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Abstract: 
In present study, the effect of reservoir length on seismic performance of concrete gravity dam 

has been investigated. Monte Carlo probabilistic analysis has been used to achieve a 

sensitivity of the responses to variation of truncated reservoir length in finite element model. 

The ANSYS software based on finite element method is applied for modeling and analysis. The 

Pine Flat dam in California, under components of El Centro, San Fernando and North Ridge 

earthquake, is modeled as a case study to evaluate the effect of reservoir length on seismic 

behavior and optimization. The foundation flexibility has been considered in modeling and 

Sommerfeld boundary condition has been used for reservoir truncated boundary condition. In 

Monte Carlo probabilistic analysis, the reservoir length has been considered as input variable 

and maximum dam crest displacement, maximum hydrodynamic pressure in reservoir and 

maximum tensile principal stress in heel and compressive principal stress in toe of dam have 

been selected as output parameters. The Latin Hypercube sampling method has been applied 

with unique distribution function for input variable.  Obtained results show the sensitivity of 

output responses to variation of reservoir length. Considering sensitivity results, it is possible 

to select the optimum length of reservoir for finite element model.  

1. Introduction 

Optimization means to achieve the best result in an 

operation, with certain restrictions and limitations in place. 

In optimizing a system, the authority of changing the 

structure is implicitly a default. In general, changing 

potential is expressed based on a range of changes in a 

number of parameters. Such parameters are usually called 

designing variables in optimization term. 

In most of the structure designing problems, the continuity 

of design variables are commonly neglected in solving 

optimization problem. When the optimized variable is 

obtained, then the value of design variable is turned into 

nearest available discrete value. The reason of this action is 

that, solving an optimization problem with discrete design 

variables is more difficult compared to a similar 

corresponding problem with continuous design variables. 
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Concrete dams are considered as the most important and 

costly projects among infrastructures. The effects of 

hydrodynamic pressure during an earthquake must also be 

estimated in addition to the hydrostatic pressures in order 

to accurately calculate the reservoir water pressure to the 

body of concrete dams. The problem has been posed as 

dynamic interaction of the dam and reservoir during 

earthquakes and is considered as one of the major factors of 

designing new dams and safety assessment of existing 

dams in seismic areas. 

  In an earthquake, the dam that is connected to the ground 

vibrates, while water behind the dam is not directly 

affected by the seismic motion of ground due to the low 

shear forces between the bed of the reservoir and reservoir 

water and only hydrodynamic pressure induced by dam 

vibrations spread upward the reservoir. Today, the finite 

element method is widely used in modeling concrete dams 

due to its capability in defining mathematical models with 

complex geometry and different materials. Hence, utilizing 

it to solve reservoir equations can lead to an appropriate 

ordinance between solving methods of dam and reservoir 
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equations and significantly reduce the complexity of the 

problem. However, modeling large and unlimited 

reservoirs with this method has some drawbacks. Since 

taking into account the whole reservoir in the model is very 

expensive and unpractical, the model must be disconnected 

in an appropriate distance from the body of dam in a way 

that it has no effect on seismic responses of the dam. 

Zienkiewicz and Bettes (1978) proposed a model for 

unlimited reservoir conditions to solve the pressure wave 

equation in the reservoir [1]. 

They showed that the Sommerfeld boundary condition is 

quite suitable for long reservoir modeling and can be used 

to discrete the finite element elements of the fluid range. 

The truncated upstream boundary must be placed at a far 

distance from the dam in finite element model. Zienkiewicz 

concluded that if the far end boundary is selected as almost 

twice the depth of the reservoir away from the dam, the 

condition would lead to relative precise results in most of 

the frequency ranges of loading and the obtained results 

can be acceptable. 

Saini et al. (1978) [2] and Chopra and Chakrabarti (1981) 

[3] studied the dam-reservoir interaction problem in the 

frequency domain using the finite element model. Finite 

element analyses in time-domain were performed by 

Sharan (1985 and 1986) [4-6] and Tsai et al. (1992) [7]. 

For the reservoir with irregular geometry, numerical 

methods such as finite element method must be used, 

because an analytical solution cannot obtain the results for 

the arbitrary boundary and geometry of the system. 

Jablonski and Humar (1990) [8] applied the boundary 

element method in frequency domain for seismic analysis 

of concrete dams.  

The Monte Carlo method is a simulation method, one of 

the common goals of which is to estimate the specific 

parameters and probability distributions of random 

variables. One of the most commonly used methods for 

solving complex problems is probability analysis [9]. The 

Monte Carlo method is divided into two methods; Direct 

Sampling, and Latin Hypercube Sampling. The LHS 

method is a more advanced and appropriate form of Monte 

Carlo simulation. It performs 20 to 40 percent fewer 

simulation loops to obtain the results similar to Direct 

Sampling. In this research, the Latin Hypercube Sampling 

method is used for Monte Carlo analysis. 

In the field of probabilistic and sensitivity analysis, 

Alembagheri and Seyedkazemi (2014) [10] conducted a 

probabilistic study in which the seismic behavior of the 

concrete gravity dam is addressed with regard to concrete 

tensile behavior parameter as the sensitivity parameter. The 

results of their research showed that accurate examination 

of tensile behavior and final failure of concrete in concrete 

gravity dams requires a proper definition of nonlinear 

models of materials. Using Monte Carlo probabilistic 

method, Pasbani Khiavi (2015) [11] investigated the 

reservoir bed characteristics effect on reducing the pressure 

induced in the reservoir. Results confirmed a high   

dependence of responses to the reservoir bottom 

absorption.       Additionally, Pasbani Khiavi (2017) [12] 

investigated the influence of the concrete stiffness on the 

seismic responses of concrete gravity dams by the Monte 

Carlo simulation.    According to the results, the optimized 

value of the concrete  Young Modulus to access the 

confident response of the structure was achieved, which 

was economically important. 

Pasbani Khiavi et al. (2020) used the Monte Carlo 

simulation in seismic optimization of concrete gravity 

dams using isolation layer. In their research, the optimum 

geometry of isolation layer was obtained using Mont Carlo 

with LHS method [13]. 

 

2. LHS method 

Latin Hypercube Sampling (LHS) may be viewed as a 

stratified sampling scheme designed to ensure that the 

upper or lower ends of the distributions used in the analysis 

are well represented. Latin Hypercube Sampling is 

generally recommended over Direct Sampling method 

when the model is complex or when time and resource 

constraints are an issue [14]. The nature of LHS does not 

determine the appropriate sample size to achieve a certain 

confidence level. There is no specified value for sample 

size N to achieve a certain confidence level in LHS [15]. 

By sampling N times from the parameter distributions, this 

procedure creates a population of N possible instances of 

the structure, each of which needs to be analyzed. The use 

of relatively high N that is substantially larger than the 

number of parameters will always result in reasonably 

accurate estimates for practical purposes. The optimal N to 

use is a function of the number of random variables and 

their influence on the response [16]. 

The basis for all LHS simulation steps is generating 

random numbers being uniformly distributed between 0 

and 1. When there is an understanding of U which is 

related to the uniform distribution of random number U 

between 0 and 1, it is possible to produce x related to the 

uniform distribution of random number x between both 

values a and b (a≤ x ≤ b). 

The process part with events can be simple or very 

complex and may contain many loops and algorithms and 

even multiple random generators.  Besides, it is possible to 

extract quantitative data from any point of the algorithm 

and analyze them as output variables. Monte Carlo 

simulation methods can be used in all fields of science and 

engineering to predict the real and virtual behavior of 

systems and define different scenarios. 



3 

 

Most of the engineers who utilize general sophisticated 

software packages for structural analysis often have no 

access to general sophisticated software packages, and 

don't have sufficient knowledge yet about the details of 

structure analysis algorithms that have been used in these 

soft wares. Therefore, the main challenge of structural 

optimization researchers is to regulate approaches and 

methods proper to these types of soft wares. Another main 

challenge is high computing costs of analyzing most of 

todays complex structures such as concrete dams. One of 

the modern approaches of structures' optimization is 

utilizing Monte Carlo probabilistic analysis. Therefor in 

present research, Monte Carlo probabilistic analysis of 

ANSYS Software has been used to optimize the 

disconnected distant border of dam. 

 

3. The governing equations 

In this part, the solid and fluid domain equations are 

presented while the water inside the dam is assumed to be 

inviscid, incompressible, and with small displacements. 

Also, the dam is considered solid elastic with a linear 

behavior of materials [3, 17]. 

 

3.1. Modeling of the dam 

The governing equation of the dam behavior is the equation 

of motion. However, for the consideration and 

comprehensive definition of the interaction between the 

fluid and the structure, the load applied due to the 

hydrodynamic pressure of the fluid at the interface 

structure and fluid, must be added to the equations of 

structure: 

Mü +  Cu̇ +  Ku =  Müg +  FPr                                        (1) 

In Eq. (1), M, C and K represent mass, damping, and 

stiffness matrices, respectively. u shows the relative 

movement vector, üg refers to the ground acceleration 

vector. FPr is the hydrodynamic force vector at the dam and 

reservoir interface [1]. 

 

3.2. Modeling the reservoir 

The equation of dynamic behavior of the reservoir should 

be considered with Navier-Stokes, momentum, and fluid 

continuity equations with problems related to the acoustic 

interaction between the structure and fluid. Given that the 

water inside the reservoir is inviscid, incompressible with 

small displacement, the equations of continuity and 

momentum are summed up to the wave equation. Also, the 

pressure applied to the dam by the reservoir at the contact 

point is considered to form the interaction matrix [17]. 

1

C2

∂2P

∂t2 −  ∇2P = 0                                                              (2) 

Where c = √k
ρ0 ⁄   is the velocity of the acoustic waves in 

the fluid and  k   is the bulk modulus of water. Equation (2) 

is the basis of acoustic issues and is known as the 

Helmholtz Equation, which is derived from hydrodynamic 

pressure. 

 

4. Dam and reservoir interaction 

In the past, the dynamic effects of reservoir in terms of 

dam-reservoir coupled system were approximately 

calculated using added mass method. It is clear that 

response approximation by added mass method is not 

appropriate for problems such as evaluating the distribution 

of cracks in dam body and it is necessary to look for more 

precise solutions. The dam-reservoir system can be 

considered as a coupled system, because of two different 

physical domains in the form of coupled system.  In such 

issues, the responses of structure and fluid are considered 

simultaneously due to the interaction between them. The 

interaction effect of dam-reservoir is considered using 

coupled equations including two second-order differential 

relations as following: 

[M]{ü} + [C]{u̇} + [K]{u} = {f1} − [M]{üg} + [Q]{P}

= [F1] + [Q]{P} 
(3) 

[G]{P̈} + [C′]{Ṗ} + [K′]{P} = [F2] − ρ[Q]T{ü} (4)                                                               

[M], [C] and [K] are matrixes of mass, damping and 

stiffness of structure, respectively. In addition, [G] ،[C′] 

and [K′] are equivalent matrixes of mass, damping and 

stiffness of reservoir, respectively; [Q] is coupled matrix 

and {f1} is the vector of sum of body forces imposed on the 

body of dam.   Vector {F2} is the sum of forces created due 

to the base acceleration {üg} in dam-reservoir interface and 

total acceleration {ü} in dam–foundation interface. {P} is 

hydrodynamic pressure imposed on the reservoir and dam 

interface and ρ is the density of water. 

The coupled matrix of reservoir pressure and the 

interaction forces between the dam and reservoir is as 

follows: 

[Q]{P} = {f}                                                                      (5) 

Where, {f} is the vector of force imposed on the dam 

caused by hydrodynamic pressure. 

 

5. Boundary condition 

Sommerfeld boundary condition has been used for 

reservoir truncated boundary condition defined as follows: 

∂P(x,y,t)

∂x
=

1

C
Ṗ(x, y, t)                                                          (6) 

In which, P (x, y, t) is hydrodynamic pressure. C is the 

velocity of wave pressure in water and x and y are the 

coordinate axes. The boundary conditions in dam-reservoir 
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interface and reservoir-foundation are dominated using 

below equation: 

∂P(x,y,t)

∂n
= −ρan(x, y, t)                                                      (7) 

Where, an(x, y, t) is dam normal acceleration in the contact 

area. By neglecting free surface wave, the boundary 

condition of reservoir surface is considered as follows: 

P(x, h, t) = 0                                                                     (8) 

 In which, h is the height of reservoir. 

6. Case study 
Pine Flat dam with a height of 122 m was simulated in a 

two-dimensional form as a case study of present research.       

The geometry of Pine Flat dam and dam-reservoir-

foundation system created using the ANSYS software have 

been represented in figures (1) and (2), in which H is the 

height of reservoir. The materials of concrete dam and 

foundation are considered with homogeneous, linear and 

isotropic behavior and the reservoir water is considered as 

compressible, non-viscos and non-rotating with small 

displacement fluid. All dimensions are based on SI system.  

The characteristic of material parameters of system have 

been shown in table (1). For the reservoir, density and bulk 

modulus corresponding to water are considered as 

1000 𝑘𝑔 𝑚3⁄  and 2.1 𝐺𝑃𝑎.  

 

Table 1: Material properties of system 

 

Parameters 

 

Symbol 

 

Dimensions 

 
Value 

Dam Foundation 

Density 𝜈 𝑘𝑔 𝑚3⁄  2483 0 

Poisson’s 

ratio 
𝜌 - 0.2 0.33 

Elasticity 

modulus 
𝐸 𝐺𝑃𝑎 22.4 22.4 

 

 
Fig. 1: Geometry of Pine Flat concrete gravity dam 

 

 
Fig. 2: The model of dam-reservoir-foundation system 

7. Model analysis and results evaluation 

ANSYS software based on finite element method was used 

for seismic analysis of model. The software has the 

capability of seismic analysis by considering irregular 

geometry and interaction effects. For this purpose, proper 

elements representing compressible behavior of fluid have 

been considered. According to the conditions dominated on 

concrete gravity dam and geometry of reservoir, the model 

of system was considered in a two-dimensional form with 

plane-stress behavior and its interaction with foundations 

has also been considered in the model. SOLID182eight-

node elements were used for discretization of the solid part 

and FLUID29 four-node elements were used for the fluid 

part including adjacent and non-adjacent fluid of structure. 

The unknown parameters including displacement and 

stresses of the dam body and induced hydrodynamic 

pressure in the reservoir were extracted by analyzing the 

model. For probabilistic analysis, the records of El Centro, 

San Fernando and North Ridge earthquakes were extracted 

from Peer website according to Table (2). The records of 

these earthquakes have been scaled compared to the 0.3g.  

  The Newmark method was used for numerical integration, 

in which its parameters were selected as β=0.25 and γ=0.5 

.Rayleigh method was used to apply damping effects and 

Sommerfeld boundary condition was used for truncated far 

boundary. Riley damping coefficients using the first and 

second frequency of system equal to α=0.5202 and 

β=0.0046 were extracted. Latin Hypercube Sampling  

(LHS) method has been used in Monte Carlo probabilistic 

analysis and Uniform method has also been used for 

probability distributions of the input variables.  

 

Table 2: The characteristic of selected earthquake records 

earthquake Station name 
Distance to 

fault (Km) 

Northridge-01 
Castaic - Old Ridge 

Route 
20.72 

Imperial Valley-02 El Centro Array #9 6.09 

San Fernando 
Pacoima Dam 

(upper left abut) 
1.81 
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One of the most important modeling steps in finite element 

softwares is the discretization of the system. Discretization 

in the model must be converged, so finer discretization 

does not affect the results considerably. Hence, through 

Monte Carlo probability analysis and with APDL 

programming in ANSYS software, optimum discretization 

of the model was achieved with regard to investigation of 

the effect of discretization size on seismic responses of 

concrete gravity dam. Therefore, through employing Monte 

Carlo probability analysis, it is possible to specify the 

optimum meshing for every earthquake.  

In the Monte Carlo probabilistic analysis, Histogram 

diagrams of output variables must be converged to the 

number of simulations. In addition, the obtained results 

from Monte Carlo probabilistic analysis have proper 

convergence. For this purpose, the adjustments related to 

the simulating Monte Carlo analysis in ANSYS Software 

have been considered according to Table (3). 

 

Table 3: Characteristics of random variable 

Random 

variable 

Distribution 

Type 

The number 

of simulation 

loops 

The number 

of repetitions 

Reservoir 

length 
Uniform 40 3 

   

To select the optimum value of reservoir length by Monte 

Carlo probabilistic analysis, Ÿ parameter is considered as 

input variable which indicates the ratio of reservoirs length 

to its height. In this parameter, the dam height is a constant 

value and only the length of reservoir is changed. 

After conducting the analysis, the sensitivity of seismic 

responses of horizontal displacement of the dam crest, the 

maximum and minimum principal stresses in the toe and 

heel of the dam and the maximum hydrodynamic pressure 

in the reservoir related to Ÿ parameter were extracted using 

ANSYS Software. The sensitivity of seismic responses to 

Ÿ parameter affected by EL Centro Earthquake have been 

represented in figures (3) to (7).  

 

 
Fig. 3: Sensitivity of maximum hydrodynamic pressure in the 

dam heel vs. the Ÿ parameter during EL Centro earthquake 

 

 
Fig. 4: Sensitivity of horizontal displacement of dam crest vs. the 

Ÿ parameter during EL Centro earthquake 

 
Fig. 5: Sensitivity of compressive principal stress in the toe vs. 

the Ÿ parameter during EL Centro earthquake 

 

 
Fig. 6:  Sensitivity of compressive principal stress in the toe vs. 

the Ÿ parameter during EL Centro earthquake 

 

Figures (7) to (10) represent the sensitivity of seismic 

responses to Ÿ parameter during San Fernando Earthquake.  

 

 
Fig. 7: Sensitivity of maximum hydrodynamic pressure in the 

heel vs. the Ÿ parameter during San Fernando earthquake 
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Fig. 8: Sensitivity of horizontal displacement of dam crest vs. the 

Ÿ parameter during San Fernando earthquake 

 
Fig. 9: Sensitivity of tensile principal stress in the heel vs. the Ÿ 

parameter during San Fernando earthquake 

 

 
Fig. 10: Sensitivity of compressive principal stress in the toe vs. 

the Ÿ parameter during San Fernando earthquake 

 

 Figures (11) to (14) represent the sensitivity of seismic 

responses to reservoir length parameter during North Ridge 

earthquake. 

 

 
Fig. 11: Sensitivity of maximum hydrodynamic pressure in the 

heel vs. the Ÿ parameter during North Ridge earthquake 

 

 
Fig. 12:  Sensitivity of horizontal displacement of dam crest vs. 

the Ÿ parameter during North Ridge earthquake 

 
Fig. 13: Sensitivity of tensile principal stress in the heel vs. the Ÿ 

parameter during North Ridge earthquake 

 

 
Fig. 14: Sensitivity of compressive principal stress in the toe vs. 

the input Ÿ parameter during North Ridge Earthquake 

 

Obtained results show that the reservoir length, which is 2 

times greater than reservoir height, has no effect on 

responses. So, according to the obtained sensitivity curves 

it can be concluded that the selecting of reservoir height 

equals twice reservoir height presents acceptable responses 

in finite element model with Sommerfeld truncated 

boundary condition. 

 

8. Conclusion 

In the present study, a parameter sensitivity analysis of a 

dam-reservoir system was performed using Monte Carlo 

simulation with Latin hypercube sampling. A probabilistic 

analysis was used to identify the reservoir length as a 

particular parameter that had a significant effect on the 

responses. The Pine Flat dam was considered as case study 

to illustrate the effect of reservoir length on selected output 
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parameters. Obtained results show how the reservoir length 

can affect seismic performance of finite element model. 

Considering the sensitivity curves of responses to the 

variation of reservoir length, it is possible to select the 

optimum length of truncated boundary for reservoir in 

finite element model. Also, it is obvious from obtained 

results, increasing reservoir length reduces the seismic 

responses of dam because of hydrodynamic pressure 

damping spread to the upstream of reservoir. In addition, 

increasing of reservoir length in the range of approximately 

three times the dam height has an effect on seismic 

responses of dam and by increasing the length more, no 

significant change is created in seismic responses. 

It can be concluded that in seismic analysis of concrete 

gravity dam, the truncated boundary can be considered 

about three times the dam height in finite element model by 

applying of Sommerfeld boundary condition for far end 

boundary.  
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