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Abstract: 
The overturning potential of rocking soil-structure systems subjected to near-fault pulses is 

investigated in this paper. An extensive parametric study is conducted, including medium-to-

high-rise buildings with different aspect ratios based on shallow raft foundation allowed to 

uplift considering the effects of nonlinear soil-structure interaction.  The considered parameters 

are (i) ground motion characteristics, (ii) structural properties of the superstructure, and (iii) 

foundation design parameters. Mathematical directivity and fling pulses are used as input 

ground motion. The superstructure is assumed to predominantly showcase first-mode 

characteristics. Two-dimensional overturning spectra of buildings of various geometrical, as 

well as dynamic characteristics, are derived. Evidently, the prevalent pulse period (Tp) is a key 

parameter governing the rocking response of the system. It is also observed that fling pulses are 

more destructive than directivity pulses of the same magnitude with respect to overturning 

potential. On the other hand, the lower frequency parameter (p) of the more large-size buildings 

is a quantity that indicates higher safety margins against toppling with respect to small-size 

buildings of the same aspect ratio. 

D

D 

1. Introduction 

A significant amount of research in recent years is devoted 

to evaluating the effects of near-fault ground motions on 

structural and geotechnical systems. Especially after 

Northridge, Kobe, Kocaeli, and Chi-Chi earthquakes, two 

salient features of near-fault ground motions, namely 

“forward directivity” and “fling step”, have become more of 

interest to researchers. Forward rupture directivity emerges 

as a single long-period high-amplitude pulse occurring near 

the beginning of shaking and is oriented perpendicularly to 

the fault [1]. The fling-step effect is the outcome of the 

permanent tectonic deformation of the earth in the proximity 

of the fault. It manifests itself in the record with a static 

residual displacement, observed in the strike-parallel and 

strike-normal directions for strike-slip and dip-slip faults, 

respectively [2,3].  
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Assessing the potential of near-fault pulses that bring about 

damage in structures, was first initiated by Bertero [4]. 

Thereafter this trend was followed by several investigations 

on seismic performance of various structural and 

geotechnical systems subjected to near-fault ground 

motions. Some of these studies have given particular 

attention to the potentially destructive effects of directivity 

and fling pulses using a mathematical representation of these 

two phenomena [5–13]. 

In the meantime, the inevitable inclusion of soil-structure 

interaction (SSI) under the influence of strong near-fault 

ground motions, has turned attention to elaborating on soil-

structure response and potential vulnerability to directivity 

and fling pulses.  Spyrakos and Nikolettos [14] proposed 

novel criteria for overturning the stability of flexible 

structures. They attempted to develop a simple design 

criterion that includes flexibility effects of slender structures 

to their overturning stability. They addressed the inverse 

problem to estimate the ground acceleration that caused the 

toppling of a slender structure. Zhang and Tang [15] studied 

the inertial SSI effects on linear and bilinear structures 

supported on the foundation that are able to translate and 
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rock when subjected to mathematical near-fault pulses. 

Acikgoz and DeJong [16] addressed the fundamental 

dynamics of flexible rocking structures with an analytical 

approach. They compared the rocking response of flexible 

structures with those of similar linear elastic oscillators and 

rigid rocking structures, revealing the distinct characteristics 

of flexible rocking structures. Peng et al. [17] proposed a 

simple analytical method to predict the overturning loads for 

single-column pier bridges. Their novel approach provided 

an iterative method that could determine the minimum 

critical load patterns at which an overturning state was 

reached. Haeri and Fathi [18] studied the rocking behavior 

of shallow foundations subjected to slow cyclic loading with 

the consideration of SSI. They concluded that deploying the 

linear elastic-perfect plastic approach may result in higher 

uplift of the foundation in comparison to that using a non-

linear elasto-plastic approach, particularly in structures with 

lower heights. Jia et al. [19] performed stability analyses of 

blocky structure system using discontinuity layout 

optimization (DLO). Their proposed DLO procedure was 

extended to mimic rotations in the approximate simulation 

of rotational and translational failures along boundaries, thus 

simulating the mechanism on the rotating block. Their 

results demonstrated that the DLO was a simple but 

scientific method for identifying the mechanism of the 

critical failure of blocky structures. 

In particular, the effect of elasticity on uplift, overturning 

instability, and harmonic response, from which an uplifted 

resonance emerges, was also investigated.  

Regarding recent findings on seismic performance 

evaluation of soil-structure systems subjected to near-fault 

ground motions, it would be a promising idea to incorporate 

foundation uplifting in the problem. Accordingly, the work 

presented here aims to elaborate on the role of rocking-

induced nonlinear effects of SSI during low-frequency high-

amplitude excitation of directivity and fling pulses. To this 

end, an extensive parametric study is conducted. Medium-

to-high-rise building structures with different aspect ratios 

based on shallow raft foundation are investigated. 

Mathematical directivity and fling pulses are used as input 

ground motion. The superstructure is assumed to 

predominantly showcase first-mode characteristics. The 

comparative assessments provide further insight into the 

soil-foundation-structure interaction problem considering 

nonlinear effects of foundation uplifting. In addition, the 

stability analysis of the rigid-block-on-rigid-base model due 

to overturning potential is discussed. 

 

2. Overturning Potential of Rocking Structures 

Evaluation of overturning potential of rocking structures 

necessitates advanced soil-structure interaction analysis and 

a huge amount of computational efforts, which is an 

inappropriate procedure for common applications. 

Therefore, as shown in Fig. 1, it is attempted to further 

simplify the rocking structure with the surface foundation of 

width B as a rigid block of the same width, rocking on a rigid 

base (Fig. 1c). The issue of earthquake-induced rocking of 

rigid blocks on rigid base has been studied very thoroughly 

over the last decades (e.g. [20–24]), revealing the sensitive 

and highly nonlinear nature of the problem.  

The rigid-block approximation inherently implies three 

fundamental assumptions [25]: (i) The rigid block 

assumption ignores the flexibility of the system. However, 

past studies postulate that the effect of system flexibility is 

negligible since the behavior is rocking-dominated and 

bending is minimal. (ii) The possible contribution of higher 

modes of vibration (for mdof structures) is ignored. Yet, 

according to Bielak [26], who investigated the response of 

fixed-base systems, the contributions of the second and 

higher modes to the overturning moment at the base of any 

classical linear system whose fundamental mode is given by 

a straight line, vanish identically. (iii) The rigid base 

assumption makes it impossible to capture the effect of soil 

compliance. Based on these assumptions, the rigid-block 

approximation estimates a conservative upper-bound of 

earthquake displacement demand for which the rocking 

building survives (toppling will not take place). 

Accordingly, in the present study, an analytical approach is 

conducted for a rigid block on a rigid base subjected to 

mathematical directivity and fling pulses. 

 

3. Rigid-Block-on-Rigid-Base System 

Description 

According to Fig. 1, the primary system can be modeled by 

the symmetric rigid block of mass m and centroid mass 

moment of inertia I, (Fig. 1c). The rigid block of height 

H=2h, and width B=2b is assumed to rotate about the corners 

O and O’. The distance between one corner of its base and 

the mass center is denoted by r, and the angle measured 

between r and the vertical axis when the body is at rest is 

denoted by 𝛼, where 𝛼 = tan−1(ℎ 𝑏⁄ ). 

The system's dynamic response is realized by permitting the 

block to pivot on its corners with respect to the horizontally-

moving base. The system then is a rigid 1-dof oscillator. 

Sliding of the block relative to the supporting base is not 

considered. Different oscillation patterns of the model are 

illustrated in Fig. 2. 

 

4. Mathematical Near-Fault Pulse Models 

To study the response of structure to near-fault pulses with 

different periods, artificial ground motions have been used. 

For this purpose, regarding the fact that directivity and fling 

pulses have a relatively deterministic nature, some 
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researchers tried to present synthetic models for these pulse-

type motions (for example, [27–33]). In this study, the model 

proposed by Mavroeidis and Papageorgiou [34] has been 

used to mathematically express the directivity pulse. The 

mathematical equation of its velocity record is as follows: 

     
2
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(1) 

where A, ƒp, γ, and ν indicate pulse amplitude, prevailing 

pulse frequency, the number of cycles, and phase, in the 

same order. 

 

Fig. 1: The analogy between the rocking response of a building structure and equivalent rigid block subjected to base 

excitation. 
 

 

Fig. 2: Sequential states of the rigid block on rigid base: a) at rest; b) negative rocking ((t) < 0); c) impact condition ((t) = 

0); d) positive rocking ((t) > 0). 
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The t0 shows the time of pulse arrival, and γ is a number 

between 1 and 3, which is chosen as 2 in this study. ν is used 

for better fitness of pulse on real record, and in this study, its 

value is zero.  

For different records, A has a value close to the record’s Peak 

Ground Velocity (PGV). Several equations based on 

magnitude and distance are presented for PGV (e.g. Alavi 

and Krawinkler [28]; Bray and Rodriguez-Marek [27]; Xin-

le and Xi [35]). Since A is related to rise velocity in the fault, 

and since rise velocity is equal to the ratio of rising 

displacement to rise time and both of them are functions of 

rupture specified length, hence A is independent of rupture 

specified length and, as a consequence, independent of 

magnitude, and as an approximation, a value of 100 cm/s is 

chosen as pulse amplitude [34].  

Another parameter used as a control variable in this paper is 

the pulse period (Tp), which is the inverse of prevailing pulse 

frequency (fp). This parameter is a function of rising time 

and is in direct relation with magnitude. Several equations 

are presented for the relation of pulse period and magnitude 

[6,27,28,34,35]. 

The proposed relation by Mavroeidis and Papageorgiou [34] 

is: 

𝑙𝑜𝑔 𝑇𝑝 = −2.9 + 0.5𝑀𝑤 (2) 
 

In which Tp is in second and Mw shows the magnitude. Since 

the mainspring of this study is to evaluate the effect of Tp 

variations, a wide range of 0.5-3.0 s with steps of 0.25, and 

3.0-5.0 s with steps of 0.5, and then 5.0-12.5 s with steps of 

2.5 is considered. According to Equation (2), the entire range 

of Tp used in this study with lower and upper bound equal to 

0.5 and 12.5 s corresponds with magnitude (Mw) of 4.4 and 

7.2, respectively. 

The fling pulse used in this study is based on the model 

proposed by Sasani and Bertero [29]. The mathematical 

equation of its acceleration record is as follows: 

   2

2 2
sin ,

for

i

p

p

D
a t t T

T
p

T t T T
i i

T

  
  

  

  

 
(3) 

Where, D denotes the residual ground offset at the end of 

pulse duration, and Tp and Ti denote pulse period and pulse 

arrival time, respectively. The range of Tp variations in this 

paper is the same as directivity pulse. 

 

5. Superstructure 

Inasmuch as soil-structure interaction may be considered to 

affect only the contribution of the fundamental mode of the 

superstructure (ATC), modal analysis is carried out to 

incorporate first-mode structural behavior in this study. 

Based on the modal analysis of the fixed-base 

superstructure, the effective mass (me) of the superstructure 

at jth mode is defined by Equation (4).  
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in which 𝜑𝑖𝑗  should be interpreted as the displacement 

amplitude of the ith floor when the structure is vibrating in 

its fixed-base fundamental natural mode (i.e. j=1), and mi is 

the seismic mass at ith level of the n-story building. The 

effective height (he) of the superstructure is also defined by 

Equation (5). 
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(5) 

in which 𝜑𝑖1 has the same meaning as the quantity 𝜑𝑖1 in 

Equation (4) when j=1. In the interest of simplicity, it is 

recommended by ATC as a good approximation to assume 

linear fundamental natural mode shape for typical tall 

buildings for which the weight is uniformly distributed along 

with the height. On the other hand, according to Bielak 

(1969), who investigated the response of fixed-base systems, 

the contributions of the second and higher modes to the 

overturning moment at the base of any classical linear 

system whose fundamental mode is given by a straight line, 

vanish identically. Hence, such a mode shape which 

increases linearly from the base to the top of the building is 

used in this study to calculate 𝜑𝑖1 quantities in Equations (4-

5). Accordingly, for 10-, 15-, and 20-story buildings that are 

investigated in this paper, the first-mode mass participation 

factors obtained are equal to 0.786, 0.774, and 0.768, 

respectively. The effective height (he) obtained is also equal 

to 70% of the total height of the buildings. 

In terms of higher-mode effects, it is noted that the current 

codes of practice, such as the International Building Code 

[36], require to consider all significant modes, so that at least 

90 percent of the participating mass of the structure is 

included in the calculation of response. However, due to the 

fact that only the fundamental mode has a nonvanishing base 

moment and therefore, a tendency to rotate [37], the rotation 

of the base does not occur in the higher modes under these 

circumstances. As a result, the higher-mode effects can be 

reasonably ignored for the purpose of overturning analysis. 

 

6. Parametric Study 

To make a reliable assessment of nonlinear SSI effects on 

seismic performance of rocking structures subjected to near-

fault pulses, it is extremely important to choose a 

combination of different sets of parameters appropriately. 

These sets of parameters are (i) ground motion 

characteristics that have been studied in section 4, (ii) 

structural properties of the superstructure, and (iii) 

foundation design parameters. 
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The second set of parameters describing the structural 

properties of the buildings are presented in Table 1. These 

parameters are calculated according to the modal approach 

explained in section 5 for 10-, 15-, and 20-story buildings 

with a geometric aspect ratio (or slenderness ratio, SR) of 2 

and 3. It is noted that since the design of shallow raft 

foundations for medium-to-high rise buildings with high 

slenderness is not practical, relatively low values of aspect 

ratio are selected in this study. 

The third set of parameters describing the structural 

properties of the foundation are presented in Table 2. It is 

assumed that the superstructure is supported by shallow 

foundation with no embedment. The raft foundations are 

designed based on the load bearing capacity of the 

underlying soil as well as settlement criteria based on 

recommendations of FEMA P-751 [38]. The vertical static 

safety factor of foundation (FSv) is a key parameter 

controlling the potential of foundation uplifting and soil 

plasticity during foundation-soil interactions. Low values of 

FSv means statically heavily-loaded foundations that can 

exhibit a significant level of nonlinearities during seismic 

loading. It is noted that geotechnical properties of the subsoil 

corresponding to soil type B, represents a very dense and 

rock site according to site classification introduced in 

ASCE7 [39]. A list of geotechnical properties of the subsoil 

is presented in Table 3. 

 

7. Equation of Motion 

When subjected to ground acceleration, gx , the rigid block 

will oscillate in the rotational direction with a rocking angle 

of (t) about corner O ((t) > 0) or corner O’ ((t) < 0) 

relative to the rigid base. 

The single equation of motion of the system in the pure-

rotation oscillation pattern is given by: 

   

 

2 sgn cos sin

cos sgn sin g

mr I mg b h

m h b x
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  

       
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 (6) 

 

in which (t) is the angular rotation of the block (positive in 

the clockwise direction) and sgn() is the signum function 

in . Also, m and I are the mass and centroid mass moment 

of inertia, I = m (h2+b2)/3, for rectangular rigid block, and r 

denotes half-diameter of the block. 

 

 
Table 1: Structural properties of the building models including fundamental mode of fixed-base superstructure 

No. story Aspect ratio, SR Weight, Wstr (kN) Effective mass, me (ton) Effective height, he (m) 

10 
2 5883.6 388.9 21 

3 3922.4 259.3 21 

15 
2 13238.1 862.3 31 

3 8825.4 574.8 31 

20 
2 23534.4 1521.2 41 

3 15689.6 1014.1 41 

 

Table 2: Structural properties of raft foundations with no embedment 

Building aspect ratio, SR  2  3 

Soil type  B  B 

   10-story building (Tf = 1.2 m) † 

Foundation length, Lf (m)  15  10 

Vertical static safety factor of 

foundation, FSv 
 3.864  3.864 

Foundation-to-structure weight 

ratio, Wf /Wstr 
 0.33  0.33 

   15-story building (Tf = 1.5 m) 

Lf (m)  22.5  15 

FSv  2.809  2.809 

Wf /Wstr  0.275  0.275 

   20-story building (Tf = 1.8 m) 

Lf (m)  34  23 

FSv  2.724  2.790 

Wf /Wstr  0.318  0.327 

† Tf  denotes thickness of the foundation 
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Table 3: Geotechnical properties of the underlying soil 

Soil Type B 

Density,  (t/m3) 21 

Shear modulus, G (MPa) 130 

Poisson’s ratio,  0.35 

Cohesion, C (kPa) 10 

Friction angle,  (deg) 40 

Shear wave velocity, Vs (m/s) 800 

 

 

Fig. 3: Three consecutive snapshots of the rigid block in: a) pre-impact; b) impact; c) post-impact condition. Rocking about 

corner O is followed by re-uplifting about O’. 

Evidently, the equation of motion governing the rocking 

regime is highly nonlinear and not amenable to closed-form 

solution, even for the simplest form of ground excitation. 

The signum function in  is used in Equation (6) in order to 

represent the equation of motion in two different phases, 

namely positive and negative rocking, as displayed in Figs. 

2c and 2a, respectively. Note that Equation (6) holds only in 

the absence of impact (≠ 0). At that instant, both corner 

points O and O’ are in contact with the base, rendering the 

above formulation invalid.  

To overcome this problem, the subsequent instants at which 

impact occurs are deinterlaced during the time-domain 

analysis of Equation (6). Impact condition takes place when 

the rigid block is switching from one oscillation pattern to 

another (see Fig. 3). In such a condition, time-domain 

integration of equation of motion at the end of the pre-impact 

phase (Fig. 3a) terminates. Then analytical force-based 

formulation is carried out in order to impose the effect of the 

impact problem. Next, the integration of equation of motion 

governing the post-impact phase (Fig. 3c) must account for 

the ensuing instantaneous change of the system’s velocity. 

The detailed formulation of impact problem is addressed in 

the following.  

 

8. Impact Problem 

The dynamic response of the system is strongly affected by 

the occurrence of impacts between the block and the 

horizontally-moving base. In fact, it renders the problem 

nonlinear by virtue of the discontinuity introduced in the 

response. The impact causes the system to switch from one 

oscillation phase to another i.e. from positive to negative 

rocking and vice versa (see Fig. 2). 

The critical role of impact on the dynamics of the system 

necessitates a rigorous formulation of the impact problem. A 

model governing impact is derived herein using classical 

impact theory. According to the principle of impulse and 

momentum, the duration of impact is assumed short, and the 

impulsive forces are assumed large, relative to other forces 

in the system. Changes in position and orientation are 

neglected, and changes in velocity are considered 

instantaneous. Moreover, this model assumes a point-

impact, zero coefficient of restitution (perfectly inelastic 

impact), impulses acting only at the impacting corner 

(impulses at the rotating corner are small compared to those 

at the impacting corner and are neglected), and sufficient 

friction to prevent sliding of the block during impact. The 

assumptions made in solving the impact problem are similar 

to those of Roussis and Odysseos [40] for dynamic analysis 
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of seismically isolated rigid blocks subjected to near-fault 

ground motions. 

Under the assumption of perfectly inelastic impact, the only 

possible response mechanism of the following impact would 

be rocking about the impacting corner when the block re-

uplifts (no bouncing), i.e. switching from positive to 

negative rocking or vice versa (see Fig. 2). The formulation 

of impact is divided into three phases: pre-impact, impact, 

and post-impact, as illustrated schematically in Fig. 3. In the 

following notation, the superscript “-” refers to a pre-impact 

quantity and superscript “+” to a post-impact quantity. As 

stated before, it is assumed that impact is accompanied by 

an instantaneous change in velocities, while the system 

displacements remain unchanged during the impact phase 

(Fig. 3b). Hence, the impact analysis is reduced to the 

calculation of initial conditions for the post-impact motion, 

 , given the position (= 0) and the pre-impact velocity, 

 . 

The principle of linear impulse and momentum for the rigid 

block at impact phase (Fig. 3b) along the vertical direction 

(z-axis) states that  

zF dt mz mz    (7) 

in which  dt
z

F , 
z  and 

z  are the vertical impulse 

(assumed to be applied at O’) and the absolute pre- and post-

impact vertical velocities of the mass center of the block, 

respectively. In addition, the principle of angular impulse 

and momentum states that 

 zb F dt I I      (8) 

In Equation (7), the pre- and post-impact vertical 

components of the relative translational velocity of the mass 

center can be expressed in terms of the angular velocity of 

the block as  

,z b z b        (9) 

Substituting Equation (9) into Equation (7) yields: 

 
zF dt mb mb      (10) 

Equations (8) and (10) constitute a set of two equations into 

two unknowns. Equivalently, combining these equations in 

one equation (by eliminating the vertical impulse) gives the 

post-impact velocity as: 
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 


 (12) 

where SR denotes geometric aspect ratio of the rigid block. 

So far, according to the impact analysis, the initial 

conditions for the post-impact motion, 
 , given the 

position (= 0) and the pre-impact velocity,  , is 

calculated. 

 

9. Numerical Results 

The numerical integration of the equation of motion is 

performed using a step-by-step formulation. This way the 

geometric nonlinear behavior of Equation (6) may be 

simulated using linear dynamic models. The basic idea is 

that the loading and the response history are divided into a 

sequence of time intervals or “steps”. By assuming that the 

system properties remain constant during each step, any 

desired degree of refinement in the nonlinear behavior may 

be achieved by making the time steps short enough. This 

procedure can be applied to any type of nonlinearity, 

including geometric nonlinearity. In more precise words, the 

trigonometric functions in  in Equation (6) can be 

approximated by first-order polynomials, and this 

linearization will give rise to the classical equation of motion 

during each step. The simplest step-by-step method for 

analysis of sdof systems is the so-called “piecewise exact” 

method. This method is based on the exact solution of the 

equation of motion for the response of a linear structure to a 

loading that varies linearly during a discrete-time interval 

[41]. The piecewise exact method has been executed in 

Matlab [42] for numerical integration of the equation of 

motion. 

As an example, the system’s response to a given directivity 

as well as fling pulse is presented in Fig. 4. Results are 

presented here for a system of a homogeneous rigid block 

with a height of H=2h and base width of B=2b. These blocks 

are representative of the first-mode equivalent sdof model of 

the 10-, 15-, and 20-story structures with an aspect ratio of 2 

and 3 as introduced in Table 1 (see Fig. 1). The foundation 

design parameters are presented in Table 2.  

The results of Fig. 4 depict a comparison of the computed 

response in terms of the rotation histories of the equivalent 

rigid blocks. It is noteworthy that structural flexibility, 

including elastic as well as inelastic deflections, is ignored 

in this study. To explain, rocking instability of the 

superstructure stems from rigid-body rotation around the 

corner of its foundation, and that is why the structural 

deformations are not of primary importance while 

overturning resistance is being analyzed. In this 

circumstance, the sdof system undergoes large displacement 

(i.e. large rotation) prior to toppling initiation which is an 

order of magnitude greater than small structural 

displacements. For instance, as shown in Figure 4, in case of 

the 10-story building with a slenderness ratio (SR) of 3 

subjected to fling pulse, θ has reached 0.25 rad while 

toppling was initiated, which accounts for a considerably 

large rotation. 
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(a) Fling pulse 

 

(b) Directivity pulse 
Fig. 4: Rotation response histories of the equivalent rigid blocks to directivity as well as fling pulse. 
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Fig. 5: Overturning spectra of the equivalent rigid blocks subjected to “directivity” pulses (The shaded areas represent unsafe 

regions within which overturning would occur). 

 

 

 

Fig. 6: Overturning spectra of the equivalent rigid blocks subjected to “fling” pulses (The shaded areas represent unsafe regions 

within which overturning would occur). 
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It can be observed that the rocking response of rigid blocks 

is greater under base excitation of fling pulse compared to 

the directivity pulse of the same amplitude. So, the model of 

a 10-story building with an aspect ratio of 3 topples under 

fling pulse excitation ( > ). Moreover, the intensity of the 

blocks' rocking response decreases when the geometrical 

size of the buildings increases.  This observation is in 

compliance with the so-called scale effect which was 

proposed by Housner [43] for the first time, which makes the 

larger of two geometrically similar blocks more stable than 

the smaller block. Accordingly, he concluded that the 

survival against the toppling of such large-size slender 

structures during earthquakes is not surprising. 

The results also confirm that slender blocks are more 

rocking dominated and consequently more prone to 

overturning instability compared to squat blocks.  

To assess the overturning potential of the buildings 

subjected to near-fault pulses quantitatively, a variety of 

mathematical directivity and fling pulses of different 

prevalent pulse frequency (fp) and acceleration pulse 

amplitude (ap) are investigated. The results of this 

parametric study are summarized in the form of behavior 

maps in Figs. 5 and 6 for 10-, 15-, and 20-story buildings 

with an aspect ratio of 2 and 3 subjected to directivity and 

fling pulses. 

Dealing with the results of Figs. 5 and 6, it is noted that a 

rigid block of width B=2b and height H=2h (Fig. 2b) is 

characterized by its ultimate reversible angle of rotation  

 1tan b h   (13) 

and the frequency parameter p 

3 4p g r  (14) 

in which g and r denote the acceleration of gravity and half-

diameter of the block, respectively [44]. The latter can be 

seen as a measure of the dynamic characteristics of the block 

and decreases with the size of the block. Both of the 

characteristic parameters are given for each block in Figs. 5 

and 6. 

A total of 10,000 nonlinear dynamic analyses are performed 

in constructing each overturning spectrum in Figs. 5 and 6. 

In each overturning spectrum, the shaded area indicates an 

“unsafe region” within which the overturning instability 

occurs. Comparing the overturning spectra of Fig. 5 with 

those of Fig. 6 reveals that fling pulses are more destructive 

than directivity pulses of the same magnitude with respect to 

overturning potential. This observation can be interpreted by 

the inherent one-sided pattern of excitation in the velocity 

history of fling pulses compared to a double-sided pattern in 

directivity pulses.  

The overturning spectra in Figs. 5 and 6 also confirm that 

slender blocks (i.e. with greater aspect ratio) are more 

capable of toppling than squat blocks. On the other hand, it 

is observed that the shaded area, within which the rocking 

superstructure could not survive, is narrowed when the 

geometric size of the building increases. Narrow unsafe 

regions in more large-size buildings can be explained by the 

key frequency parameter (p) which controls the level of 

rocking domination during a given base shaking. Evidently, 

lower frequency parameter (p) of the more large-size 

buildings is a quantity that indicates higher safety margins 

against toppling. This so-called scale effect was firstly 

proposed by Housner [43]. 

 

10. Conclusions 

Seismic performance of rocking soil-structure systems 

subjected to near-fault pulses, including foundation 

uplifting, is focused in this paper. To this end, an extensive 

parametric study is conducted. Medium-to-high-rise 

building structures with different aspect ratios based on 

shallow raft foundation locations are investigated. 

Mathematical directivity and fling pulses are used as input 

ground motion. The overturning potential is investigated 

when the rocking structure is subjected to directivity and 

fling pulses. The major findings of this paper are outlined in 

the following. 

Two-dimensional overturning spectra of buildings of 

various geometrical, as well as dynamic characteristics, are 

derived. It was observed that the prevalent pulse period (Tp) 

is a key parameter governing the overturning potential. As 

another conclusion, fling pulses are more destructive than 

directivity pulses of the same magnitude with respect to 

overturning potential. This observation can be interpreted by 

the inherent one-sided pattern of excitation in the velocity 

history of fling pulses compared to a double-sided pattern in 

directivity pulses. Evidently, the lower frequency parameter 

(p) of the more large-size buildings is a quantity that 

indicates higher safety margins against toppling. 
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