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Abstract: 

Structural system identification using recursive methods has been a research direction of 

increasing interest in recent decades. The two prominent methods, including the Extended 

Kalman Filter (EKF) and the Particle Filter (PF), also known as the Sequential Monte Carlo 

(SMC), are advantageous in this field. In this study, the system identification of a shake table 

test of a 4-story steel structure subjected to the base excitation has been implemented using 

these methods by considering the modeling and material model uncertainties. Implementing the 

2D and 3D modelings, using the “parallelogram” and “scissors” methods for the modeling of 

panel zones and that of the wall panels by two methods (using beam-column elements and 

equivalent diagonal strut elements), are the assumptions of this study. Using the parallelogram 

method has resulted in fewer errors in the 2D modeling while implementing different methods 

for simulation of wall panels has had no specific achievements. As illustrated in the results, 

more significant uncertainties were expected in systems with highly nonlinear behavior, since 

the equivalent linearization was used to estimate the system states in the EKF method. However, 

this method is less time-consuming and gives more accurate results in comparison with the PF 

method, in which a lrge number of samples are required for the system identification. 

D 

1. Introduction 

Structural system identification using the earthquake-

induced vibrations has drawn the attention of researchers 

and engineers in recent years. This method can be 

categorized into the model-based and non-model-based 

approaches. Model-based methods identify the state of the 

system using a structural model with geometrical and 

mechanical properties, while according to the non-model-

based methods, the system’s input and output have been 

employed for identification of the system state. Among 

model-based methods, despite the complications of the 

finite element (FE) model updating method, some 

advantages have been achieved [1-7]. 
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According to this method, the differences between the 

recorded responses in the real structure and the FE model 

are minimized. As real-world structures have a nonlinear 

behavior under several excitations and even ambient 

vibrations, using the nonlinear FE model updating method 

has drawn much more attention from researchers [8-14]. 

Considering the  

damage that occurred in the structure during the 

earthquake, this method can identify the damage type, 

location, intensity, and the structure’s remaining life 

(service life). In fact, the method takes advantage of an 

optimization technique to determine different indices of 

the FE model so that the difference between the real 

structure and its simulation is minimized. Therefore, 

simulating the numerical FE model is an essential and 

challenging part of this method, demanding accurate 

modeling of components and material models with regard 

to different uncertainties. 

Based on another classification, identification methods can 

be categorized into offline methods and online or recursive 

methods [15]. In online methods, the inputs and outputs of 
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the structure, recorded in each time  step has been used for 

the model updating and modification of the errors. Unlike 

the online method, it seems impracticable to modify the 

errors during the data recording process in the offline 

methods, in which data recording continues until the last 

step.  

Different recursive methods such as the recursive Least 

Square (RLS) [16-18], sequential Monte Carlo or particle 

filter (PF) [19-22], and Kalman Filter (KF) [23-26] have 

been used for the structural system identification. For the 

PF method, the posterior probability of the system’s state 

is estimated by the generation of a considerable amount of 

weighted samples, using Monte Carlo methods. PF 

methods possess extended point-mass filters, in which 

particles have not uniformly distributed over the system’s 

state, but concentrated in high probability areas, except for 

its major shortcoming concerning the large number of 

samples that increases the calculation time. On the 

contrary, although the KF method is less time-consuming, 

it is not an appropriate technique for nonlinear systems. To 

cope with this problem, the developed KF methods, such 

as the extended Kalman Filter (EKF), have been used for 

several decades, based on which problems have been 

solved by linearizing the system around the latest 

estimated state in a state-space format [27-30]. However, 

it is not useful in highly nonlinear systems [31]. 

Although these methods are widely used for the 

identification of structural systems, several complexities 

and uncertainties in the calibration of real structures such 

as model simplifications, inappropriate boundary 

conditions, and behavior of material models have 

continued to exist. In this study, the PF and EKF 

capabilities in the identification of a one-bay 4-story steel 

frame located on a shake table are investigated, 

considering the aforementioned uncertainties. For this 

purpose, five models are used including 1) 2D model with 

the panel zone effects using parallelogram modeling [32], 

2) 2D model with the panel zone effects using scissor 

modeling [33], 3) 3D model without the panel zone effects, 

4) 3D model without the panel zone effects by considering 

the interaction of the frame and perimeter walls using 

beam-column elements, 5) 3D model with the interaction 

of frame and perimeter walls using equivalent diagonal 

strut elements. 

Concerning the 2D modeling, nonlinear behavior of beam-

column elements and panel zones is represented using 

concentrated plasticity, while nonlinear behavior is 

represented by the distributed plasticity in the 3D 

modeling. For concentrated plasticity models, the 

nonlinear behavior of beams and columns is simulated 

using the Modified Ibarra Krawinkler (MIK) material 

model [34], and the panel zone effects are considered using 

the Krawinkler [35] and the Fielding and Huang models 

[36]. Furthermore, for 3D models, the Giuffre-Menegotto-

Pinto (G-M-P) [37] model is assigned to beam-column 

fiber sections, as well as several material models used to 

display the behavior of wall panels. The acceleration 

responses of stories of the structure are utilized in the 

system identification as well. 

This paper is organized as follows: First, the PF and EKF 

algorithms are briefly explained. Then, the structural 

properties are identified. Subsequently, the modeling and 

the material modeling details and characteristics are 

discussed. Finally, the methods are compared, and the 

conclusion is derived. 

 

2. System equations, PF and EKF methods: 

The dynamic equation governing the behavior of a 

nonlinear system with multiple degrees of freedom in the 

state-space format is given below: 

(1) 𝑥̇ = 𝐹(𝑥(𝑡), 𝑢(𝑡)) + 𝑣𝑡 

The system response is defined as: 

(2) 𝑦𝑘 = 𝐺(𝑥𝑘 , 𝑢𝑘) + 𝜂𝑘 

where 𝑥𝑘 is system state at the time = 𝑘𝛥𝑡 ; 𝑣(t) is the 

process noise with zero mean and the covariance matrix 

Q(t); 𝑦𝑘  is the system output in 𝑡 = 𝑘𝛥𝑡, and 𝜂𝑘 is the 

measurement noise with the covariance matrix 𝑅𝑘(𝑡). 

Equations (1) and (2) are defined in a discrete format by 

the following equations: 

(3) 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝑣𝑘 

 

(4) 𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘) + 𝜂𝑘 
where 𝑣𝑘 is the process noise with the covariance matrix 

𝑄𝑘. 

To determine the system state 𝑥𝑘 using recorded responses 

until time step k, (𝑦1:𝑘), the posterior probability density 

function 𝑝(𝑥𝑘|𝑦1:𝑘) is required. Assuming that the prior 

probability density function 𝑝(𝑥0), and the density 

function in the time step (k-1), are known, the probability 

density function, 𝑝(𝑥𝑘|𝑦1:𝑘−1) is calculated by equation 

(5): 

(5) 𝑝(𝑥𝑘|𝑦1:𝑘−1) =  ∫𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘−1|𝑦1:𝑘−1) 𝑑𝑥𝑘−1 

The probabilistic model of the state evolution 𝑝(𝑥𝑘| 𝑥𝑘−1), 

also known as the transitional density, is defined by 

equation (3). Hence, using the recorded measurements at 

the time k (𝑦𝑘), the estimated state can be updated in the 

following way: 

(6) 
𝑝(𝑥𝑘|𝑦1:𝑘) =  𝑝(𝑥𝑘|𝑦𝑘 , 𝑦1:𝑘−1)

=  
𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑦1:𝑘−1)

𝑝(𝑦𝑘|𝑦1:𝑘−1)
 

 

where 𝑝(𝑦𝑘|𝑦1:𝑘−1) depends on 𝑝(𝑦𝑘|𝑥𝑘) function, 

determined by equation (4). 
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2.1. Particle filter 

In the following section, the theorem of the particle filter, 

summarized by Arulampalam et al. [38], is briefly 

reviewed. The main concept of the particle filter method is 

based on a posterior probability density function (PDF), 

and the particles have been sampled to estimate the 

system’s state. Each particle has a likelihood of weighting, 

assigned to it. The particle filtering computes the posterior 

density function using a set of particles, 𝑥𝑘
𝑖   in which 

i=1,2,…, N and their weights referred to as 𝜔𝑘
𝑖 . To 

determine the importance of weights, importance sampling 

considered as a general technique to estimate the properties 

of a particular distribution is used, which is different from 

the one used for generating samples. 

If samples are generated from a density B(x), which is 

similar to A(x), then it can be described as: 

(7) ∀𝑥, 𝐴(𝑥) > 0 → 𝐵(𝑥) > 0 

Then any integral of the form I= ∫𝐴(𝑥)𝑑𝑥 is rewritten as: 

(8) 𝐼 =  ∫
𝐴(𝑥)

𝐵(𝑥)
𝐵(𝑥)𝑑𝑥 

A Monte Carlo estimate is then determined in order to 

draw N independent samples from B(x) to form the 

weighted sum: 

(9) 𝐼𝑁 =
1

𝑁
∑𝑤𝑘

𝑖 𝛿(𝑥𝑘 − 𝑥𝑘
𝑖 )

𝑁

𝑖=1

 

where 𝑤𝑘
𝑖  equals to   

𝐴(𝑥𝑖)

𝐵(𝑥𝑖)
 and δ(𝑥) is the Dirac delta 

function. Consequently, the probability density function at 

the time step k is calculated as follows: 

(10) 𝑝(𝑥𝑘|𝑦1:𝑘) = ∑𝑤𝑘
𝑖 𝛿(𝑥𝑘 − 𝑥𝑘

𝑖 )

𝑁

𝑖=1

 

 

where 𝜔𝑘
𝑖 ∝

𝐴(𝑥𝑘
𝑖
|𝑦1:𝑘)

𝐵(𝑥𝑘
𝑖
|𝑦1:𝑘)

 and 𝑥𝑘
𝑖  involve N samples extracted 

from importance density function 𝐵(𝑥𝑘
𝑖 |𝑦1:𝑘) at time step 

k. It is to be noted that the sum of the weight values can be 

equal to unity since the values are normalized. The state 

space form 𝜔𝑘
𝑖 , is estimated by the following recursive 

relation [39]: 

(11) 𝜔𝑘
𝑖 ∝ 𝜔𝑘−1

𝑖
𝐴(𝑦𝑘|𝑥𝑘

𝑖 )𝐴(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 )

𝐵(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 , 𝑦𝑘)
 

where 𝐴(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 ) is the transitional density obtained from 

equation (3), and 𝐴(𝑦𝑘|𝑥𝑘) is computed through using 

equation (4). 

One of the main drawbacks of the particle filter algorithm 

is that, during a time step, a substantial weight value 

assigned to one particle and the updating of other particles 

containing small weight values and having insignificant 

effects on A(𝑥𝑘|𝑦1:𝑘), is time-consuming. As such, 

resampling, in which the particles with small weight values 

have been disregarded and substantial weight values of 

particles have been considered, can be applied in an 

attempt to solve this problem. Thus, the particles with large 

weight values become more effective, and their weight 

values are uniformly considered to be equal to 1/N. 

However, replacing the small weight values with large 

weight values in sequential time steps eradicates the 

variation of particles and induces uniform distribution. In 

this regard, some techniques, such as the crossover 

operator method, can be used in comparison to the 

technique used in the Genetic Algorithm [40]. Finally, as 

the particles tend to infinity, the system states tend  to the 

average value. However, this increases the computational 

cost compared to the EKF calculations that consume less 

time. 

Fig. 1 briefly represents the application of the particle filter 

algorithm. In the first step, the particles are selected using 

the importance density. In the second step, importance 

weights are extracted using likelihood functions. Then, 

inappropriate samples that have small weight values are 

resampled. Finally, the predicted probability density 

function is calculated by weighted particles.

 

 
Fig. 1: Schematic representation of the particle filter (PF) algorithm [21]. 
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2.2. Kalman Filter 

The behavior of a nonlinear system in state-space format 

has been described in Equation (3). For linear systems, the 

Kalman Filter is used to estimate the system states (system 

parameters and responses) under the system inputs and 

noises in the state-space format. Hence, it is not useful for 

the estimation of nonlinear system states. Different 

methods for the estimation of nonlinear system states have 

been proposed in the literature, among which the EKF 

provides the advantages? by linearizing the system in the 

state-space format through the first-order Taylor series (a 

comprehensive review of the KF method for linear systems 

and EKF for nonlinear systems can be found in Ebrahimian 

et al. [41]). Then the equations of linear system states can 

be estimated and determined. Subsequently, the posterior 

estimate of the system in each step is considered as the 

center point of the linearization for the next step, which can 

be defined as follows: 

(12) 
𝑥𝑘+1 =  [𝑓𝑘(𝑥̂𝑘

+, 𝑢𝑘) + 
𝜕𝑓𝑘(𝑥,𝑢𝑘)

𝜕𝑥𝑇
|
𝑥= 𝑥𝑘

+
(𝑥𝑘 −

𝑥̂𝑘
+) + 𝐻. 𝑂. 𝑇 ] + 𝑣𝑘 → 𝑥𝑘+1 ≅ 𝐴𝑘𝑥𝑘 + 𝑢̃𝑘 + 𝑣𝑘  

 

where   𝑢̃𝑘 =  𝑓
𝑘
(𝑥̂𝑘

+
, 𝑢𝑘) − 𝐴𝑘𝑥̂𝑘

+
 and Ak = 

∂fk

∂xT|
x= x̂k

+ 
. 

Employing the first-order approximation and assuming 

𝑣𝑘 = 𝑁(0, 𝑄𝑘), where 𝑁(𝜇, 𝐶) is the normal distribution 

with a mean of 𝜇 and the covariance matrix of C, the 

prior estimate of the system state and the covariance 

matrix (𝑥̂𝑘+1
−  and 𝑃̂𝑥,𝑘+1

− ) are obtained from the following 

equations: 

(13) 𝑥̂𝑘
− = 𝑓𝑘(𝑥̂𝑘

+, 𝑢𝑘) 
 

(14) 𝑃̂𝑥,𝑘+1
− = 𝐴𝑘𝑃̂𝑥

+𝐴𝑇
𝑘 + 𝑄𝑘 

 

To perform a posteriori estimation of the system states and 

the covariance matrix (𝑥̂𝑘+1
+  and 𝑃̂𝑥,𝑘+1

+ ), the response 

matrix of the system must also be linearized around the 

latest estimated state. Hence, the following equation can be 

arranged as: 

(15) 

𝑦𝑘+1 = [𝑔𝑘+1(𝑥̂𝑘+1
+ , 𝑢𝑘+1) +

 
𝜕𝑔𝑘+1(𝑥,𝑢𝑘+1)

𝜕𝑥𝑇 |
𝑥= 𝑥𝑘+1

−
(𝑥𝑘+1 − 𝑥̂𝑘+1

− ) + 𝐻. 𝑂. 𝑇 ] +

𝜂𝑘+1 →  
𝑦𝑘+1 ≅ 𝐶𝑘+1𝑥𝑘+1 + 𝑧̃𝑘+1 + 𝜂𝑘+1 
 

Where 𝐶k+1 = 
∂gk+1

∂xT |
x= x̂k+1

−  
 and 𝑧̃𝑘+1 =

 𝑔𝑘+1(𝑥̂𝑘+1
− , 𝑢𝑘+1) − 𝐶𝑘+1𝑥̂𝑘+1

− . Assuming that 𝑤 and 𝑣 are 

two independent Gaussian noises and 𝜂𝑘 = 𝑁(0, 𝑅𝑘), the 

linearized first-order estimate is defined as: 

(16) 𝑦̂𝑘+1
− = 𝑔𝑘+1(𝑥̂𝑘+1

− , 𝑢𝑘+1)  
 

(17) 𝑃̂𝑥𝑦,𝑘+1
− ≅ 𝑃̂𝑥,𝑘+1

− 𝐶𝑘+1
𝑇 𝑃̂𝑦,𝑘+1

− ≅ 𝐶𝑘+1𝑃̂𝑥,𝑘+1
− 𝐶𝑘+1

𝑇 +

𝑅𝑘+1  
 

Where 𝑦̂𝑘+1
−  is predicted system response and 𝑃̂𝑥𝑦,𝑘+1

−  is the 

estimated cross-covariance matrix of the system state at the 

time step k+1. The Kalman Filter algorithm for the 

recursive nonlinear systems is summarized in Fig. 2, where 

𝐸[] is used to determine the expected values provided in 

parentheses. 

In this study, the EKF method, in which the main objective 

is to determine the mean and variance of variables using 

inputs and outputs of the system, has been utilized to 

extract the parameters of the nonlinear system. Provided 

that the inputs and outputs of the nonlinear system are 

known, and the parameters of the material models of the 

system are assumed to be fixed, the EKF method can be 

used. According to this method, parameters are defined as 

random variables. 

For this method, the system outputs are defined as: 

(18) 𝑦𝑘+1 ≅ ℎ𝑘+1(𝜃, 𝑢𝑘+1) + 𝜂𝑘+1 
 

Where 𝜃 is a constant parameter vector, and h(.) describes 

the nonlinear system. To solve the equation, the parameters 

vectors are assumed to be randomly distributed and 

changed by the Gaussian Markov process. The state-space 

equation for the parameters and the system output is then 

defined as: 

(19) 𝜃𝑘+1 = 𝜃𝑘 + 𝛾𝑘 
 

(20) 𝑦𝑘+1 = ℎ𝑘+1(𝜃𝑘+1, 𝑢𝑘+1) + 𝜂𝑘+1 
 

Equations (19) and (20) describe the state of linear 

systems, in which 𝛾𝑘 is assumed as a zero-mean Gaussian 

process. If the measurement noise of the system is assumed 

to be equal to the zero-mean Gaussian, the recursive EKF 

method can extract the mean value and the covariance of 

parameter vectors using previous equations, as well as the 

inputs and outputs of the system in each time step. Only, 

the equation of the system outputs must be linearized. 

The mechanical properties of the test structure and the 

characteristics of the base excitations are noticed in the 

following sections. Furthermore, the FE models of the 

structure and the material models are explained, and then 

the application of the PF and EKF algorithms is described. 
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Fig. 2: Schematic Extended Kalman Filter (EKF) algorithm for the nonlinear system identification. 

 

3. The test structure characteristics 

To consider the uncertainties and errors in real structure 

modeling, a three-dimensional 4-story steel structure with 

two spans in one direction and one span in another 

direction, tested in the National Research Institute for 

Earth Science and Disaster Prevention (NIED) in 2007 is 

simulated (Fig. 3) [42]. As shown in Fig. 4, the structure 

has two spans of 5 meters in the Y-direction and one span 

of 6 meters in the X-direction, and the story heights are 

𝑥̂0
+ = 𝐸[𝑥0] 

𝑃̂𝑥0

+ = 𝐸[(𝑥0 − 𝑥̂0
+)(𝑥0 − 𝑥̂0

+)𝑇] 

 

𝑥̂𝑘+1
− = 𝐸 𝑥𝑘+1|𝑦11, 𝑦22, … , 𝑦𝑘 =  𝑓𝑘(𝑥̂𝑘

+, 𝑢𝑘) 

𝑃̂𝑥𝑦,𝑘+1
− = 𝐸 (𝑥𝑘+1 − 𝑥̂𝑘+1

− )(𝑦𝑘+1 − 𝑦̂𝑘+1
− )𝑇|𝑦11, 𝑦22, … , 𝑦𝑘    

≅  𝑃̂𝑥,𝑘+1
− 𝐶𝑘+1

𝑇  

 

𝑃̂𝑦,𝑘+1
− = 𝐸 (𝑦𝑘+1 − 𝑦̂𝑘+1

− )(𝑦𝑘+1 − 𝑦̂𝑘+1
− )𝑇|𝑦11, 𝑦22, … , 𝑦𝑘 

≅ 𝑃̂𝑥,𝑘+1
− 𝐶𝑘+1

𝑇 𝑃̂𝑦,𝑘+1
− + 𝑅𝑘+1 

𝐾𝑘+1 = 𝑃̂𝑥𝑦,𝑘+1
− (𝑃̂𝑦,𝑘+1

− )−1 

𝑃̂𝑥,𝑘+1
+ = 𝐸 (𝑥𝑘+1 − 𝑥̂𝑘+1

− )(𝑥𝑘+1 − 𝑥̂𝑘+1
− )𝑇|𝑦11, 𝑦22, … , 𝑦𝑘 =

(𝐼 − 𝐾𝑘+1𝐶𝑘+1)𝑃̂𝑥,𝑘+1
−  (𝐼 − 𝐾𝑘+1𝐶𝑘+1)

𝑇
 +   𝐾𝑘+1𝑅𝑘+1𝐾𝑘+1

𝑇   

𝑃̂𝑥,𝑘+1
− = 𝐸 (𝑥𝑘+1 − 𝑥̂𝑘+1

− )(𝑥𝑘+1 − 𝑥̂𝑘+1
− )𝑇|𝑦11, 𝑦22, … , 𝑦𝑘 

≅  𝐴𝑘𝑃̂𝑥
+𝐴𝑇

𝑘 + 𝑄𝑘 

𝑦̂𝑥,𝑘+1
− =  𝐸 𝑦𝑘+1|𝑦11, 𝑦22, … , 𝑦𝑘 =  𝑔𝑘+1(𝑥̂𝑘+1

− , 𝑢𝑘+1) 

Initialization: k=0 

Prediction: 

Correction: 

𝑥̂𝑘+1
+ = 𝐸 𝑥𝑘+1|𝑦11, 𝑦22, … , 𝑦𝑘 =  𝑥̂𝑘+1

− + 𝐾𝑘+1(𝑦𝑘+1 − 𝑦̂𝑘+1
− ) 

𝑘 → 𝑘 + 1 
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3.875 m for the first story and 3.5 m for the remaining 

stories of the structure. Table 1 shows the beam and 

column sections of the structure. The beams are fabricated 

from the Japanese SN400B structural steel with the 

nominal yield strength of 235MP. The columns are 

designed as square hollow sections, having a nominal yield 

strength of 295 MP based on the Japanese BCR295 

structural steel. The roof system consists of composite 

slabs with 175 mm concrete cover, which are connected to 

beams by shear studs. As such, a contribution between the 

slabs and beams is expected. On the other hand, as shown 

in Fig. 4, the structure is surrounded by Autoclaved 

Lightweight Concrete (ALC) panels in all directions, 

except for one peripheral frame in the Y-direction. 

Therefore, the interaction of panels and the structure is 

anticipated. In this study, the displacement and 

acceleration data of the structure on a shake table test, 

which have been recorded at a frequency of 100Hz, are 

used for the system identification.

 
Fig. 3: Full-scale 4-story steel structure after the completion of the NIED shaking table [42]. 

 

 
Fig. 4: Four-story prototype building: (a) plan view of a typical story, (b) Y-elevation, and (c) X-elevation (units: 

millimeters) 

 

Table 1. Beam and column sections of the 4-story steel structure. 

 Beam sections  Column sections 

Floor G1(SN400B) G11(SN400B) G12(SN400B) Story C1, C2 

Roof H346 × 174 × 6 × 9 H346 × 174 × 6 × 9 H346 × 174 × 6 × 9 4 HSS 300 × 9 

4 H350 × 175 × 7 × 11 H350 × 175 × 7 × 11 H340 × 175 × 9 × 14 3 HSS 300 × 9 

3 H396 × 199 × 7 × 11 H400 × 200 × 8 × 13 H400 × 200 × 8 × 13 2 HSS 300 × 9 

2 H400 × 200 × 8 × 13 H400 × 200 × 8 × 13 H390 × 200 × 10 × 16 1 HSS 300 × 9 
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3.1. Base excitations 

The structure is subjected to the JR Takatori ground 

motion record. The amplitudes of the ground motion are 

gradually increased so that the 20%, 40%, 60%, and 100% 

of the ground motion is applied to the structure, 

respectively (Table 2). Then, the responses of ambient 

vibrations are recorded to determine the dynamic 

characteristics of the structure. The two horizontal 

components and the vertical component of the earthquake 

have been subjected to the structure simultaneously. Fig. 5 

shows the acceleration time histories of these components. 

When 20% of the ground motion is applied, the structure 

behaves elastically with merely partial cracks occurring on 

the wall panels. It is to be noted that applying the 40% of 

the ground motion, which is proportional to the design 

earthquake, results in increasing the structural damage by 

reaching it to the yielding zone. When the structure is 

subjected to 60% of the earthquake, which is assumed to 

be equal to 1.5 times the design earthquake, significant 

damages, such as yielding at column bases and panel 

zones, and destruction in wall panels have occurred. 

Finally, under 100% of the earthquake, uniform 

distribution of the damage over the height of the structure 

shifts into a soft story mechanism, causing the structure to 

collapse. In this study, 60% of the unscaled ground motion 

is used for system identification and parameter estimation.

 

 
Fig. 5: Time histories of the unscaled JR Takatori motion components: (a) North-South component, (b) East-West 

component, and (c) vertical component. 

 

Acceleration response spectrums of the three unscaled 

components of the JR Takatori ground motion are 

compared in Fig. 6. According to this figure, the horizontal 

components have significant spectral accelerations in the 

period range of 0 to 0.8 s, in the vicinity of the fundamental 

period of the structure in both east-west (EW) and north- 

south (NS) directions. However, the Y direction of the EW 

component is also stronger than that of the NS component. 

Thus, the structure is expected to experience more severe 

damages in the Y direction. In this study, to perform the 

2D modeling of the structure, the frame of the Y-direction 

with no walls is used.

Table 2. Load sequence of earthquake excitations for the four-story test frame. 

Load sequence Excitation Level 

Ι 20% of the original JR Takatori record Service level earthquake 

Π 40% of the original JR Takatori record Design level earthquake 

ΙΠ 60% of the original JR Takatori record Beyond design level earthquake 

V 100% of the original JR Takatori record Maximum considerable earthquake 

 

 
Fig. 6: Response spectrum of the two horizontal Y (North-South) and X (East-West), as well as the vertical components of the 

unscaled JR Takatori motion. 
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4. Finite element model 

The finite element (FE) model of the frame is simulated in 

OpenSees platform [43]. In this study, two models, 

including 2D and 3D models, have been simulated to 

consider the uncertainties. In the 2D modeling, the 

concentrated plasticity is used to simulate the nonlinearity 

in beams, columns, and panel zones. Furthermore, panel 

zones are simulated by both parallelograms and scissors 

models. The frame with no wall panels has been modeled 

in the 2D model, in which the interaction of the frame and 

wall panels is not considered. The MIK material model is 

used to represent the inelastic behavior of beams and 

columns. Besides, the Krawinkler and Fielding and Huang 

models are used in the parallelogram and scissors methods, 

respectively (Fig. 7). 

For the well-detailed 3D modeling, the beams and columns 

are simulated using the distributed plasticity and forced 

nonlinear beam-column elements. The G-M-P material 

model is assigned to fiber sections. The floor slabs are 

simulated using shell elements, and wall panels, which 

affect the lateral stiffness and strength of the structure 

(about 10% according to [44]), are modeled by the two 

methods shown in Fig. 7(d, e).To consider the interaction 

of wall panels and frames, three models including the 

frame with no wall panels, the frame with wall panels 

modeled by beam-column elements, and the frame with 

wall panel modeled by equivalent diagonal strut elements 

are employed. Among these models, the latter uses the 

concrete01 and general hysteretic material models for 

beam-column elements. Moreover, a slip model is used to 

simulate the diagonal elements of the walls. The details of 

the models are summarized in Table 3. The material 

models, modeling methodologies, and related unknown 

parameters are briefly discussed in the following sections.

 
Fig. 7: Analytical model of the building prototype: (a) plan view of a typical story,(b) modeling of the panel zone region 

with the scissors methodology, (b) modeling of the panel zone region with the parallelogram methodology, (d) modeling 

of the wall panel with the beam-column element, and (e) modeling of the wall panel with the equivalent diagonal 

element. 
 

Table 3. Properties and assumptions of the considered models. 
ALC Wall panel Panel zone region Plasticity Pattern for frame 

elements   
Material Methodology Material Methodology Material Methodology Dim. Model No. 
    MIK Concentrated 2-D 1 

- - Krawinkler Parallelogram MIK Concentrated 2-D 2 

- - 
Fielding 

and Huang 
Scissors G-M-P Distributed 3-D 3 

Concrete01 +general  

hysteretic 

Forced beam-

column 
- - G-M-P Distributed 3-D 4 

Slip based model 
Equivalent 
diagonal strut 

- - G-M-P Distributed 3-D 5 

4.1. Modeling the nonlinear behavior of beams and 

columns using the concentrated plasticity 

In this modeling, the regions with nonlinear behavior are 

simulated by the use of special elements. According to the 

mechanics of structures, since the nonlinearity under 

lateral seismic loads propagates in both depth and length 

of members, various uncertainties have existed in the 

modeling. For structural beams, in which axial loads are 
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negligible due to the rigid behavior of the floor slab 

diaphragm, the concentrated plasticity method can be 

advantageous. However, concerning the structural 

columns, the nonlinear behavior of columns is more 

complicated due to the presence of large axial loads. 

Consequently, lots of uncertainties have arisen in the 

modeling according to the concentrated plasticity method. 

 

4.2. Modeling the nonlinear behavior of panel zones 

at the beam-to-column connections 

For the moment-resisting steel connection, the high shear 

forces of the panel zone region located in the part of the 

column within the depth of the connecting beams cause 

nonlinear behavior in these components. Although the 

nonlinear behavior of well-designed panel zones may 

increase the energy dissipation capacity and provide a 

desirable hysteretic behavior, structural instability can 

arise. Since the panel zone is a susceptible region that may 

experience some level of distortion, the damage can be 

transferred to the connections. With regard to the 

experimental model of the structure, the rigid behavior of 

the floor slabs and its contribution to the flexural stiffness 

of the beams caused the beams to remain elastic under the 

seismic excitation of different levels. Besides, the 

nonlinear behavior was also observed in the panel zone 

regions. Hence, a thorough investigation of the behavior of 

panel zones is required. 

Various methods of the panel zones’ modeling in beam-

column connections have been proposed in the literature, 

some of which are schematically illustrated in Fig. 8. The 

first method, known as the scissors method, is proposed by 

Castro et al. (Fig. 8(a)) [33]. In this method, two rigid 

elements connected by a nonlinear spring in the joint 

center, are used. The sizes of rigid elements equal to those 

of the connected beams and columns. Furthermore, the 

distortion occurs in each rigid element independently. 

Biddah and Ghobarah [45] used three nonlinear springs to 

simulate the behavior of panel zones. Two springs simulate 

the rotation of the panel zone, while one spring simulates 

the shear force (Fig. 8(b)). Youssef and Ghobarah [46] 

utilized a parallelogram model whose corners are 

connected two by two, using translational springs to 

simulate the shear distortion. In this method, 12 springs are 

used to define different degradation patterns (Fig. 8(c)). 

Lowes and Altoontash [47] introduced a model with four 

nodes and 12 degrees of freedom to simulate the panel 

zone. In this method, a rotational spring and 12 

translational springs were employed to display the shear 

force-distortion behavior as well as different degradation 

patterns in the panel zone (Fig. 8(d)). Krawinkler 

introduced a method that is known as the frame method in 

the literature [48]. According to this method, four rigid 

elements and a diagonal translational spring was used to 

model the behavior of the panel zone (Fig. 8(e)). 

Afterward, Krawinkler and Gupta introduced a method 

called the parallelogram method, which was similar to the 

previous method, except for a translational spring replaced 

with the rotational one. In this method, two nodes with the 

same coordinates in each corner and the same translational 

degrees of freedom were defined. Besides, the rotational 

spring in one of the corners displays the shear-distortion 

behavior [32] (Fig. 8(e)). Among various methods, some  

are too simplified like the scissors method, while others are 

too complicated, like the method proposed by Lowes and 

Altoontash. Simplified methods bring uncertainties to 

modeling. On the other hand, although complicated 

methods simulate the structure more accurately, a large 

number of unknown parameters make it difficult to 

identify the modeling of the structure. In this study, the 

scissors and parallelogram models were used. 

 
Fig. 8: Various modeling of the panel zone: (a) the scissors model, (b) the shear and bond-slip model, (c) the Youssef and 

Ghobarah model, (d) the Lowes and Altoontash model, (e) the frame model, and (f) the parallelogram model. 
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4.3. Modeling of panel walls 

Precast panels, consisting of concrete materials are widely 

employed as infills and wall partitions in different 

structures, in which  the elements, which play a significant 

role in the structural lateral stiffness and strength due to the 

interaction of the frame and its surrounding panels, are 

classified as nonstructural components of the structure. 

Hence, several damages to these components have been 

reported from past earthquakes. According to conducted 

research, the tested structure is surrounded by the ALC 

panels in all directions except for one of the Y-direction 

frames. The results demonstrate that the panels have 

experienced several damages through different levels of 

the earthquake [49]. As shown in Fig. 7(d,e), two main 

elements can be used for the modeling of panels: 1) an 

equivalent diagonal strut element in which two truss 

elements within the frame span are used, and 2) an 

equivalent beam-column element consisting of vertical 

elements. For the first method, material models and the 

effective width of the wall are the main parameters in 

determining the behavior of the wall. To examine the 

effective width of the wall, various methods have been 

proposed. In this study, the method proposed by Paulay 

and Priestley is utilized [50]. According to this method, the 

effective width of the wall is considered to be equal to ¼ 

of its length. For the second method, the model suggested 

by Tuan-Nam and Kasai is employed to demonstrate the 

force-displacement behavior of the wall [44]. 

In the second method, the walls are defined using fiber 

beam-column elements. As the width of the panels is 

almost 0.6 m, three panels are replaced by one beam-

column element, located in the center of the panels. 

Additionally, the Concrete01 and general hysteretic 

material models of OpenSees have been applied for 

modeling the concrete and steel elements of the wall. 

 

5. Material models 

The prediction of the frame structures’ behavior under an 

earthquake shaking requires accurate modeling that 

includes rules for the stiffness and strength deterioration. 

The Modified Ibarra–Krawinkler (MIK) deterioration 

model [34] is assigned to the idealized springs of beams 

and columns, and the G-M-P material model [37] is 

assigned to the fiber sections of beams and columns. The 

MIK model is based on a set of rules that define four cyclic 

deterioration patterns between the bounds. The Krawinkler 

and bi-linear mathematical models, introduced by Fielding 

and Huang, are assigned to the idealized springs of panel 

zones for the parallelogram and scissors methodologies, 

respectively. The shear-distortion responses of the 

mathematical models are described by tri-linear backbone 

curves. 

5.1. MIK material model 

The MIK material model was introduced by Ibarra et al. 

The model considers various degradations of the stiffness 

and strength, including yield strength degradation, post-

yield stress degradation, reduction in loading, and 

unloading stiffness. As shown in Fig. 9(a,b), the 

parameters which are required to define the model are as 

follows: elastic stiffness, 𝐾𝑒; yield bending strength, 𝑀𝑦; 

capping strength, 𝑀𝑐; residual strength, 𝑀𝑟; yield 

curvature, 𝜃𝑦; and some other parameters such as 𝛬, 𝜃𝑝, 

𝜃𝑝𝑐 and 𝜃𝑢. This model is used to describe the nonlinear 

behavior of beams and columns in the concentrated 

plasticity model.

 
Fig. 9: Modified Ibara-Krawinkler deterioration model: (a) monotonic curve; (b) various modes of the cyclic 

deterioration (stiffness and strength deterioration) [51]. 

5.2. G-M-P material model 

The G-M-P material model was proposed by [37]. The 

model formula consists of 8 parameters. As shown in Fig. 

10(a), the parameters include the modulus of elasticity, E; 

yield stress, Fy; the ratio of post-yield hardening, b; and 

five other parameters, representing the effects of 

Bauschinger and isotropic hardening. For each 

substructure, the first three parameters are considered to be 
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unknown, while others can be defined based on the 

suggested values in the literature. 

 

5.3. Concrete 01 model 

The concrete 01 model was proposed by Karsan and Jirsa 

to describe concrete behavior [52]. According to Fig. 

10(b), the sample is merely considered to have the 

compressive strength. Thus, the tensile strength is 

considered to be zero. The concrete01 model requires 

fewer parameters to be defined, including the maximum 

compressive stress, 𝑓𝑝𝑐, strain corresponding to the 

maximum compressive stress, 𝑒𝑝𝑠𝑐0, ultimate 

stress, 𝑓𝑝𝑐𝑢, and strain corresponding to the ultimate 

stress, 𝑒𝑝𝑠𝑢, compared to other models. 

 

5.4. General hysteretic material model 

The general hysteretic model is a multilinear model in 

which the effects of pinching, cyclic degradation of the 

hysteretic energy, and reduction of unloading stiffness are 

considered. In this model, five parameters, including the 

PinchX, PinchY, damage1, damage2, and β, are needed in 

addition to the determined points on the backbone curve 

(Fig. 10(c)). PinchX and PinchY parameters are 

considered as the pinching of the stress and strain, 

respectively. Damage1 and damage2 parameters are 

defined as the damage caused by the ductility and energy 

dissipation, respectively, and β is defined as the degrading 

of unloading stiffness based on the ductility. In this study, 

only PinchX and PinchY parameters are considered as 

unknown parameters. 

 

5.5. Slip-based material model 

The Slip-based material model can be considered as a 

bilinear model, assigned to the equivalent diagonal 

elements which are used in the modeling of the walls [44]. 

As shown in Fig. 10(d), when the section strength reaches 

the maximum strength which corresponds to δ1 

displacement, the strength reduction at δ2 displacement 

will be equal to zero. This model considers the separation 

and sliding between the infill and the frame. It is to be 

noted that the section strength, F and the parameters δ1 and 

δ2 are unknown.

 

 
Fig. 10: Constitutive hysteretic principles considered for the modeling frame members and ALC wall panels: (a) G-M-P 

material model, (b) concrete01 material model, (c) general hysteretic material model, and (d) slip-based model. 

 

5.6. Krawinkler material model 

Several methods have been proposed to define the force-

distortion relation of the panel zone region, one of which 

was introduced by Krawikler [35]. As illustrated in Fig. 

11(a), the behavior of the trilinear curve is assigned to the 

rotational spring in the parallelogram model. In this model, 

the yield shear strength, 𝑉𝑦, is defined as: 

𝑉𝑦 =
𝐹𝑦

√3
𝐴𝑣 =  

𝐹𝑦

√3
 (0.95𝑑𝑐𝑡𝑤𝑐) ≈  0.55𝐹𝑦𝑑𝑐𝑡𝑐𝑤 (21) 

where 𝑑𝑐 is the depth of the column section; 𝑡𝑐𝑤 is the web 

thickness, and 𝐹𝑦 is the yield stress of the material. The 

strain corresponding to the section strength can be 

determined using the following equation: 

𝛾𝑦,1 =
𝐹𝑦

√3 𝐺
 (22) 
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Where G is the shear modulus of the column material. 

The plastic strength of the column, 𝑉𝑝, is defined as: 

𝑉𝑝 ≈ 0.55𝐹𝑦𝑑𝑐𝑡𝑐𝑤(1 +
3𝑏𝑐𝑓𝑡𝑐𝑓

2

𝑑𝑏𝑑𝑐𝑡𝑐𝑤
) (23) 

where 𝑡𝑐𝑓 and 𝑏𝑐𝑓 are the thickness and the width of the 

column flange respectively, and 𝑑𝑏 is the depth of the 

beam section. 

The elastic and post-yield stiffnesses denoted as 𝐾𝑒 and 𝐾𝑝 

are obtained from the equations described below: 

𝐾𝑒 =  
𝑉𝑦

𝛾𝑦
= 0.95𝑑𝑐𝑡𝑐𝑤𝐺 (24) 

 

𝐾𝑝 ≈ 0.95𝐺
𝑏𝑐𝑓𝑡𝑐𝑓

2

𝑑𝑏
 (25) 

According to this model, the distortion, 𝛾𝑦,2, is considered 

to be equal to four times the 𝛾𝑦,1

 
Fig. 11: Shear force-Distortion characteristics for the panel zone: (a) tri-linear mathematical model; (b) bilinear mathematical 

model. 

5.7. Fielding and Huang material model 

This model contains a bilinear curve, and the yield strength 

of the section is calculated by the following equation: 

𝑉𝑦 =
𝐹𝑦

√3
𝐴𝑣 =  

𝐹𝑦

√3
 (𝑑𝑐 − 𝑡𝑐𝑓)𝑡𝑐𝑤 (26) 

The post-yield stiffness is also defined as: 

𝐾𝑝 =  
5.2𝐺𝑏𝑐𝑓 𝑏𝑐𝑓

3

𝑑𝑏(1 − 𝜌)
 (27) 

In both material models used for the modeling of panel 

zone elements, the general hysteretic model is used. 

PinchX and PinchY parameters that have been mentioned 

above are also considered. The unknown parameters of 

five finite element models are classified in Table 4.

Table 4. Unknown considered material model parameters. 

Model No. Frame parameters Panel zone region parameters Wall panel parameters 

1 𝐸, 𝐹𝑦 , 𝜃𝑝 , 
𝑀𝑐

𝑀𝑦
⁄  , Λ 𝐸, 𝐹𝑦 , 𝑃𝑖𝑛𝑐ℎ𝑋, 𝑃𝑖𝑛𝑐ℎ𝑌 - 

2 𝐸, 𝐹𝑦 , 𝜃𝑝 , 
𝑀𝑐

𝑀𝑦
⁄  , Λ 𝐸, 𝐹𝑦 , 𝑃𝑖𝑛𝑐ℎ𝑋, 𝑃𝑖𝑛𝑐ℎ𝑌 - 

3 𝐸, 𝐹𝑦 , 𝑏 - - 

4 𝐸, 𝐹𝑦 , 𝑏 - 
𝑒𝑝𝑠𝑐0, 𝑒𝑝𝑠𝑢, 𝑓𝑝𝑐, 𝑓𝑝𝑐𝑢 

𝑃𝑖𝑛𝑐ℎ𝑋, 𝑃𝑖𝑛𝑐ℎ𝑌 

5 𝐸, 𝐹𝑦 , 𝑏 - 𝐹, 𝛿1, 𝛿2 

6. Applications of PF and EKF algorithms in 

obtaining unknown model parameters 

As mentioned previously, the PF and EKF methods are 

used to obtain the unknown parameters of the material 

models (Table 4). For this purpose, the finite element 

model is simulated in OpenSees framework. Then, the 

sensitivity matrix, the mean value, and the covariance 

matrix are computed, updated, and the errors are modified 

in MATLAB software [53]. In the PF method, the concept 

of the “range” is defined as the range of particle variations 

(material models parameters), according to Table 5. If the 

target values of parameters do not exist in this range, the 

system cannot be updated. Subsequently, the model may 

not be accurate enough to predict the unknown parameters. 

Hence, the selection of this range for the particles defined 

based on previous studies [41, 44, 51, 54], is of crucial 

importance. In the PF method, 500 particles are selected 

and modified during the time steps using the method of the 

aforementioned algorithm. In the EKF algorithm, initial 

values are assigned to the parameters as well as the 

covariance matrices, and mean values and covariance of 

the parameters are modified during the time steps. This 

process is iterated 100 times to obtain final values for 

parameters. 

As mentioned earlier, the vectors 𝑣𝑘 and 𝜂𝑘 have normal 

probability distributions with the zero mean value and 

covariance matrices 𝑄𝑘 and 𝑅𝐾 respectively. Along with 

the measurement of the responses of the structure, several 
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noises may be generated from different sources, including 

the sensor, sensor cable, and data acquisition system. 

Therefore, it is important to estimate the noises based on 

their source of generation. In this study, the Gaussian white 

noise with a zero mean value, and root mean square (RMS) 

noise-to-signal ratio (SNR) of 5% is assumed. Thus, the 

standard deviation of the noise is equal to 0.05 ×

𝑅𝑀𝑆 (𝑦̈𝑖) where 𝑖 = 1,2,3,4 and 𝑦̈ is the acceleration of 

the first to fourth stories. Employing mentioned algorithm, 

parameters 𝑄𝑘 and 𝑅𝑘 can be calculated [55]. Hence, the 

calculation of 𝑄𝑘 is implemented as follows: 

Assuming that the second-order statistics of the process 

noise γ are time-invariant, the process noise covariance 

matrix is defined as 𝑄𝑘  =  𝑄 =  𝐸(𝛾𝛾𝑇). 

The covariance matrix is a diagonal matrix whose diagonal 

entries are the process noise variances associated with 

parameters to be estimated. Here, the variances are (as an 

example for model-1) considered as (𝑞𝐹𝑦0)
2, (𝑞𝐸0)

2, 

(𝑞𝜃𝑝0)
2, (𝑞(𝑀𝑐/𝑀𝑦)0)

2, (𝑞𝛬0)
2, (𝑞𝑃𝑖𝑛𝑐ℎ𝑋0)

2 and 

(𝑞𝑃𝑖𝑛𝑐ℎ𝑌0)
2, where 𝑞 = 10−4, that is, the RMS of each 

component of the process noise is taken 0.01% of the 

initial estimate of the corresponding material parameters 

[29, 56]. 

The covariance matrix R is considered as a diagonal matrix 

 =  [𝑅𝑖𝑖] (𝑖 = 1,… ), which means that the individual 

measurement noises are assumed to be statistically 

uncorrelated. The ith diagonal entry of R, 𝑅𝑖𝑖, represents the 

variance of the individual measurement noise, 𝑣𝑖, 

corresponding to the ith measured response. 

The amplitudes of the measurement noises are assumed to 

be unknown and considered as 𝑅𝑀𝑆(𝑣𝑖)  =  𝑟 ×

𝑅𝑀𝑆 ([𝑦̈𝑖]), where [𝑦̈𝑖] denotes the time history of the ith 

measured response. The parameter 𝑦̈𝑖 is the noisy 

acceleration response of the ith floor. Thus, 𝑅𝑖𝑖 = 𝑟2 ∗

(𝑅𝑀𝑆[𝑦̈𝑖])
2 where r is considered 0.1 [29, 56]. 

With regard to several damage patterns and materials in the 

tested structure, different substructures have been defined. 

As such, the substructures are categorized as follows: 1) 

columns of the first story 2) panel zones of the first two 

stories in the 2D modeling 3) walls in the 3D modeling.

Table 5. The interval assumed for each constant parameter. 

2-D modelling 3-D modelling 

Parameter 
Columns of the 

first story 
Parameter 

Panel zones 

of the first 

two stories 

Parameter 
Columns of the 

first story 
Parameter Wall panel 

𝐸(𝐺𝑃𝑎) [160 240] 𝐸(𝐺𝑃𝑎) [160 240] 𝐸(𝐺𝑃𝑎) [160 240] 𝑒𝑝𝑠𝑐0 [0.001 0.003] 

 𝐹𝑦(𝑀𝑃𝑎) [240 360]  𝐹𝑦(𝑀𝑃𝑎) [200 280]  𝐹𝑦(𝑀𝑃𝑎) [240 360] 𝑒𝑝𝑠𝑢 [0.006 0.012] 

𝑏 [0.005 0.015] 𝑃𝑖𝑛𝑐ℎ𝑋 [0.7 2] 𝑏 [0.005 0.015] 𝑓𝑝𝑐(𝑀𝑃𝑎) [8 18] 

𝜃𝑝(𝑟𝑎𝑑) [0.02 0.05] 𝑃𝑖𝑛𝑐ℎ𝑌 [0.5 2]   𝑓𝑝𝑐𝑢(𝑀𝑃𝑎) [3 12] 
𝑀𝑐

𝑀𝑦
⁄  [1.01 1.10]     𝑃𝑖𝑛𝑐ℎ𝑋 [0.5 1.5] 

Λ [0.5 2.0]     𝑃𝑖𝑛𝑐ℎ𝑌 [1 4] 

      𝐹(𝐾𝑁) [10 40] 

      𝛿1(𝑟𝑎𝑑) [0.005 0.015] 

      𝛿2(𝑟𝑎𝑑) [0.015 0.025] 

7. Results and discussion 

Fig. 12 represents the parameters obtained from the PF 

algorithm for model_1. The parameters obtained from both 

PF and EKF methods are also compared in Table 6 for all 

models. According to this Table, the parameters possess 

different values in the two methods mentioned above. 

Although the differences are negligible for the modulus of 

elasticity values in columns and panel zones, considerable 

differences have been observed in the parameters related 

to walls. As can be seen, the more the parameters that 

affect the structural behavior, the fewer the uncertainties 

influencing the structural response, and vice versa.

 
Fig. 12: Representation of the initial and final sample space of the Young module–yield stress parameter pairs for 

columns and panel zones for model_1: (a) initial sample space of the Young module –yield stress, (b) final sample space 

of the Young module –yield stress for columns, and (c) final sample space of the Young module –yield stress for panel 

zones. 
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Table 6. Comparision of the parameters obtained from PF to EKF algorithms. 

  Columns Panel zones 

Model No. Algorithm Parameters 

1 

 𝐸(𝐺𝑃𝑎) 𝐹𝑦(𝑀𝑃𝑎) 𝜃𝑝 
𝑀𝑐

𝑀𝑦
⁄  Λ 𝐸 𝐹𝑦 𝑃𝑖𝑛𝑐ℎ𝑋 𝑃𝑖𝑛𝑐ℎ𝑌 

PF 208 305 0.027 1.08 1.8 193 228 1.3 0.7 

EKF 205 289 0.04 1.04 1.4 204 222 0.9 1.2 

2 

 Columns Panel zones 

 Parameters 

 𝐸 𝐹𝑦 𝜃𝑝 
𝑀𝑐

𝑀𝑦
⁄  Λ 𝐸 𝐹𝑦 𝑃𝑖𝑛𝑐ℎ𝑋 𝑃𝑖𝑛𝑐ℎ𝑌 

PF 189 294 0.038 1.07 1.25 196 235 0.9 0.5 

EKF 193 301 0.032 1.09 0.95 200 247 1.25 1.0 

3 

 Parameters(columns) 

 𝐸 𝐹𝑦 𝑏       

PF 198 276 0.0109       

EKF 206 279 0.012       

4 

 Columns Wall panels 

 Parameters 

 𝐸 𝐹𝑦 𝑏 𝑒𝑝𝑠𝑐0 𝑒𝑝𝑠𝑢 𝑓𝑝𝑐 𝑓𝑝𝑐𝑢 𝑃𝑖𝑛𝑐ℎ𝑋 𝑃𝑖𝑛𝑐ℎ𝑌 

PF 200 295 0.009 0.0012 0.01 12 5 0.5 2.5 

EKF 205 281 0.01 0.0015 0.011 11 6 0.75 3.5 

5 

 Columns Wall panels 

 Parameters 

 𝐸 𝐹𝑦 𝑏 𝐹  𝛿1 𝛿2    

PF 202 285 0.008 24 0.01 0.016    

EKF 198 284 0.007 15 0.013 0.02    

Fig. 13 represents the errors of story displacements in 

different models of the structure, examined under both PF 

and EKF methods. Among the 2D models for the panel 

zone, model_1 performed by the parallelogram method 

had fewer errors compared to model_2, performed by the 

scissors method. Additionally, this is the case for both PF 

and EKF algorithms. As can be seen, despite employing 

the PF algorithm, which includes a large number of 

particles and iterations, model_2 still had many 

uncertainties. On the other hand, panel zones significantly 

affected the nonlinear behavior of the structure so that 

using a method with less accuracy led to significant errors. 

Among the 3D models using the PF method, the model in 

which the walls are defined by beam-column elements 

(model_4) has the fewest errors. The most significant 

errors occurred in the model with the equivalent diagonal 

elements for the modeling of walls (model_5) and the 

model with no walls (model_3). In the EKF method, the 

results were dvaried to some extent. As can be noticed, 

despite the fewest errors of Model_5, no significant 

difference was observed, which implicitly shows that walls 

had fewer effects on the overall behavior of the structure, 

even after the cracking and damage caused by the base 

excitation. Moreover, the mechanical properties of 

material models used in walls have not been accurately 

determined. With regard to the structure with and without 

the effects of panel zone and wall in the 2D and 3D models, 

different behavior has been observed. As can be seen, 

although the PF method is more time-consuming than the 

EKF one, the difference between their calibrated models is 

not considerable. 

Fig. 14 illustrates the curves for estimating the E and 𝐹𝑦 for 

model_1(panel zones), ratio of post-yield hardening, b, for 

model_3 and δ1 for model_5, in both PF and EKF 

methods. It is shown that E has changed from the 

beginning of the excitation and then became constant. 

While 𝐹𝑦 changed when the structure entered the nonlinear 

zone. This is the case for both PF and EKF methods, but 

the values of their parameters are different from each other. 

In contrast, the estimations of the strain hardening ratio, b, 

start with a flat portion and then are followed by a rapidly 

changing portion. This portion begins after the structure 

becomes nonlinear, and its measured response is 

sufficiently sensitive to these parameters. Note that the 

post-yield parameters start updating later than the strength 

parameter 𝐹𝑦. δ1 has changed from the beginning of the 

base excitation, which means early-stage damage occurred 

in walls.
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Fig. 13: Displacement error metrics for five calibrated four-story MRF models for the PF and EKF algorithms. 

 

 

 
Fig. 14: Estimation of the results for the EKF and PF algorithms: (a) Young module for panel zone regions of model_1, 

(b) yield stress for panel zone regions of model_1, (c) the ratio of post-yield hardening, b, for the first story columns of 

model_3, and (d) 𝛿1 for the wall panels of model_5. 
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Conclusion 

In this study, the effects of modeling uncertainties of a 4-

story steel structure surrounded by walls, have been 

studied, using the two recursive PF and EKF methods. 

Different uncertainties, including the 2D and 3D modeling, 

concentrated or distributed plasticity methods, and two 

methods for the simulation of the panel zones and walls, 

have also been considered. The parameters of the material 

models assigned to the structural elements have been 

determined using the PF and EKF methods. In the EKF 

method, whose equations have been linearized in the state-

space form, the results were more acceptable than those of 

the PF method in which a lot of particles (material model 

parameters) have been used for the structural calibration. 

Furthermore, the EKF method is less time-consuming. As 

such, the EKF has acceptable reliability to apply for the 

calibration of nonlinear systems. However, for systems 

with considerable nonlinearities, the EKF method may not 

be reliable enough and, therefore, further  investigations 

would be imperative. 
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