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Abstract: 

Recently, global warming problems with rapid population growth and socio-economic 

development have intensified the demand for water and increased tensions on water supplies. 

This research evolves the Multi-Objective Coronavirus Optimization Algorithm (MOCVOA) to 

obtain operational optimum rules of Voshmgir Dam reservoir under the climate change 

conditions. The climatic variables downscaled and predicted by the Bias Correction Spatial 

Disaggregation (BCSD) method of MIROC-ESM model, was introduced into the Extreme 

Learning Machine (ELM) modelto evaluate the future runoff flowing into the reservoir. The 

model objective functions included minimizing vulnerability and enhancing reliability indices 

during baseline and climate change periods. Results revealed that under climate change 

conditions, the river flow would decrease by 0.17%, increase the temperature up to 2°C and 

decrease the rainfall by 23.8%, corresponding to the baseline period. Moreover, the extent of 

vulnerability index variations in the baseline and climate change conditions were also 

determined as 20-38% and 13-40%, respectively. The reliability index changes under the 

baseline and climate change conditions obtained were, 57-85% and 40-91%. Therefore, the 

vulnerability index was also measured at 33% and 30% for baseline and climate change 

conditions, respectively, with 80% of reliability index. Finally, the comparison of reservoir 

performance in meeting the water needs of downstream lands at the Pareto point of 80% 

reliability under both conditions indicated that the reservoir release rate would be more in line 

with the demand in the climate change conditions. 

 

1. Introduction 

Observed variations in global temperature, duration and 

severity of heat waves or droughts, changes in precipitation 

frequency or its intensity, decreased snow cover, rapid melting 

of ice and variations in soil moisture and runoff are some of 

the main recorded hydrological modifications frequently 

associated with global climate change. Due to the interactive 

relationship of hydrological variables (Huntington, 2006)[1], 

changes in precipitation and evaporation will affect river flows 

(Loaiciga et al. 1996; Muzik, 2001; Boyer et al., 2010) [2, 3, 

and 4], the frequency and intensity of droughts or floods 

(Bronstertet al., 2007) [5] and the amount of water supply. 
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Water resources management will then be faced with 

significant adversities(Jiang et al., 2007; Georgakakoset al. 

2012; Hariri-Ardebili et al. 2019)[6, 7, and 8]. Therefore, 

agricultural water management, which depends concurrently 

on precipitation, evaporation and river flow, will be affected 

significantly (Yang et al. 2013; Nam and Choi, 2014; and 

Mirzabozorg et al. 2014)[9, 10 and 11]. 

Reservoirs are one of the most effective primary infrastructure 

elements for combining water resources development and 

management (Loucks and van Beek, 2005; Li et al., 2010; Liu 

et al. 2011, Liu et al. 2015)[12, 13, 14 and 15] .
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Within the limitations of the available water resources, the 

irrigation reservoir has become increasingly critical for 

sustainable agriculture. 

Many studies related to irrigation reservoir operations were 

primarily performed in the 1990s (Vedula and Kumar, 

1996; Mujumdar and Ramesh, 1997; Umamahesh and 

Sreenivasulu, 1997; Hajilal et al., 1998)[16, 17, 18 and 19]. 

The techniques related to irrigation reservoir operation 

include particularly linear programming (Haddad et al., 

2009; Singh, 2015)[20], non-liner programming (Consoli 

et al., 2008)[21], dynamic programming (Umamahesh and 

Sreenivasulu, 1997; Teixeira and Marino, 2002; Prasad et 

al., 2013)[18, 22 and 23], evolution optimization algorithm 

(Reddy and Kumar, 2007)[24] and other approaches. 

The climate change effects on reservoir operations are also 

well known by researchers of water resources. As a result, 

a variety of adaptive techniques have been created to 

minimize possible adverse effects of climate change. There 

is a great deal of literature underlining adaptation to the 

agricultural irrigation reservoir. Shnaydman (1993)[25] 

addressed the effect of climate change on the efficiency 

strategy of the Irrigation water resources System (WRS) 

and applied a simulation model with a water supply 

delivery algorithm between users and a WRS operation 

with stochastic water requirements. 

Georgiou and Papamichail (2008)[26] have developed a 

non-linear programming optimization model for an 

optimized soil water equilibrium under four climate 

change scenarios, which aims to define optimal reservoir 

release policies, multi-crop irrigation allocation and 

optimal irrigated crop patterns. 

Ncube et al. ( 2011)[27] analyzed reservoir operation under 

variable climate scenarios, including decreased water 

supply caused by climate change but with growing annual 

demands, and climate change conditions combined with 

improvements in irrigation technologies. 

Nam and Choi (2014)[10] suggested an irrigation 

vulnerability assessment strategy, considering the 

probability distribution that uses time-dependent change 

assessments of paddy irrigation water and reservoir 

capacity requirements. 

Afkhamifar & Sarraf[28]  evaluated The efficiency of two 

models of Extreme Learning Machines (ELM), Artificial 

Neural Network (ANN) and the combination of two 

models with wavelet propagation algorithms (W-ELM and 

W-ANN).  Their results showed that the W-ELM-QPSO 

hybrid model had a high speed in terms of training and 

testing speed in addition to forecasting power compare to 

other models. 

Donyaii et al. (2020a) [29] developed the Multi-Objective 

Grey Wolf Optimization (MOGWO) algorithm to obtain 

the optimum rules in operation of Golestan Dam reservoir 

in Golestan province, Iran, under climate change 

conditions. The results showed that the river flow would 

decline by 0.17 percent of the baseline period under 

climate change conditions in addition to increasing the 

temperature by 20% and decreasing the rainfall by 21.1%. 

In another research in the same year, they studied the 

Multi-Objective Farmland Fertility Optimization 

(MOFFA) algorithm to derive optimum rules on the 

operation of the Golestan Dam under climate change 

conditions. The study results indicated an increase in 

release rates for climate change conditions in comparison 

with the baseline ones and stronger dam efficiency in 

climate change conditions (Donyaii et al. 2020b) [30]. 

The present study suggested the development and 

application of the multi-objective coronavirus 

optimization algorithm (MOCVOA) as an innovative 

methodology of water management, which was not 

addressed in previous studies. 

In addition, the optimum operating rules of the Voshmgir 

Dam reservoir (Golestan Province, Iran) under baseline 

conditions (April 2007 to October 2019) and climate 

change conditions (April 2040 to October 2052) using the 

MOCVOA algorithm, with two objectives of minimizing 

vulnerability and maximizing the demand-supply 

reliability index, were defined and compared as required 

during those periods. 

The techniques used in this study are as follows: 

(i) Assessing parameters for climate change conditions; 

 (ii) Simulation of rainfall-runoff processes to determine 

the water volume entering Voshmgir Dam; 

(iii) Assessment of baseline and climate change conditions 

water demand volume as well as extracting the multi-

objective operating rules (based on three variables of 

storage volume, demand volume, and release from the 

reservoir) in climate change and baseline conditions 

Finally, the protocols for this study are to correlate the 

optimal allocation strategies with the performance 

measures and efficiency indices of the reservoir under 

baseline and climate change conditions. 

 

2. Materials and methods 

2.1. Downscaling of climate change parameters 

In this study, in order to investigate the climate change 

effects on the hydro-climatological variables of 

Gorganroud watershed, the downscaled output obtained 

from the Bias Correction Spatial Disaggregation 

(BCSD)[31] method of MIROC-ESM model was used. 
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The results showed an increase in the average monthly 

temperature by 1.9 to 2.2 °C in all climate change 

scenarios.  Examination of monthly average rainfall 

changes also showed that the decrease in precipitation rate 

in the future period is quite evident, and according to the 

average scenario, it can be amounted to 23.8% less than the 

baseline period. 

 

2.2 Rainfall-runoff simulation 

The Extreme Learning Machine (ELM) model proposed by 

Huang et al. (2005) [32] was used to evaluate the impact 

of climate change phenomenon on the runoff flowing into 

the reservoir. Thus, the predicted rainfall-runoff data was 

determined by entering the output data of the climate 

change simulations into the ELM. 

In the next step, after determining the irrigation 

requirement for future crops based on a constant 

agricultural region, the amount of irrigation demand was 

calculated for the different months of the future period.  

In addition, the cultivation and reference 

evapotranspiration detection was executed by using the 

FAO and the Penman-Monteith FAO techniques. 

 

2.3 Extreme Learning Machine  

Extreme learning machine has an extremely fast train stage 

with a high generalization performance. High train speed 

is based on picking up the input weights and biases 

randomly and calculating the output weights analytically. 

The main differences between ELM and traditional 

gradient based learning algorithms for feed-forward neural 

networks are as follows [32]: 

 The ELM has an extremely fast learning stage. 

 The ELM tends to reach the solutions 

straightforward without trivial issues, such as 

local minima, learning rate, momentum rate and 

over-fitting encountered in traditional gradient 

based learning algorithm. 

 ELM algorithm can be used to train single layer 

feed forward networks (SLFN) using several non-

differentiable activation functions [32]. 

 

 
Fig. 1: SLFN Network Architecture 

ELM is a kind of algorithm with higher efficiency which 

is easy to implement, and contains three layers namely; 

input layer, hidden layer and output layer [Guo et al. 2009, 

Zhu et al. 2005] [33 and 34]. Figure 1 shows the 

architecture of ELM which contains n input neurons, l 

hidden neurons and m output neurons. 

For N different learning samples(𝑥𝑖 , 𝑦𝑖) ∈ 𝑅𝑛 × 𝑅𝑚, 

(i=1,2,…, N), the output of hidden layer can be expressed 

as equation(1), and the output of neuron in output layer can 

be expressed as equation(2). 

(1) ℎ = 𝑔(𝑤𝑥 + 𝑏) 

(2) ℎ(xi)β = Yi
T  , i = 1, 2 , … , N 

Where g(x) expresses hidden layer activation function of 

ELM, β is the weight between output and hidden layer, w 

is the weight between hidden layer and input layer, and b 

is the bias of hidden neuron. 

H represents the connection matrix between hidden layer 

and output layer, Y indicates the training data target 

matrix, so, equation (2) can be transformed as: 

(3) 

𝐻

=

[
 
 
 
 
 
𝑔(𝑤1, 𝑏1, 𝑥1)𝑔(𝑤2, 𝑏2, 𝑥1) …𝑔(𝑤𝑙 , 𝑏𝑙 , 𝑥1)
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If g (wi, bi, xj) was infinitely differentiable, the network 

only needs to set the number of hidden layer nodes, without 

the need to adjust the input weights and the bias of hidden 

layer [Huang et al. (2005), Huang and Siew (2006)] [32 

and 35]. Before training of ELM, it determines the number 

of input layer neurons based on the sample feature vectors 

and establishes the number of output layer neurons based 

on the sample categories, according to the specific 

conditions to determine the activation function and the 

number of hidden layer neurons [Huang et al. (2006)] [36]. 

As ELM can randomly generate w and b before training, it 

confirms the number of hidden layer neurons and the 

activation function of the hidden layer neurons, and then 
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calculates using the least squares. The whole process 

finishes in one single time without iterations, so it is 

significantly fast. The following steps are the main training 

processes of ELM: 

Step 1: Determine the number of hidden layer neurons, 

randomly set bias b of hidden layer neurons, and set 

weights w between input layer and hidden layer; 

Step 2: Choose an infinitely differentiable function as the 

activation function, and then calculate the hidden layer 

output matrix H; 

Step 3: Calculate weights 𝛽 between hidden layer and 

output layer: 𝛽 = HTH, where HT is the generalized inverse 

matrix of the output matrix H (Ding et al. 2017)[37]. 

In the present study, the Extreme Learning Machine 

(ELM) method was used to simulate the future runoff 

under the climate change conditions at the inlet of 

Voshmgir Dam, due to its better performance compared to 

other conventional methods. In this regard, to evaluate the 

different models used in the rainfall-runoff simulation 

process, the parameters of error, correlation coefficient and 

Nash-Sutcliffe coefficient were used. According to the 

results, the best simulation model was characterized with 

the correlation and Nash-Sutcliffe coefficients of 98% and 

95%, respectively. 

 

2.4 Operation models of Voshmgir reservoir 

The Quantitative Control Models were proposed in order 

to provide opportunities to evaluate the optimization of 

water resources systems or the optimal allocation of 

limited water resources. Problems are converted into a 

numerical model for processing optimization strategies of 

decision-making problems to achieve the preferred 

objectives. Decision variables act as possible alternatives 

in the decision-making phase in the numerical model 

(Shokri et al. 2013). [38] 

The objective function of the drawbacks of irrigation 

allocation is described as a minimization of the average 

squared relative irrigation allocation shortage. Moreover, 

the equations (4 to 9) define both the objective function 

and its constraints. (Ashofthe et al. 2013) [39]. 

Minimize F(d ) = 1 T⁄ ∑ (
Det − Ret
Demax

)
2T

t=1
 

∀𝑡= 1, 2 , … , 𝑇𝑇 

 

(4) 

St+1 = St + Qt − Ret − Spt − (A̅t. Evt) 

∀𝑡= 1, 2 , … , 𝑇 

 

(5) 

A̅t = c0 + c1S̅t 

 
(6) 

SPt

=

{
 

 
St + Qt − Ret − (A̅t. Evt) − Smax
  if St + Qt − Ret − (A̅t. Evt) ≥ Smax

0                                            
   if         St + Qt − Ret − (A̅t. Evt) < Smax

 

 

(7) 

Smin ≤ St ≤ Smax∀𝑡= 1, 2 , … , 𝑇 (8) 

0 ≤ Ret ≤ Demax∀𝑡= 1, 2 , … , 𝑇 (9) 

In which, 

F(d )= the objective function of irrigation allocation, 

Det= the total amount of irrigation demand through 

interval t, 

Ret = the water release through interval t. 

Demax = the maximum amount of irrigation demand for the 

whole length of the planning duration, 

Qt = the inflow volume to the reservoir for interval t, 

Evt = the net evaporation of the reservoir through interval 

t. 

A̅t= the average reservoir surface area at the start and 

ending of interval t. 

S̅t = the average reservoir storage volume at the start and 

end of interval t, 

Smax = the maximum volume of the reservoir, 

Smin = the minimum volume of the reservoir, 

SPt  = the overflow volume of the reservoir in interval t,  

T = the total time interval of the plan, and c0 and c1 are the 

constants in the surface-volume curve of the reservoir. 

St and St+1 are the reservoir storage volumes at the start 

and end of interval t, respectively. 

The following penalty functions will be applied to the 

objective function in case of a violation of the constraints 

in Equations (8) and (9) (Ashofteh et al. 2013) [39]: 

(10) 
Pf1t = a

′. (
|Smin − St|

Smax − Smin
)

2

+ b′ 

∀𝑡= 1, 2 , … , 𝑇 

 

(11) 

Pf2t = c
′. (
Ret − Demax
DeMax

)
2

+ d′ 

∀𝑡= 1, 2 , … , 𝑇 

 

In which, 

Pf1t = the penalty function resulting from the constraint 

violation in equation (8), Pf2t = the penalty functions 

resulting from constraint violation in equation (9). And a′, 

b′, c′,d′are the non-negative constants in the penalty 

functions. 

 

2.5 Operating Guidelines for the Reservoir 

Typically, operating rules can be developed by using two 

strategies. The main methodology, referred to as the 
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implicit approach of stochastic optimization relies on 

historical time series (Karamouz et al. 1992) [40]. The 

primary methodology relies on the majority of regression 

equations that describe the relationships between 

independent and dependent variables. The following 

approach, called the explicit process of stochastic 

optimization (Loucks and Van Beek 2005) [12], uses the 

probabilities of transition between two successive stream 

flows. Normally, there are many kinds of rules, but at any 

particular time of the year, everyone needs the release of 

the reservoir or the necessary volume of storage. 

These standards, for example, identify goals for storage 

volume, while others explain the detection of storage areas 

relevant to a specific release strategy (Loucks and Van 

Beek 2005) [12]. 

The second method used in the analysis is based on 

decision parameters, such as the reservoir inflow volume, 

the storage volume and the downstream water demand 

volume of the reservoir to fulfill the irrigation needs as 

follows (Ashofteh et al. 2013) [ 39]: 

Ret = f(Qt, St, Det)∀𝑡= 1, 2 , … , 𝑇 (12) 

In which, 

Ret, Qt, St, and Det are the release, inflow, storage volume, 

and downstream irrigation demand for time t, respectively. 

 f(Qt, St, Det)=the rule curve derived by MOCVOA 

algorithm.  

 

2.6 Efficiency Indices of Reservoir 

To evaluate the performance of the reservoir operation, 

various efficiency indices may be added. Based on the 

issue type and the aim of the planning process, efficiency 

indices may be different. Equations (13-14), produce and 

represent indices of reliability and vulnerability 

respectively (Ashofteh et al. 2013) [ 39]. 

If the purpose of the reservoir is to provide the 

requirements for irrigation, the reliability indicator will be 

specified as equation (13) [39]. 

α =
Nt=1
T (Det ≤ Ret)

T
 

∀𝑡= 1, 2 , … , 𝑇 

(13) 

In which, 

α = the reliability index, 

Nt=1
T (Det ≤ Ret) = the amount of time intervals during 

which demand is provided.  

As stated in equation (14), the vulnerability indicator is 

defined as the relative sum of the total system failure 

magnitude to the total volume of irrigation demand [39]. 

ϑ =
∑ (Det − Ret|Det > Ret)
T
t=1

∑ Det
T
t=1

 

∀𝑡= 1, 2 , … , 𝑇 

(14) 

 

In which, 

ϑ  = the vulnerability indicator, 

∑ (Det − Ret|Det > Ret)
T
t=1 = the cumulative deficits in 

the overall time period, 

∑ Det
T
t=1  = the total demand for irrigation over the entire 

time period.  

 

2.7 Coronavirus Optimization Algorithm 

Severe acute respiratory syndrome coronavirus (SARS-

CoV-2) is a new respiratory virus that causes 2019 

coronavirus disease (COVID-19), first detected in humans 

in December 2019. It has spread worldwide, reportedly 

infecting more than 4 million people so far [41]. Much of 

the virus remains unclear, such as, how many people may 

have very mild, asymptomatic, or simply undocumented 

infections. It is difficult to determine the exact 

measurements of the outbreak [42]. 

Bioinspired models usually imitate behaviors from nature 

and are known to find parameters in machine learning 

model optimization for their efficient use in hybrid 

approaches [43]. Viruses can infect individuals and these 

individuals can die, infect other individuals, or simply 

recover after the disease. Usually, vaccines and the 

immune defense system combat the disease and help to 

mitigate its symptoms when a person remains infected. 

Usually, this behavior is modeled by a SIR model 

composed of three categories of people; S for the number 

of susceptible people, I for the number of infectious 

people, and R for the number of recovered people. 

Evolutionary algorithms must deal with enormous search 

spaces, even infinite, for continuous cases, and must find 

suboptimal solutions in reasonable execution times [44]. 

The rapid spread of the coronavirus and its potential to 

cause infection at a very fast pace in most countries in the 

world, have inspired the novel metaheuristic applied in this 

paper, called the coronavirus optimization algorithm 

(CVOA). Regarding other similar approaches, the main 

CVOA characteristics can be summarized as follows: 

(1) The scientific community is not currently aware of 

accurate coronavirus statistics and some aspects, such as 

the reinfection rate, are still controversial. In this sense, 

several problems such as the absence of tests for 

asymptomatic individuals, the infection rate, mortality 

rate, spreading rate, or reinfection probability could not be 

accurately estimated so far. However, as reported by the 

World Health Organization (WHO), the current state of the 

pandemic suggests certain values. [45]. Consequently, 

CVOA is parameterized for rates and probabilities with the 

actual reported values, preventing the user from 

performing an additional study on the most appropriate 

setup configuration. 
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(2) After several iterations, CVOA was able to stop the 

solution exploration, without need to configure it. That is, 

over the first iterations, the number of infected individuals 

increases; however, the number of infected individuals 

begins to decrease after a certain number of iterations, until 

reaching a void infected set of individuals. 

(3) The high spreading rate of the coronavirus is useful for 

exploring promising regions more thoroughly 

(intensification), while the use of parallel strains ensures 

that all regions of the search space are equally explored 

(diversification). 

(4) The proposal for a new discrete and dynamic length 

codification specifically designed to combine long-term 

short-term memory (LSTM) networks with CVOA (or any 

other metaheuristic) is another relevant contribution to this 

study. 

The methodology of CVOA will be introduced in this 

section, where the steps section outlines the phases for a 

single pressure. The Proposed Parameters Configuration 

section illustrates how you need to configure the input 

parameters, and the section on pseudocodes contains the 

CVOA pseudocodes [46]. 

 

2.8 STEPS 

Step 1. initial population generation. One person, the so-

called patient-zero (PZ), consists of the initial population. 

It recognizes the first human being infected, as in the 

coronavirus pandemic. A random initialization for the PZ 

is proposed if no previous local minimum has been 

detected. 

 

Step 2. Propagation of Disease. Several cases are judged 

based on the person [46]: 

(1) In conjunction with the COVID-19 death rate, each 

infected person has a risk of dying(PDIE). The disease will 

not be transmitted to new individuals by those persons. 

(2) The individuals who do not die will cause new 

individuals to become infected (intensification). 

According to a given probability, two forms of propagation 

are considered (PSUPERSPREADER): 

(a) Ordinary propagators. According to a normal 

propagation rate(SPREADINGRATE), infected 

individuals would infect new individuals 

(b) Super-spreaders. According to a super-

spreading rate(SUPERSPREADINGRATE), 

infected individuals can infect new individuals. 

(3) There is another factor to be considered, as 

diversification has to be ensured. In the searching 

space, both ordinary and super-spreader individuals 

will travel and discover very different solutions. 

Individuals are also expected to travel (PTRAVEL) to 

spread the disease to solutions that could be quite 

different(TRAVELERRATE). In case of not being a 

traveler, new solutions will change according to an 

ORDINARYRATE. Notice that super-spreaders and 

travelers may all be one person. 

 

Step 3. population Updating. Three populations are 

maintained and updated for each generation [46].  

(1) Deaths. Dead individual should be added to this 

population and can never be used again. 

(2) Recovered Population. Infected individuals (after 

distributing the coronavirus according to the previous 

step) are sent to the recovered population after every 

iteration. It is known that there is a risk of 

reinfection(PREINFECTION). A person belonging to 

this population could therefore be reinfected at any 

iteration if it satisfies the criteria of reinfection. As 

people may be isolated, as though they were pursuing 

suggestions of social distancing, another scenario must 

be considered. For the sake of convenience, an isolated 

individual is assumed to be sent to the restored 

population when the probability of isolation is met. 

(PISOLATION). 

(3) A new population of infected individuals. According 

to the protocol mentioned in the previous steps, this 

population collects all individuals infected at each 

iteration. At each iteration, it is likely that replicated 

new infected individuals are produced and it is thus 

suggested that such repetitive individuals are removed 

from this population before the next iteration starts 

running. 

 

Step 4. Stop Criterion. The opportunity to terminate 

without the need to monitor any parameter is one of the 

most interesting aspects of the proposed solution. This 

condition happens because, as time passes, the recovered 

and dead populations are continuously increasing, and the 

current infected population does not infect new people. 

The number of infected individuals within a given number 

of iterations is expected to rise. However, from a specific 

iteration forward, because recovered and dead populations 

are so large and the scale of the infected population 

decreases gradually, the size of the current infected 

population would be less than that of the present size. In 

addition, a preset number of iterations 

(PANDAMICDURATION) can be applied to the stop 

criterion. Social distancing steps are also helping to meet 

the stop criteria. 

 

2.9 Pseudocodes 

The pseudocode of the most important functions for the 

CVOA is given in this section, along with some comments 

to better understand them [46]. 
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2.10 CVOA Role 

This is the key function and its pseudocode can be found 

in Algorithm 1, It is important to maintain four lists: dead, 

recovered, infected (the existing set of infected people) and 

new infected peoples (the set of new infected people 

created by the spread of coronavirus from the current 

infected people). 

The initial population is generated by using patient zero 

(PZ), which is a random solution, the number of iterations 

is regulated by the main loop; the duration of the pandemic 

is assessed (preset value) to determine if any infected 

person is still present. Each person will either die (it is sent 

to the dead list) or infect in this loop, thereby expanding 

the size of the new infected population. This infection 

process is encoded in the infection function (refer to 

section on infection function). 

If the new population is created, all individuals are 

evaluated, and the latter is revised if any of them 

outperforms the best present one [46]. 

Algorithm 1 Functioncvoa 

1: defineinfectedPopulation, newInfectedPopulation, aux   

as set of Individual 

2: define dead, recovered as list of Individual 

3: define PZ, bestIndividual, currentBestIndividual, as 

Individual 

4: define time as integer 

5: definebestSolutionFitness, currentbestFitness as real 

6: time       0 

7: PZ        InfectPatientZero () 

8: infectedPopulation         PZ 

9: bestIndividual          PZ 

10: while time < EPIDEMIC_DURATION AND size 

of(infectedPopulation) > 0    do 

11:     dead         die(infectedPopulation) 

12:     for all i ∈ infectedPopulation do 

13:        aux              infect (i, recovered, dead) 

14:         ifnotnull(aux) then 

15:              newInfectedPopulation     aux 

16:         end if 

17:     end for 

18:currentBestIndividual     selectBestIndividual 

(newInfectedPopulation) 

19:     if    fitness (currentBestIndividual)  >bestIndividual   

then 

20:         bestIndividual           currentBestIndividual 

21:     end if 

22:      recovered        infectedPopulation 

23:     clear(infectedPopulation) 

24:infectedPopulation          newInfectedPopulation 

25:     time         time + 1 

26: end while 

27: return bestIndividual 

2.11 Infect function 

This function receives an infected person and returns the 

set of new people that are infected. Two additional lists, 

recovered and dead, are also collected as input parameters, 

as they must be modified after all infected individuals have 

been tested. In Algorithm 2, the pseudocode is shown. 

To evaluate the number of new infected individuals (use of 

SPREADER_RATE or SUPERSPREADER_RATE) or 

how distinct the new individuals will be 

(ORDINARY_RATE or TRAVELER_RATE), two 

criteria are evaluated. In the newInfection function, 

implementation of how these new infected individuals are 

encoded according to certain rates is carried out [46]. 

 

Algorithm 2 Function infect 

Require: infected as of Individual; recovered, dead as list 

of Individual 

1: define R1, R2 as real 

2: definenewInfected as list of Individual 

3: R1     RandomNumber() 

4: R2   RandomNumber() 

5: if R1 <P_TRAV EL  then 

6:      if R2 <P_SUPERSPREADER then 

7:    newInfected           newInfection (infected, recovered, 

dead, SPREADER _RATE, 

            ORDINARY_RATE) 

8:     else 

9:        newInfected         newInfection (infected, recovered, 

dead, 

SUPERSPREADER RATE, ORDINARY RATE) 

10:    end if 

11: else 

12:     if R2 <P_SUPERSPREADER then 

13:     newInfected       newInfection (infected, recovered, 

dead, SPREADER RATE, 

            TRAV ELER RATE) 

14:     else 

15:     newInfected     newInfection (infected, recovered, 

dead, 

SUPERSPREADER RATE, TRAV ELER RATE) 

16:     end if 

17: end if 

18: return newInfected 

 

2.12 NewInfection Function 

Provided a person is infected, based on the spreading and 

traveling rates, this function produces new infected 

individuals. This function also controls when new infected 

individuals are not already on the dead list (in such cases, 

this new infection is ignored) or on the recovered list (in 

such cases, this function is used to decide whether the 

individual is reinfected or stays on the recovered list). It 
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also assumes that the new potential infected individual 

may be isolated, and is managed by (by what)?. Although 

it was possible to incorporate the use of an additional list, 

it was agreed to treat these people as recovered. Therefore, 

if it is attempted to infect an isolated individual, it is added 

to the recovered list. 

You will find the pseudocode for the mentioned procedure 

in Algorithm 3[45].  

Algorithm 3 Function newInfection 

Require: infected as Individual; recovered, dead as list of 

Individual 

1: define R3, R4 as real 

2: define newInfected as list of Individual 

3: R1        RandomNumber () 

4: R2   RandomNumber () 

5: aux      replicate (infected, SPREAD_RATE, 

TRAV ELER_RATE) 

6: for all i∈auxdo 

7:        if   i∉  dead then 

8:           if   i∉   recovered then 

9:                  if   R4 > P_ISOLATION then 

10:                       newInfected          i 

11:                 else 

12:                       recovered         i  

13:              end if 

14:              else if R3 < P_REINFECTION then 

15:                       newInfected        i 

16:                  remove i from recovered 

17:           end if 

18:         end if 

19:    end for 

20: return newInfected 

 

2.13 Die function 

This function is named after the primary function. It 

assesses all individuals in the infected population and 

decides, based on whether or not they die. Those satisfying 

this criterion are sent to the dead list. This method is 

defined by Algorithm 4[46]. 

Algorithm 4 Functiondie 

Require: infectedPopulation as list of Individual 

1: define dead as list of Individual 

2: define R5 as real 

3: for alli∈  infectedPopulation do 

4:      R5             RandomNumber () 

5:     if R5 < P_DIE then 

6:            dead   i 

7:     end if 

8: end for 

9: return dead 

 

2.13 SelectBestIndividual Function 

This is a secondary function used in a list of infected 

individuals to discover the best fitness. Its peudocode is 

presented in algorithm 5[46]. 

 

Algorithm 5 FunctionselectBestIndividual 

Require: infectedPopulation as list of Individual 

1: define bestIndividual as Individual 

2: define bestFitness as real 

3: bestFitness            MINVALUE 

4: for all i∈ infectedPopulation do 

5: if fitness(i) >bestFitness       then 

6:             bestFittness            fitness(i) 

7:             bestIndividual         i 

8:        end if 

9:   end for 

10: return bestIndividual 

 

3. Results and Discussions 

3.1 Study Area and Description of Operational 

Scenario 

The Gorgan-Roud catchment in Golestan province, Iran, is 

the case study included in this research. Voshmgir 

reservoir was chosen as a case study in this analysis. (The 

Gorganroud catchment in Golestan province, Iran, and 

Voshmgir Reservoir are the case studies included/chosen 

in this research). 

Vashmgir Dam is located in Golestan province, 62 km 

northeast of Gorgan, on the Gorgan-Roud River. Its 

distance from the Caspian Sea is about 70 km and 24 km 

from the Iran and Turkmenistan border (figure 2). The 

volume of the reservoir is 46 and 54 million cubic meters 

at normal and overflow level, respectively. 

In addition, the time from 2007 to 2019 was selected as the 

baseline period in the catchment, and the future interval is 

assumed as a 12-year interval (2040–2052). 

The Bias Correction Spatial Disaggregation (BCSD) 

method of MIROC-ESM model was used to develop 

climate scenarios because its efficiency is appropriate in 

climatic model simulation. 

In the first phase, by adding downscaled catchment climate 

data of the future interval, in the Extreme Learning 

Machine (ELM) model, the future runoff was simulated. 

Therefore, the ELM model was used to simulate the 

mechanism of rainfall-runoff in this research (figure 2).  



23 

 

 
Fig. 2: location of Voshmgir dam (Northeast of Iran) 

 

In the second phase, the amount of irrigation demand for 

the future period in various months was determined based 

on the climate data for the future period  

In this research, to extract the operating rules from the 

Voshmgir Dam Single-Reservoir System in Northeastern 

Iran, the MOCOVA Meta-heuristic algorithm was 

developed. 

 

 
Fig. 3: Reservoir inflow and water demand volume under the 

baseline and climate change conditions 

 

The reservoir surface-volume curve was derived using the 

following equation with the correlation coefficient 

R2=0.968 and based on Fig.4. 

𝑌 = −0.002𝑋2 + 0.184𝑋 + 1.435                   (15) 

The maximum water demand under the baseline and 

climate change conditions are 37.84 and 41.86 million 

cubic meters. The Reservoir inflow and water demand 

volume under the baseline and climate change conditions 

are shown in figure 3. 

According to the research results, the ratio of water inflow 

to the reservoir under the climate change conditions would 

decrease by approximately 17% compared to baseline 

conditions. Therefore, the water demand ratio in such 

conditions would increase by 11%. 

The optimum operating rules of the Voshmgir Dam 

reservoir were obtained by using the MOCOVA algorithm. 

The multi-objective problem included maximizing the 

model reliability and reducing its vulnerability. 

The presumption of an 80% model reliability index 

indicates a clear difference between the vulnerability index 

values under the climate change and baseline conditions 

(figure 4). 

Figure 3 reveals the effects of optimization algorithm as 

the Pareto curve for baseline and climate change 

conditions. It means that there will be 20% to 38% and 

13% to 40% of vulnerability index changes in the baseline 

and climate change conditions, respectively. 

 

 
Fig. 4: Comparison of the vulnerability and reliability index of 

objective function under both conditions 
 

The reliability index changes are 57% to 85% and 40% to 

91% in both baseline and climate change conditions, 

respectively. In addition, 33% and 30% of vulnerability 

index will be generated for the reliability index of 80% 

under the baseline and climate change conditions, 

correspondingly. (Respectively has been repeated too 

many times). 

As each point in the Pareto curve demonstrates a reservoir 

operation rule, including its vulnerability and reliability 

indices (Figure 4), none of the Pareto points have taken 

priority over others; in other words, they should vary 

depending on the catchment conditions and policies. The 

next step was to evaluate the optimal level of water demand 

rules under the baseline and climate change conditions. 
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Fig. 5: comparison of (a) release volume (b) and shortage volume per each Pareto point resulted from 80% reliability under 

the baseline conditions 
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Fig. 6: comparison of (a) release volume (b) and shortage volume per each Pareto point resulted from 80% reliability under 

the climate change conditions 
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The baseline optimum rules were then compared to the 

optimum rules resulting under the conditions of climate 

change. On the other hand, Figure 3 indicates that the model 

vulnerability index values have been greatly decreased in all 

the values of common reliability between baseline and 

climate change conditions (i.e. 57% to 85%), which would 

make the model more reliable in climate change conditions. 

The effects of water demand supply for the 80% reliability 

index were recorded in figures 5a and 6a for the baseline and 

climate change conditions. 

According to the corresponding demand for water, the 

following two alternatives were determined by the changes 

in shortages due to the optimum operating rules resulting 

from the proposed optimization algorithm, as seen earlier. 

A correlation between the baseline and climate change 

conditions shows that the amount of reservoir water released 

is more consistent with the irrigation water demand under 

the climate change conditions. Moreover, the reservoir 

storage under the climate change conditions would be lower 

relative to baseline due to the increased release (figure 6b). 

The consequences are shown in (figure 5b) and (figure 5b), 

respectively. 

According to (figure 5a) and (figure 6a), the climate change 

release rates of the reservoir are greater than those under the 

baseline conditions, which would be 11% due to increased 

demand for water under the climate change conditions. 

On the other hand, (figure 5b) and (figure 6b) demonstrate 

that the performance of the dam has also increased under the 

conditions of climate change. 

The objective function values of 80% reliability per Pareto 

point were determined in the next phase for evaluating the 

reservoir performance in supplying the downstream water 

demands, as defined in table 1. According to table 1, the 

reservoir release is more consistent with climate change 

conditions. Therefore, the dam efficiency is much higher due 

to the effects of climate change. 

 
Table 1: comparison of objective functions in baseline and 

climate change conditions 

Conditions Reliability 

(%) 

Vulnerability 

(%) 

Baseline 

Climate Change 

80 

80 

33 

30 

 

It should be noted that the findings from this research are 

consistent with the findings of other studies, such as 

Ashofteh et al (2013) [39] and Donyaii et al (2020b) [30], 

that introduced the genetic programming and the farmland 

fertility optimization algorithm. 

 

 

 

 

4. Conclusion 

Studying the variation characteristics of streamflow and 

approximating the effects of climatic change are necessary 

for future water resources planning and management 

decisions. In water resources management, one of the 

greatest factors is to consider the priorities of all objectives 

within the policies regulating the operation of water 

resources systems to meet the needs for water. In addition, it 

is important to provide a set of alternative decision-making 

options (Pareto Curve) in such a way that executive 

managers can determine the relative value of the goals in this 

regard. It is also inevitable to extract multi-objective 

operational rules of reservoirs, as each point in the Pareto 

curve implies a reservoir operation rule that can be changed 

based on the favorite policies. The purpose of this study was 

to propose a specific guideline for the operation of such 

Pareto points, in order to decide how well these points could 

be applied in reservoir operation decision making, so that 

80% of the downstream Voshmgir Dam agricultural lands in 

Iran would meet the water demand. 

In this research, the climate change parameters such as 

temperature and precipitation values for baseline condition 

were first evaluated and then forecasted for the future period 

as the parameters of climate change conditions by the Bias 

Correction Spatial Disaggregation (BCSD) method of 

MIROC-ESM climatic model.  

According to the results of all climate change scenarios, 

there will be an increase in the average monthly temperature 

up to 2.2 °C. In addition, a decrease of 23.8% in precipitation 

rate has been shown in the next period by evaluating the 

average monthly precipitation variations with respect to the 

baseline as an alert for the management of water supplies. 

Afterwards, to evaluate the effect of climate change on the 

runoff flowing into the Voshmgir reservoir, the Extreme 

Learning Machine (ELM) model was used. Thus, by 

entering the output data of the climate change simulations 

into the ELM, the predicted rainfall-runoff data was 

determined. The findings showed that the amount of runoff 

would decrease to 0.87% under climate change conditions 

with respect to the baseline period. 

Finally, the corona virus optimization algorithm 

(MOCVOA) was used to solve the problem of the reservoir 

system under the baseline and climate change conditions.  

In order to obtain reservoir discharge rules (based on the 

Pareto curve), the two objective functions (i.e., maximizing 

the reliability index and minimizing the vulnerability index) 

were used based on parameters such as the flowing volume 

into the reservoir, the storage volume and the water demand 

volume obtained by the MOCVOA algorithm. 

The research indicated that the vulnerability index variations 

under the baseline and climate change conditions were 

20%to 38% and 13% to 40%, respectively. Furthermore, the 
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reliability index increase/surge/rise under the baseline and 

climate change conditions ranged from 57% to 85% and 

40% to 91%, respectively. Meanwhile, for 80% reliability 

index of the model, the vulnerability ranged between 33% 

and 30% under the baseline and climate change conditions, 

correspondingly. 

Thenceforth, in order to assess the performance of the 

reservoir in meeting the downstream water demand, the 

objective function values were compared to 80% of the 

reliability index in the aforementioned conditions. The 

findings indicate that the reservoir release rate is much more 

in line with the demand for climate change.  Thus, there is 

evidence that the Voshmgir Dam performs better under 

climate change conditions. 

In other words, the study shows that all the values of 

common reliability between baseline and climate change 

conditions have substantially reduced the model 

vulnerability index values, which makes the model more 

stable under the conditions of climate change.  
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