

According to the FSDT theory, the in-plane displacements u

, v  which are parallel to the unformed neutral surface, can be 

expressed by [42,43]: 
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where 0w  represents the transverse displacements of a point 

on the middle plane 0z = , x  and y  are rotations of a 

transverse normal about the y  and x  axes, respectively. 

Using the FSDT formulation, the displacements introduced in 

Eq. (5) can be expressed in following matrix form:  
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Thus, the strain vector of the thick plate can be expressed with 

respect to the displacement vector as [2]: 
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2.2. TSDT formulation for thick plate 

In order to achieve higher accuracy and eliminate shear 

correction coefficients in FSDT, the TSDT is recommended. 

In this method, variation of the transverse shear strains and 

transverse shear stresses through the plate thickness are 

considered using third order functions. According to the 

TSDT, the kinematic hypothesis is further relaxed by 

eliminating the straightness hypothesis; i.e., straight normal to 

the middle plane before deformation may emerge as cubic 

curves after deformation (See Fig. 1(c)). Therefore, similar to 

the FSDT (Section 2.1), the displacement field of the thick 

plate can be expressed by [42]: 
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(7) 

According to the above equation, the displacement vector can 

be expressed in the following matrix form [2]: 
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In TSDT formulation using the general strain–displacement 

relationship, the strains of thick plates can be expressed by [2]: 
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2.3. Essential Boundary Conditions 

The essential boundary conditions of thick plates associated 

with the free and clamped outer edges can be defined as: 

Free (simply supported) edges: 00 =
edageat

w

  (10)
 

Fixed (clamped) edges:  

00 =
edageat

w

    
0=

edageatt
   

0=
edageatn

   (11)
 

where t  and n  are rotations with respect to the axes of 

perpendicular to the tangent and normal direction to the 

boundary, respectively. 

 

3. Shape function with radial point interpolation 

method   

The major drawback of polynomial interpolation method 

(PIM) is the singularity of moment matrix in some cases [2]. 

To create a nonsingular moment matrix, the Radial basis 

function (RBF) is used to develop the RPIM shape functions 

[2,5]. Consider a function u(x) defined in the problem domain 

 . The RPIM interpolates )(xU  using the nodal values at the 

nodes located in support domain of a point of interest Qx . The 

RPIM formulation starts with the following finite series 

representation [2]: 
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where n  is the number of nodes in the support domain of point 

Qx , )( Qi xa is the coefficient vector and ),( yxRi  is the radial 

basis functions. These parameters can be expressed as: 
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where ir  is the distance between the sampling point ix  and 

node Qx , c  is the dimensionless shape parameter, cd  is the 

characteristic length which is the average nodal spacing for all 

the n  nodes located in the support domain. The vector that 

collects the values of field variables at all the `n` nodes in the 

support domain U  can be expressed as: 
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Using Eq. (12), the coefficient vector can be calculated by: 
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where QR is the moment matrix of RBF: 
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Substituting the Eqs. (16) and (17) into Eq. (12), can be written 

as: 
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In which ),( yxi is the shape function for the i-th node. 

Finally, the RPIM shape functions corresponding to transverse 

displacement and rotations of the i-th node can be obtained as 

follows: 
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where i̂  is the shape function for 0w  and yixi ,,
ˆ,   are 

derivatives of the shape function for the two field variables 

yx  ,  respectively Substituting the Eq. (19) into Eq. (18), one 

can write: 
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Note; for elimination of shear locking, the shape functions for 

the rotations x  and y  are produced from the first-order 

derivatives of the shape function used for the transverse 

displacement 0w  [2]. The derivative of shape functions 

yixi ,,
ˆ,ˆ   are introduced in the Appendix A. 

 

4. EFG method for thick plates with cutout 

Consider the domain 
Cutout−

 ~  bounded by tu
u

Cutout
=   

where u  denotes the essential boundary and t  denotes the 

traction boundaries. The superscripts (s) and (e) are used to 

side and edge surfaces of the traction boundaries (See Fig. 3). 
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Fig. 3: Schematic view of thick plate subjected to transverse 
loads and thickness h 

 

Although the RPIM shape function has the Kronecker delta 

property, for clamed supports, in which the both edge 

deflection and edge slopes should be equal to zero, the use of 

Lagrange multipliers method is inevitable. The Galerkin weak 

form with Lagrange multipliers for constraints is given by [2]: 
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where b is the vector of external body forces, u  is the 

prescribed displacement on the essential (displacement) 

boundaries u  and hU  is the displacement vector given by 

Eq. (20). The last two terms in Eq. (21) are produced by the 

method of Lagrange multipliers for handling essential 

boundary conditions for cases when 0− uU h . The 

Lagrange multipliers   here can be viewed physically as 

smart forces that can force 0=− uU h . In Eq. (21), the 

compatible strain h
dUL  for FSDT and TSDT formulations can 

be expressed as: 
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TSDT: 
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Note that the second derivatives of shape functions 

xyiyyixxi ,,,
ˆ,ˆ,ˆ   are introduced in the appendix A. The 

Lagrange multiplier vector   in Eq. (21) is an unknown 

function of the coordinates, which needs also to be treated as 

a field variable and interpolated using the nodes on the 

essential boundaries to obtain a set of discrete system 

equations: 
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where: S  is the set of nodes used for this interpolation 

s  is the curvilinear coordinate along the essential boundary 

i  is the Lagrange multiplier at node i on the essential 

boundary. 

)(
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sNi  is the Lagrange interpolant of order r  which can be 

given in general as follows: 
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The vector of Lagrange multipliers in Eq. (21) can be written 

in the matrix form: 

 
 



=
































=

 





 









Si i

ii

yi

xi

iw

i

i

i

ii

N

N

N

  

0

~
00

0
~

0

00
~

 

(26) 

 

  

 

Substituting Eqs. (22) and (23) into Eq. (24), one can write: 
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where for FSDT iFi BB )(= , jFj BB )(=  and TSDT iTi BB )(=  

, jTj BB )(=  . In the first integral term, we have: 
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The stiffness coefficients ijK  is listed in the Appendix B. 

The second term in Eq. (28) can be expressed as: 
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where if  is called the nodal force vector and F  is all of node 

force vectors on   domain. The additional nodal force vector 

can be given as: 
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Since in this paper the membrane forces are neglected, the 

amount of  
et   is zero. The last term in Eq. (21) is: 
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where tn
 is the total number of nodes on the essential 

boundary and G  is also a global matrix formed by assembling 

its nodal matrix ijG
. Finally: 
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where the vector iq
 can be expressed as: 




 −=

u

T
ii duq

       (36)

 

 which is: 
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Because U  and    are arbitrary, the above equation can be 

satisfied only if: 
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This is the final discrete system equation for the entire 

problem domain. In Eq. (34),  i  is matrix of RPIM shape 

functions, which are defined with respect to the type of 

supports as follow (for simply support): 
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For clamped support: 
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(41) 

where ni,̂  is shape function of rotation with respect to the 

axis parallel to the normal direction of the boundary and ti,̂  

is shape function rotation with respect to the axis 

perpendicular to the normal direction of the boundary. The 

parameters yx nn ,  are the unit outward normal vector on the 

boundary. 

5. Numerical integration 

All integrations are over the global problem domain   and 

the global traction boundary t
. In order to evaluate these 

global integrals, the problem domain is discretized into a set 

of background cells (See Fig. 4). Hence, a global integration 

can be expressed as a summation of integrals over these cells. 

It should be mentioned that in contrast with the FEM, the 

background cells are required only for integration and any 

form of cells is acceptable as long as it provides sufficient 

accuracy in the integrations [5]. The Gauss quadrature scheme 

that is commonly used in the FEM is employed to perform the 

integrations numerically over these cells.  

 

Fig. 4: Meshless model for EFG method with background mesh of 

cells for integration 

 

6. Numerical experiments and discussions 

6.1. Analysis of thick plates without cutout 

To validate the proposed method, first a simply supported 

square thick plate subjected to the following sinusoidal 

distributed load is analyzed using the proposed method. 
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where 0q  is the magnitude of the sinusoidal distributed load at 

the center of the plate. The mechanical properties of the 

material are considered as: 
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(43) 

The obtained results of maximum transverse displacement and 

stress components for different thicknesses are presented and 

compared with the exact and other methods in Table 1. 

According to this table, obtained results by the presented 

method are very close to those of refined theories and exact 

solution. The maximum errors of results for all aspect ratios 
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are acceptable. It should be mentioned that in all figures and 

tables, the displacements and stresses are presented in the 

following non-dimensional forms commonly used in the 

literature: 
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(44) 

 

In this paper for the first time, an estimation function is 

suggested for calculating the maximum deflection of simply 

supported thick plates under uniform and sinusoidal transverse 

loading applied on the top surface of the plate. For this 

purpose, the full Quadratic method and Rational method [46-

48] is applied to obtained results. Using this method, the 

following equation can be presented to estimate the maximum 

deflection of the thick plate with respect to the maximum thin 

plate deflection with an acceptable accuracy. 

( )  ( )
CPTw

EFGTSDT
EFGFSDTP

WKW maxmax .
−
−

     (45)
    

where CPTW )( max  is the maximum non-dimensional transverse 

displacement equivalent plate based on CPT and wK  

coefficient for simply supported plate subjected to sinusoidal 

and uniformly distributed load is given by equations (46) and 

(47), respectively. 
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111

000268.0)103.1(
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384340387.552449674715.616-1
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



+

+−
=wK  

 (47) 

 

In equations (46) and (47) 1  and 1  are aspect ratios defined 

by 
b

a
=1  and 

h

b
=1 . In Table 2, error percentages are 

calculated using the following equations: 

( ) 

solutionexact by  value

solutionexact by  Value-

 

1%
max

EFGTSDT
EFGFSDTP

W

Error
−
−

=

solutionexact by  value

solutionexact by  Value-)(W

 

2% 2EFG-TSDT=Error

 

(48) 

 

6.2. Analysis of thick plates with cutout  

Consider a square plate with different supports, different 

thicknesses and circular cutout (Radius =1 m) located in 

arbitrary position subjected to the uniform distributed loading 

(See Fig. 5). Nodal distribution is 21×21 regular nodes with 

14 nodes around the circular cutout. The results obtained for 

transverse displacement of FSDT & TSDT analysis are 

showed in Figs. 6-9. 

 
(a)   

 
(b)   

Fig. 5: Square plate with cutout; (a) Simply Support; (b) Clamped 

Support 

 

In all graphs, 𝑥𝑐 and 𝑦𝑐 are the coordinates of the cutout center 

and the values of   ,,  are given by: 

( )

( )
CPT

EFGTSDT
EFGFSDT

cc

W

W

b

y

a

x

max

max
−
−

=== 

 

(49) 

where CPTW )( max  is the maximum non-dimensional transverse 

displacement equivalent plate based on CPT. In Fig. 6, the 

effect of cutout position on transverse displacement obtained 

using FSDT theory is examined. Based on these figures it is 

possible to determine the best position of circular cutout which 

minimizes the maximum deflection. For simply supported 

plates, the best position of the cutout is determined as 5.0=  

and 9.0=  the value of   is 1.123. In addition, it can be seen 

that the maximum value of   occurs at 5.0=  and 6.0= , 

which is equal to 1.283. In Fig. 7, the effect of cutout position 

on transverse displacement obtained using FSDT theory is 

examined. Based on these figures it is possible to determine 

the best position of circular cutout, which minimizes the 

maximum deflection. For clamped supported plate, the best 

position of the cutout is determined as 7.0=  and 75.0=  

the value of   is equal to 1.421. According to the Fig. 8, at 

position 8.0,6.0,5.0=  and 8.0 , the value of    is the 

same ( 141.1= ). In addition, at position 7.0,6.0,5.0=  and 

835.0= , the value of    is the same ( 132.1= ). According 

to Fig. 8, the best position of the cutout is determined as 

9.0=  and 6.0=  the value of   is equal to 1.16. According 

to Fig. 9, the best position of the cutout is determined as 

7.0=  and 76.0=  the value of   is equal to 1.572.  
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Table. 1: Comparison of non-dimensional transverse displacement w , in-plane normal stress xx
 , in-plane 

shear stress xy
and transverse shear stress xz

of simply supported square plate subjected to sinusoidal 
distributed load 

h

a
=  

Theory Model w  
xx  xz  xy  

(0) (-h/2) (0) (-h/2) 

10 Present TSDT-EFG 2.9881 0.2187 0.2547 – 

Ghugal et al. [49] SSNDT 2.9333 0.2125 0.2454 0.1060 

Pagano [50] Exact 2.9425 0.1988 0.2383 – 

Reddy [42] TSDT 2.9610 0.1990 0.2380 0.1070 

Ghugal et al. [49] 5th OSDT 2.9143 0.1996 0.2383 0.1106 

Reissner [43] FSDT 2.9340 0.1970 0.1690 0.1060 

Reddy [42] CPT 2.8020 0.1970 – 0.1060 

20 Present TSDT-EFG  2.9402 0.2104 0.2415 – 

Pagano [50] Exact 2.8377 0.1979 0.2386 – 

Ghugal et al. [49] 5th OSDT 2.8303 0.1981 0.2386 0.1074 

50 Present TSDT-EFG 2.8020 0.1967 0.2312 – 

Ghugal et al. [49] SSNDT 2.7991 0.2100 0.2456 0.1060 

Pagano [50] Exact 2.8082 0.1976 0.2386 – 

Ghugal et al. [49] 5th OSDT 2.8070 0.1977 0.2387 0.1066 

100 Present TSDT-EFG 2.7660 0.1948 0.2310 – 

Ghugal et al. [49] SSNDT 2.7949 0.2099 0.2456 0.1060 

Pagano [50] Exact 2.8040 0.1976 0.2387 – 

Ghugal et al. [49] 5th OSDT 2.8037 0.1976 0.2387 0.1064 
 

 

Table. 2: Kw coefficient for simply supported plate subjected to sinusoidal distributed load 
 

1  1  Kw 
CPTw )( max Reddy 

(1990) 

TSDT-EFG 

* 

TSDT-

EFG** 

Exact 

Reddy 

(1990) Error1  Error2  

1 10 1.0660 2.803 

 

2.985 2.988 2.9610 

0.83% 0.92% 

20 1.0460 2.929 2.934 2.8377 

3.23% 3.39% 

50 1.0017 2.805 2.796 2.8082 

0.11% 0.11% 

100 0.9797 2.744 2.757 2.8040 

2.16% 1.68% 

3 10 1.0386 9.080 9.407 9.448 9.4790 

0.76% 0.33% 

20 1.0239 9.274 9.188 9.2810 

0.07% 1.00% 

50 0.9956 9.017 9.090 9.1170 

1.09% 0.30% 

100 1.0005 9.061 9.081 9.0810 

0.22% 0.00% 

*Maximum deflection of a thick plate for simply supported with Estimate function Proposed ( ) 
EFGTSDTPW

−max  

** Maximum deflection of a thick plate for simply support present theory 2)( EFGTSDTW −  
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Table. 3: Kw coefficient for simply and clamped supported plate with cutout subjected to sinusoidal and uniform distributed load distributed load 

 

 

b/h Type (Wmax)CPT
*  [36] 

Coefficients 

 
 1 2 3 4 5 6 7 8 9 10 

10 

FSDT 

4.444 

-2.3521 9.059 8.626 -11.25 -10.73 4.433 4.324 -5.8 2.71 2.411 

 
 

20 -2.4468 9.465 8.289 -12.16 -10.59 4.903 4.398 -5.266 2.663 2.108 

50 -2.4556 9.099 8.423 -11.91 -11.05 4.903 4.678 -4.703 2.386 1.961 

100 -2.4276 8.842 8.462 -11.68 -11.23 4.847 4.787 -4.418 2.236 1.893 

10 

TSDT 

-2.3933 9.905 8.164 -12.4 -10.05 4.879 4.064 -5.905 2.944 2.251 

20 -2.4278 9.525 8.225 -12.19 -10.46 4.897 4.323 -5.349 2.708 2.123 

50 -2.4433 9.117 8.384 -11.91 -10.97 4.887 4.63 -4.759 2.415 1.975 

100 -2.4331 8.967 8.383 -11.84 -11.11 4.908 4.738 -4.45 2.28 1.876 

10 

FSDT 

1.375 

-3.3884 12.26 11.78 -19.29 -18.88 9.254 9.496 0.552 0.486 -0.442 

 
 

20 -1.811 7.627 7.13 -14.49 -13.88 7.681 7.522 4.949 -1.56 -1.807 

50 -0.8824 4.97 4.802 -12.06 -11.87 6.971 6.863 8.02 -2.878 -2.762 

100 -0.6612 4.303 4.327 -11.42 -11.48 6.74 6.742 8.708 -3.115 -3 

10 

TSDT 

-3.9902 14.06 13.54 -21.12 -20.75 9.845 10.22 -1.101 1.254 0.068 

20 -2.1129 8.509 7.962 -15.37 -14.72 7.959 7.829 4.054 -1.154 -1.525 

50 -0.9867 5.274 5.044 -12.32 -12.05 7.043 6.915 7.644 -2.72 -2.649 

100 -0.7028 4.49 4.355 -11.65 -11.49 6.836 6.745 8.616 -3.075 -2.978 

10 

FSDT 2.803 

-1.8408 7.624 7.03 -8.798 -8.056 3.296 3.107 -5.75 2.561 2.198 

 
20 -1.8048 7.704 6.502 -9.504 -7.905 3.745 3.224 -4.747 2.327 1.766 

50 -1.7282 7.138 6.486 -9.129 -8.294 3.726 3.497 -3.911 1.935 1.548 

100 -1.6891 6.891 6.475 -8.945 -8.436 3.704 3.594 -3.565 1.76 1.465 
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10 

TSDT 

-1.7536 7.744 6.467 -9.666 -7.933 3.864 3.245 -4.089 1.991 1.512 

 

20 -1.493 6.885 5.838 -9.029 -7.617 3.724 3.235 -3.171 1.672 1.246 

50 -1.3767 6.405 5.505 -8.685 -7.479 3.677 3.271 -2.489 1.402 1.008 

100 -1.3587 6.316 5.4 -8.684 -7.457 3.716 3.304 -2.193 1.29 0.89 

10 

FSDT 

0.628 

-4.3529 15.79 15.56 -23.81 -23.78 11.55 11.7 0 0 0  

 

20 -2.5878 10.56 10.05 -18.55 -17.96 9.731 9.598 5.025 -1.796 -2.045 

50 -1.1033 6.353 6.518 -15.09 -15.41 8.855 8.973 10.5 -4.03 -3.798 

100 -0.7662 5.312 5.84 -14.08 -14.89 8.483 8.823 11.52 -4.371 -4.151 

10 

TSDT 

-4.5301 16.74 16.46 -25.12 -25.11 12.13 12.31 0 0 0 

20 -3.122 12.04 11.41 -19.83 -19.09 10.08 9.939 3.24 -1.055 -1.468 

50 -1.2675 6.837 6.878 -15.47 -15.63 8.949 9.01 9.849 -3.765 -3.596 

100 -0.8209 5.509 5.924 -14.32 -14.98 8.597 8.859 11.43 -4.356 -4.114 
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Fig. 6: Relation of , , - simply supported Plate subjected to 

uniform distributed load ratio - b/h=10 (FSDT) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Relation of , , - clamped supported Plate subjected to 

uniform distributed load ratio - b/h=10 (FSDT) 

 

 

Fig. 8: Relation of , ,  - simply supported Plate subjected to 

uniform distributed load ratio - b/h=10 (TSDT) 

 
Fig. 9: Relation of , ,  - clamped supported Plate subjected 

to uniform distributed load ratio - b/h=10 (TSDT) 

 

Here again, a new relation has been proposed to determine 

transverse displacement of plates with cutout based on FSDT 

& TSDT theories. The estimation function obtained by the full 

cubic method, is the same as introduced in Eq. (45) except that 

the wK
 coefficient for a simply supported thick plate with 

cutout subjected to uniform and sinusoidal distributed 

loadings are defined by: 

2
10

2
98

3
7

3
6

2
5

2
4321





+++

++++++=wK

  (50)
 

where 101,..., 
 are constant values which are different for 

uniform and sinusoidal loading and listed in the Table 3. 

( )  ( )

( )CPTW

EFGTSDT
EFGFSDTW

EFGTSDT
EFGFSDTPW

ErrorAverage
max

maxmax
−
−−

−
−

=

 

(51) 

 

where ( ) 
EFGTSDT
EFGFSDTP

W
−
−max  is the maximum deflection of the 

thick plate obtained by the proposed estimation function. The 

diagrams of obtained results by FSDT and TSDT theory are 

compared with the results of estimation functions in Figs. 10 

and 11, respectively. According to these figures, it can be seen 

that the estimation functions have a good agreement with the 

numerical results. 
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Fig. 10: Comparison between the estimation function and FSDT res

ults for simply supported plate subjected to uniform load and b/h=1

0 

 

 
Fig. 11: Comparison between the estimation function and TSDT res

ults for simply supported plate subjected to uniform load and b/h=1

0 

 

7. Conclusions 

In this paper, the EFG method has been developed for analysis 

of thick plates with and without cutout. The formulations have 

been tested for different supports, aspect ratios and cutout 

coordinates. According to the results obtained by the present 

method, the full cubic function is proposed to estimate the 

maximum deflection of  thick plates. The obtained results have 

been compared with published solutions and excellent 

agreement is seen. The main results of this paper can be 

outlined as follows: 

• By choosing the appropriate shape functions for the 

deflection and rotations, the presented EFG method has 

successfully overcome the shear-locking problem.  

• The proposed model is insensitive to node distribution in 

two directions. Additionally, the nodes can be either 

regularly or irregularly distributed. It should be mentioned 

that, using irregularly distributed nodes is unavoidable for 

modeling of plates with cutout. 

• Based on obtained results and cubic polynomial method, 

the estimation functions for predicting maximum 

deflection of plates with and without cutout have been 

presented.  

• For various boundary conditions and loadings, the 

obtained results using the presented EFG method and 

estimation functions have a good agreement with those 

obtained by refined theories and exact solution. 

The effect of cutout position on maximum deflection has bee

n investigated using various diagrams and tables. The best po

sition of circular cutout, in which the deflection is minimum, 

is determined experimentally. 
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Appendix A: Stiffness Coefficients 
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Appendix B: Stiffness Coefficients 
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