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Abstract: 
 

The finite element method (FEM) can be applied to practically analyze the tall buildings in 

which the shear walls are used to resist the lateral loads. Accordingly, a variety of displacement 

and strain-based as well as frame macro elements have been proposed for analysis of the tall 

buildings. With respect to application of the lower order plane stress elements, analytical 

problems may arise within the numerical process of the finite element analysis. The analytical 

problems caused by the parasitic shear effects in finite elements and definition of an 

incompatible rotational coupling at the beam-column and beam-wall joints are the two major 

issues involved in analysis of the tall buildings. Moreover, such effects can give rise to shear 

locking based on definition of an incompatible rotational coupling at beam-wall joints. 

Subsequently, in this paper, new non-linear strain based finite elements are proposed to 

overcome some of the complications occurring due to above mentioned parameters. These 

strain-based panel type elements are comprised of eight degrees of freedom and have been 

formulated on the basis of the general beam elements. In conclusion, the proposed elements can 

be utilized to accurately analyze the shear walls on the condition that elements are of coarse 

size of mesh. In addition, a set of numerical analyses are conducted to evaluate the results and 

indicate that, changes in the power of the strain functions greatly affect the processor in  

structural modeling. 

D 

1. Introduction 

Shear walls are commonly used in construction of tall 

buildings to increase resistance against the lateral loads, 

such as wind or seismic earthquakes acting on the buildings 

(Taranath 1998[20]). One of the common types of such walls 

are the coupled shear walls being formed because of the 

rows of openings that account for the architectural aspects 

such as windows, doors etc. Behavior of the coupled shear 

walls can be improved by incorporating stiffening beams at 

various levels. This induces additional axial forces, and thus 

reduces the bending moments in the walls as well as 

assisting to reduce the lateral deflection of the structures.  
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There are a number of computational methods which have 

been developed in order to analyze the behavior of tall 

buildings (Ghalamzan Esfahani et al 2017[5], Moslehi Tabar 

et al 2017[14]). These analytical procedures can be 

categorized into the continuum methods, frame method to be 

classified in the solid wall and the wide column analogies, 

the finite element method (FEM) and the finite strip method 

(FSM) (Coull et al. 1991[3], Macleod et al. 1977[12], Kim 

et al. 2005[6]). 

Application of the FEM is typically based on two main 

categories of displacement and strain-based finite elements. 

To date, all developed finite elements are not able to model 

and analyze buildings with great height. In this respect, the 

most serious issues include the absence of an exact 

definition for in-plane rotational freedom at each node, 

probable existence of parasitic shear effects in lower order 

elements as well as the inefficiency of using simple finite 

elements to model the coupling beams in such buildings 

(Macleod 1969[13], Thambiratnam et al. 1995[21], Öztorun 

2006[15], Paknahad et al. 2007[16]).  
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To overcome these issues in analysis of tall buildings with 

low computational efforts involved, two newly developed 

strain-based finite elements are presented in this study. 

These finite elements were developed based on the 

governing displacement functions of a beam element and its 

corresponding strain functions. Both of these strain-based 

elements can demonstrate the internal shear-flexure 

interaction of shear wall panels in tall buildings. The degrees 

of freedom which were defined to both finite elements 

include horizontal and vertical translations as well as two in-

plane rotations. The analytical concept employed to define 

the drilling degrees of freedom is the rotation of vertical 

fibers at connecting nodes. The novel panel elements are 

capable of accurately analyzing the shear walls with coarse 

size of mesh using a rational computational pace. 

 

2. Formulation of the Proposed Panel Elements 

As depicted in Fig. 1, the strain-based elements P1 and P2 

proposed in this study, have been developed according to 

definition of bending behaviour of the beam elements. It 

should be noted that both panel elements P1 and P2 have the 

same analytical structure and shape. The nodal degrees of 

freedom pertained to the elements P1 and P2 include one 

horizontal and two vertical translations as well as one in-

plane rotation which are defined at both chords of this 

element. According to Fig. 1, the degrees of freedom u1, 

ω1=-(∂u1)/∂y, v1, v2 and u2, ω2=-(∂u2)/∂y, v3, v4 are defined 

at lower and upper chords of the panel elements, 

respectively. According to literature, this is the only correct 

definition by which rotational compatibility can be ensured 

in modelling of the tall buildings (Desbois et al. 1989[4], 

Kwan et al. 1992[8], Cheung et al. 1994[1], Sabir et al. 

1995[19]). 

 
 

Fig. 1: The proposed strain-based panel elements P1 and P2 

 

The strain fields of the panel elements P1 and P2 are given 

in the Eqs.  (1a) to (1c): 

(εx) P1=0, (εx) P2=0      (1a)                                                                                                                       

(εy) P1=β1+β2 x+β3 xy+β4 xy2, 

(εy) P2=β1+β2 x+β3 xy2+β4 xy3     (1b) 

(γxy) P1=β5+β4 y3, 

(γxy) P2=β5+β3y3        (1c)                                                                                     

 

For both elements, horizontal strain is set to zero because of 

the assumption that horizontal strains are approximately 

negligible along the height of the panel element. This is an 

applicable simplification enabling to utilize the wide column 

elements in shear wall panels in tall structures. The axial 

strain along y-axis is shown by the coefficient β1, and the 

strain functions εy are formulated by assuming a linear 

variation with x direction as given in Eq. (1b).   

The coefficients in Eq. (1c) also denote a cubic variation for 

shear strain in line of y-axis. This formulation is based on 

the definition of a higher-order function for variation of γxy 

with height of the proposed panel elements which is similar 

to the phenomenon to be denoted for shear strain in 

Timoshenko beam theory (Reddy et al. 1997[18], Kwan 

1993[10], Prathap 1982[17]). 

The three coefficients β7, β8 and β9 are required to represent 

the rigid body displacement functions. Both rigid body 

displacement functions are added to those obtained by 

integrating the strain functions εx and εy given in Eqs. (1a) 

and (1b). Hence, the displacement functions u(y) and v(x,y) 

are defined as follows: 

 

u(y)(P1&P2) = β7-β9y+f1(y)                   (2a)                                                                                                                      

v(x,y)(P1&P2) = β8+β9x+∫εydy+f2(x)     (2b)                                                                                             

 

Two complementary functions f1(y) and f2(x) are obtained 

by conducting a few algebraic computations upon the 

analytical expression for the shear function γxy as follows: 

 

f1(y)P1=-β9y-β2(y2/2)-β3(y3/6)+β4(y4/6)+β5y    (3a)                                                                                       

f1(y)P2=-β9y-β2(y2/2)+β3(y4/6)-β4(y5/20)+β5y    (3b)                                                                                      

f2(x)P1&P2=0       (3c)                                                                                                                                                  

 

The full displacement functions u(y) and v(x,y) are 

presented in Eqs. (4a) and (4b):  

 

u(y)P1=β7+(β5-2β9)y-β2(y2/2)-β3(y3/6)+β4(y4/6), 

u(y)P2=β7+(β5-2β9)y-β2(y2/2)+β3(y4/6)-β4(y5/20)   (4a) 

                                                                             

v(x,y)P1=β8+β9x+β1y+β2xy+β3(xy2)/2+β4(xy3)/3, 

v(x,y)P2=β8+β9x+β1y+β2xy+β3(xy3)/3+β4(xy4)/4   (4b)                                                                       

 

The lateral displacement function u(y) of the elements P1 

and P2, is of order of four and five with respect to y 

direction, respectively. It can be concluded that the finite 

elements P1 and P2 are able to represent a bending mode in 

contrast to the bilinear finite elements. Therefore, the finite 
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elements P1 and P2 are not affected by the parasitic shear 

effects. 

The eight coefficients β1 to β8 in two governing 

displacement functions associated with both panel elements 

P1 and P2, are determined by equating the nodal translations 

and rotations to the eight degrees of freedom defined for 

each of the elements and solving the resulting equations. 

Following this approach and using Eqs. (2a) and (2b), the 

strain-displacement matrix [B] associated with the elements 

P1 and P2 is developed as indicated in the appendix. 

The stiffness matrix of the elements is achieved by the 

standard expression as noted in Eq. (5).  

 

[K]=t∫[B]t[Dm][B]dA        (5)                                                                                                                            

[Dm]=diag[E,F,G]        (6)                                                                                                                                             

 

Parameter t represents thickness of the panel element shown 

in Fig. 1. It should be noted that because of assuming εx=0, 

the material matrix [Dm] would be a diagonal matrix of rank 

three as presented in Eq. (6). The diagonal components are 

Ex, Ey and Gxy, respectively. In the case of isotropic material, 

both Ex and Ey are equal to E as Young’s modulus of 

elasticity. Hence, the parameter Gxy should also be equal to 

G, named as shear modulus of elasticity. 

 

 

3. Application of the Proposed Panel Elements 

As mentioned previously, presence of the parasitic shear 

effects in the finite elements compel them to behave in an 

excessively stiff manner in the case of bending mode. 

Importantly, this problem has not been resolved by using the 

Q4 finite element unless the elements are of fine size of 

mesh. Given the fact that tall buildings are subjected majorly 

to bending actions, this is indeed an evident problem. This 

drawback arises from the incapability of the elements with 

lower order to adapt themselves to the deformed shape of the 

structure which becomes more intense in the case of bending 

actions (Cook 1975[2], Desbois et al. 1989[4], Kwan 

1993[9,11], Sabir et al. 1995[19]). However, the best 

approach to cope with the parasitic shear effects is to avoid 

them through applying the finite elements which are able to 

represent the strain state of pure bending. Consequently, it 

can be concluded that the panel elements P1 and P2 are not 

subjected to parasitic shear effects.  

Accordingly, these elements are rectangular with four nodes 

and four degrees of freedom at the upper and lower chords. 

The nodal degrees of freedom at each chord consists of one 

horizontal translation, two vertical translations, and an in-

plane rotation representing the nodal rotation of the vertical 

fiber. Both elements P1 and P2 acceptably fulfill the 

aforementioned criteria to act as proper elements for 

modelling process of the tall buildings. 

4. Numerical Examples 

Four example structures were chosen for verification of the 

proposed approach. The numerical results of two well-

converged finite elements are used and compared with those 

obtained from the proposed elements as presented below: 

1. SC: The four-node displacement-based quadrilateral 

element with 8 DOFs (Cheung and Kwan 1994[1]). 

2. Kwan: The four-node strain-based quadrilateral element 

with 8 DOFs (Kwan 1992[8]). 

In the case of stiffened coupled shear wall, the results have 

been compared with the continuum method (Kuang et al 

1998[7]) in addition to the above elements. In all examples, 

the following properties have been considered for the 

materials: 

Young's modulus: E=2×105 (kg/cm2) 

Poisson's ratio: υ=0.25 

It is important to note that only one layer of elements was 

used per each story except for the second example dealing 

with mesh sensitivity analysis. 

 

4.1. Four-bay shear wall structure  

As shown in Fig. 2, this example deals with a coupled shear 

wall with four bays. The total height of the structure is equal 

to 64.00m, height of each storey is 4.00m, the wall width is 

4.00m and the free span of connecting beams is set equal to 

2.00m. The height of connecting beams is 80cm and the wall 

thickness is 40cm, respectively. Table1 presents the 

maximum horizontal displacement and stress related to this 

structure at the reference levels. It is acceptable to see small 

discrepancies among the results. The main source of the 

differences among the results can be attributed to the 

assumptions made for each element. 

 

 
Fig. 2: Four-bay shear wall structure 

 

As shown in Fig. 2, this example deals with a coupled shear 

wall with four bays. The total height of the structure is equal 

to 64.00m, height of each storey is 4.00m, the wall width is 
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4.00m and the free span of connecting beams is set equal to 

2.00m. The height of connecting beams is 80cm and the wall 

thickness is 40cm, respectively. Table 1 presents the 

maximum horizontal displacement and stress related to this 

structure at the reference levels. It is acceptable to see small 

differences among the results. The main source of the 

variations among the results can be attributed to the 

assumptions made for each element. 

 

Table 1: Analytical results for the four-bay shear wall structure 

 SC Kwan P1 P2 

∆𝑚𝑎𝑥 (𝑐𝑚)  7.0183 6.9695 6.9719 6.9338 

𝜎𝑚𝑎𝑥 (𝑘𝑔/𝑐𝑚2) 130.7124 160.9789 182.7383 163.8474 

 

 

4.2. Single shear wall structure 

The second example is a 10-storey single shear wall 

structure as shown in Fig. 5. The structural dimensions and 

applied loads are depicted in Fig. 3. To evaluate the rate of 

convergence for the proposed elements, mesh sensitivity 

analysis has been performed in this example. In this respect, 

five types of meshes have been chosen for each panel as 

shown in Fig. 3. In Table 2 and Fig. 4, the trend of 

convergence for displacement responses in relation to 

various types of meshes has been illustrated for panel 

elements P2 and P1, respectively. 

Given the fact that mesh size plays an important role in rate 

of convergence and independence of the response of the 

proposed elements from the mesh type, it is concluded that 

these elements can be properly converged in the case of 

coarse meshes with an acceptable rate. 

 

 
Fig. 3: Single shear wall model 

 

 

 

Table 2: Analytical results for the single shear wall structure-

Panel Element P2 

Height (m) 
∆𝑚𝑎𝑥 (𝑐𝑚) 

Mesh1 Mesh2 Mesh3 Mesh4 Mesh5 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

4 0.0266 0.0280 0.0301 0.0279 0.0288 

8 0.1002 0.1028 0.1071 0.1015 0.1032 

12 0.2134 0.2169 0.2233 0.2150 0.2176 

16 0.3617 0.3663 0.3749 0.3636 0.3670 

20 0.5400 0.5456 0.5563 0.5422 0.5465 

24 0.7432 0.7499 0.7628 0.7458 0.7509 

28 0.9665 0.9742 0.9893 0.9694 0.9753 

32 1.2048 1.2136 1.2308 1.2079 1.2147 

36 1.4530 1.4629 1.4823 1.4565 1.4642 

40 1.7063 1.7172 1.7388 1.7101 1.7186 

 

 

 
Fig. 4: Comparison of the results of the example structure-Panel 

Element P1 

 

4.3. Stiffened coupled shear wall structure 

In this case, a 14-storey coupled shear wall structure is 

considered as shown in Fig. 3. This structure is comprised of 

one stiffening beam at level of 16.00m. The shear wall is 

fixed at the base. The total height of the example structure is 

56.00m, the storey height is 4.00m, the wall widths are 

4.00m and the free span of connecting beams is 2.00m. The 

height of connecting beams is 80cm and the wall thickness 

is also 40cm.The height of stiffening-beam is 160cm. The 

problem in the study is analysed in both aspects using 

continuous connection and finite element methods. The 

numerical results are presented in Table 3 and Table 4. It can 

be seen from the results obtained by the panel elements and 

those calculated by the continuum method (Kuang et al 

1998[7]) agree acceptably with each other. 

The differences arise from the fact that in the laminar 

analogy, the wall panels are connected at the corners 

continuously along the height. Moreover, in the finite 

element procedure, the wall panels are typically connected 

at the floor levels, particularly when employing the panel 
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elements. In addition, the assumption of neglecting shear 

deformation effects, might lead to errors in the case of tall 

buildings. 

 

 
Fig. 5: Single shear wall model 

 

 

Table 3: Analytical results for the coupled shear wall structure 

 

Coupled Shear  

Wall 

∆𝑚𝑎𝑥 (𝑐𝑚) 𝜎𝑚𝑎𝑥 (𝑘𝑔/𝑐𝑚2) 

The Panel Element P1 29.1515 453.1397 

The Panel Element P2 29.0990 415.2383 

The Continuum Method 29.2899 419.2103 

The Displacement-Based Element SC 29.1262 347.9820 

The Strain-Based Element Kwan 29.1470 409.5487 

 

 

Table 4: Analytical results for the stiffened coupled shear wall 

structure 

 

Stiffened at  

Elevation of 16m 

∆𝑚𝑎𝑥 (𝑐𝑚) 𝜎𝑚𝑎𝑥 (𝑘𝑔/𝑐𝑚2) 

The Panel Element P1 28.6124 450.7852 

The Panel Element P2 28.5599 412.3530 

The Continuum Method 28.2388 412.0527 

The Displacement-Based Element SC 28.5959 345.5464 

The Strain-Based Element Kwan 28.6030 407.1902 

 

 

4.4. Natural frequencies of coupled shear wall 

structure 

The presented panel elements P1 and P2 have been used to 

assess the natural frequencies of a coupled shear wall 

structure as shown in Fig. 6. The example structure is 

uniform in height. The total height of the example structure 

is 95.00m, storey height is 3.80m and both wall widths are 

6.00m. The free span of all connecting beams is 2.00m. The 

wall thickness is 30cm and the cross section of connecting 

beams is 30x30cm respectively. The dynamic characteristics 

of this coupled shear wall have already been analyzed by 

Kuang (Kuang et al 1998[7]). According to the analysis of 

this example structure which is based on using both panel 

elements P1 and P2, the resulted structural parameters were 

obtained.  

Table 4 shows a number of resulted first natural frequencies 

of vibrations due to the example structure. It is worth 

mentioning that Kuang's research has been accomplished 

based on the discrete-continuum methodology. Therefore, it 

is acceptable to see differences among the results from 

various researches. 

 

 
Fig. 6: Coupled shear wall model 

 

 

Table 5: Natural frequencies (Hz) of the example coupled shear 

wall structure 

 Vibration Mode Number 

 1 2 3 

P1 0.60 2.84 6.62 

P2 0.63 2.90 6.74 

Kuang et al 1998 

(The Discrete-Continuum Method) 

0.67 2.93 7.16 

 

 

5. Conclusion 

The lower order finite elements are likely to be influenced 

by the parasitic shears especially when meshes are of coarse 

sizes, and this problem leads the elements to behave in an 

unduly stiff manner under a bending mode. The proposed 

finite elements P1 and P2 are able to represent the state of 

pure bending and, they were also found to be free of parasitic 

shear effects. The lateral displacement function of the 

proposed elements does not linearly vary within height and 

can represent a lateral deflected shape of order of two and 

higher with respect to variable y. The capability of 

simulating the plane panels forming the shear walls and 

ability to generate compatible rotations with lintel beams in 

tall buildings, are the most remarkable reasons to apply the 

finite elements proposed herein. It is worthwhile that the 

strain-based finite elements act markedly well under both 

shear and bending modes. The in-plane rotational degrees of 

freedom are defined as the rotation of the vertical fibres at 
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upper and lower chords of the panel elements. The 

application of the proposed panel elements are convenient 

and flexible to analyse the tall buildings. Accordingly, the 

results are found to be in an acceptable agreement with those 

obtained from similar analytical methods. The results 

indicate that applying this panel element requires only one 

layer of elements per story. It is worthwhile that the 

proposed element has been developed for analysis of the 

shear walls and if used for the other structural elements, its 

performance has to be evaluated.  
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APPENDIX 

The stiffness matrix due to strain-based panel elements P1 

and P2 are given as follows: 

 

The strain-displacement matrix [B] of the strain-based panel 

elements P1 and P2 in the formulations are given as follows: 

The displacement vector {D} includes all the eight degrees 

of freedom, defined in the Fig. 1. This vector is identical for 

both panel elements P1 and P2: 

 

{D}={u1,ω1,v1,v2,u2,ω2,v3,v4 }^T 
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