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Abstract: 
 

Among the methods used to design the tunnel, the Q-system is a comprehensive method that has 

attracted the attention of many researchers today. However, the limitations of the Q-system 

make it impossible to access all the required parameters as well as the time and cost of them,  

which has made it impossible to classify the rock mass using the Q-system. This paper attempts 

to predict the value of Q by parameters that have the highest coefficient of importance in the 

value of Q, using the Gene Expression Programming (GEP) technique. The most effective 

parameters involved in the Q value have been identified using Pearson correlation analysis 

(PCA), and then three different input models have been used to obtain Q value so that they are 

more closely related to experimental values. A total number of 159 experimental data were used 

for training and testing of the models, respectively. The innovation of this paper is that instead 

of 6 parameters, only three influential ones were used for determining the value of Q. Using the 

three parameters RQD, Jn and Ja, which have been determined as the most effective parameters 

and applying Pearson correlation analysis method, the value of Q can be determined with an 

acceptable approximation. In the suggested relation, the coefficients of determination (R2), root 

mean square error (RMSE), BIAS and the scatter index (SI) obtained were 0.917, 2.31, 1.74 and 

0.43, respectively that show the new equation presented by GEP, can be undoubtedly used to 

predict the value of Q.

 

1. Introduction 

The scope of the field and the diversity of underground 

engineering projects in design and implementation have 

made tremendous progress. Based on the observations and 

the results of statistical surveys, the criteria for sustainability 

of spaces should be prepared and the prediction of support 

tunnel should be executed with sufficient reliability. 

Considering the properties of rocks, a kind of classification 

called the engineering classification of rock was proposed 

[1]. Different classification methods used in rock 

engineering underpin the design of underground spaces. 

Geological and geotechnical studies are essential for proper 

assessment and determination of rock classification values 

[2]. Terzaghi’s classification [1], which is considered as the 

first classification system, is suitable for estimating the load 

on steel arched frames, and has been used in the U.S. for 

designing steel-framed supports for more than 35 years. 
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RSR classification system [1] is another pioneer 

comprehensive classification system, preceded only by 

Terzaghi’s system. Rock mass rating (RMR) technique [1] 

was introduced by Bieniawski with information from 

drilling in South Africa and founded on determining five 

parameters namely: uniaxial compressive strength of rock, 

quality of rock index, distance between joints, status of 

joints and the conditions of ground water. Q-system [1] is 

based on the quality of rock mass. It is currently used as the 

most conventional method for designing tunnel supports. 

RMI index was first proposed by Palmstrom [3] to determine 

rock mass strength that represents the uniaxial compressive 

strength of the rock mass from the size parameters of the 

blocks marked with the joints, the strength of the block 

material, the shear strength of the block surfaces and the size 

and end of the joints. Ozbek et al. [4] used GEP to predict 

uniaxial compressive strength of rock. Adopting 

experimental data and five GEP models, they showed that 

there is a good concordance between experimental results 

and predicted ones. Shirani et al. [5] used genetic 
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programming (GP) and GEP to evaluate fly rock during 

mine explosion. They used the data of 97 mine explosions in 

Iran and five influential parameters, which proved that GEP 

has a better performance in predicting fly rock compared to 

GA. Alemdag et al. [6] evaluated the results of experimental 

and numerical simulations in order to estimate the 

deformation modulus of stratified sedimentary rock masses. 

They used neural networks, neural fuzzy (NF) and GP to 

determin the deformation modulus of stratified sedimentary 

rock masses. According to their results, GP has a higher 

accuracy compared to other methods whereas, the 

performance of neural network and neural fuzzy was 

satisfactory as well. Yang et al. [7] used two-dimensional 

finite element method (2DFEM) to predict the behavior of 

excavated rock mass. They minimized the difference 

between measured results and GA results in order to find the 

optimal specifications of rock mass. Monjezi et al. [8] 

optimized open-explosion parameters using GA. They 

applied 32 models to get the best results for throwing stones 

in an explosion. Beiki et al. [9] predicted uniaxial 

compressive strength as well as the modulus of elasticity of 

carbonated rocks using GP and regression model. According 

to their results, GP yielded better results than the regression 

model. Feng et al. [10] combined GP and modified particle 

swarm optimization algorithm (MPSOA) and determined 

the specifications of the viscoelastic model of rocks. 

Fahimifar et al. [11] used the genetic algorithm to optimally 

design tunnel stabilization systems. They showed that 

optimization significantly reduces costs. Li et al. [12] 

predicted underground excavation-induced ground 

displacement using fuzzy genetic programming method 

(FGPM). They showed that FGPM yields satisfactory results 

and can be used to predict excavation-induced 

displacements, especially in coal mines. Majdi and Beiki 

[13] optimized the number of neurons of each layer, 

momentum factor and learning rate of latent and output 

layers using GP. They demonstrated that GP is more 

optimized and yields better results compared to NN to 

estimate the deformation modulus of rock. Beiki et al. [14] 

used GP to determine the deformation modulus of rock 

mass. They showed that GP yields better estimations than 

other experimental methods. Park et al. [15] used genetic 

algorithm (GA) and predicted the subsidence of thick 

deposits in some areas of Southern Korea. They showed that 

GA can better predict subsidence compared to conventional 

graphical methods and can cut calculation time. Gullu [16] 

predicted peak ground acceleration by GEP and regression. 

Ghobadian and Hajiabadi [17] estimated soil compaction in 

fine grained soil by using GEP technique and compared it 

with experimental method. Liu et al. [18] predicted tunnel 

support system used by applying the Support Vector 

Regression (SVR) method. They showed that SVR 

algorithm has appropriate capability of yielding satisfactory 

results and yields better results than Multi-Layer Perceptron 

(MLP) algorithm. Mobarra and Hassaninia [19] used 

Multivariate regression and fuzzy neural network to predict 

the penetration rate of all-cross machines (TBM). They 

demonstrated that the neural-fuzzy network method has a 

higher accuracy than multivariate regression for assessing 

the penetration rate. Jalalifar et al. [20] predicted Rock Mass 

Rating (RMR) using Fuzzy Inference System (FIS) and 

model. They indicated that the FIS model is better than 

multi-variable regression for estimating the RMR value. 

Jalalifar et al. [21] predicted rock engineering classification 

system using adaptive neuro-fuzzy inference system 

(ANFIS). They used three ANFIS networks and 

demonstrated that subtractive clustering method shows 

higher efficiency and capability in predicting RMR. In 

addition, GEP has been used to solve dozens of problems 

such as the simulation of water table fluctuations [22], 

concrete technology [23], composite material fatigue 

modeling [24] and determining rock strength [25]. Also, 

Naderpour and Mirrashid [26] demonstrated the capability 

of a neuro-fuzzy system to predict the shear strength of 

reinforced concrete beams with steel stirrups. They indicated 

that the Neuro-Fuzzy system can predict the shear strength 

of the RC beams which are reinforced with steel stirrups. 

Taban et al. [27] presented Genetic Programming to predict 

the Van Genuchten model fitting parameters for unsaturated 

clean sand soils. Alikhani and Alvanchi [28] presented an 

improved maintenance planning model based on Genetic 

Algorithm for a network of bridges to predict a long-term 

perspective for the lifespan of bridges. Z. Li and B. Li [29] 

presented a novel class of bi-level fuzzy random 

programming problem for insuring critical path. They 

assumed each task duration as a fuzzy random variable and 

followed the known possibility and probability distributions. 

This study predicts Q-value using GEP and the most 

influential parameters so that it can be predicted by 3 

parameters instead of 6. This saves the time and cost 

required for obtaining relevant parameters. 

 

2. Q-system 

Experimental, numerical and analytical methods are some of 

the tools used to design tunnels. Experimental methods are 

experiences obtained in different projects and are widely 

used in rock classification systems. In many projects, 

experimental classification of rocks is the only criterion used 

to design complex underground structures. Experimental 

classification systems are built based on two objectives: 

simplicity and organizing the unknowns. However, it is 

possible to overcome the uncertainty of geological and 

geotechnical problems using specific classifications [30]. 

The Q system method is one of experimental methods 

suggested by Barton et al [31-32] and used to evaluate the 
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experimental design of tunnel support system. This index 

has six parameters mentioned in Equation (1). 

Q =
RQD

Jn

Jr
Ja

Jw
SRF

 (1) 

Where RQD is Rock Quality Designation, Jn is joint set 

number, Jr is joint roughness number, Ja is joint alteration 

number, Jw is joint water parameter and SRF is Stress 

Reduction Factor. Most of the research in this field has 

examined the correlation and relationships between different 

classification methods. Based on the study,   researchers 

have proposed several relationships in different situations 

between Q and RMR. 

 

3. Gene expression programming (GEP) 

Gene expression programming requires computer programs 

with different shapes and lengths encoded in linear 

chromosomes with constant size. Further, the chromosomes’ 

information is decoded into expression trees (ET) called 

translation. The encoding procedure is very straightforward, 

where the ET reads the chromosomes from left to right and 

from top to bottom. An example of chromosome translation 

to ET is presented in Fig. 1. Each gene begins in the first 

position. However, the termination point is not always the 

last gene position and open reading frames are used. 

 

 
Fig. 1: Presentation of chromosomes GEP [32] 

 

ETs are complex computer programs that are commonly 

extended for the purpose of dissolving a special problem and 

they are chosen based on their appropriateness to resolve the 

problem. Diverse genetic variations detect the 

characteristics of the existing population and as a result it is 

fitted to the specific problem that was meant to be solved. 

This means there is a suitable solution to solve the intended 

problem provided, there is adequate time and accurate 

particulars. 

The gene expression programming process consists of 

some major steps. At first, chromosomes from the initial 

population are produced randomly and then the 

chromosomes are represented such that, the worth of each 

chromosome is considered according to its fitness function. 

The chromosomes are then selected keeping in view their 

worth to be generated again or to be revised. Catering new 

individuals through a similar approach including genome 

expression, composition of the environmental selection, and 

reproduction with correction, comprises the next stage. The 

mentioned approach is iterated until the considered number 

of generations or acceptable model error is gained [33]. The 

chromosomes in each production are optimized by genetic 

operators. The genetic operators applied in the GEP method 

are jump, inversion, IS transposition, crossover, and gene 

transposition. Jump can occur anyplace in the chromosome. 

In the chromosome’s head, each identity could be replaced 

by functions or terminals. However, in the chromosome’s 

tail the terminals are only allowed to be replaced with other 

terminals. Despite the jump, inversion is only done in the 

chromosome’s head. In the inversion approach, a sequence 

is selected randomly and inverted. The IS transposition 

selects a random subsequence from a chromosome and 

copies it to any location of the chromosome’s head despite 

the start location. In crossover, the parent chromosomes are 

mixed with each other and two new children are generated. 

In gene transposition, a whole gene performs as a transposon 

and transposes itself to the chromosome’s start location. 

Subsequently, in order to prevent chromosome length 

change, the transposon gene is removed from the original 

location. The algorithm of GEP is shown in Fig. 2.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Algorithm of GEP [32] 
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4. Used data 

This study used 140 data collected from reputable references 

[34-39]. Table 1 shows the range of data. For each data, the 

value of Q, ROD, Jn, Jr, Jw and SRF was measured. In 

addition, 19 test data [40-43] which were not included in the 

initial data set were used to evaluate the built model. Table 

1 shows the range of these parameters. 

 

5. Methodology 

Pearson correlation analysis was used to obtain the effect of 

each aforementioned 6 parameters on Q-system. This study 

used 140 data of different tunnels. Table 2 shows the results 

of Pearson correlation analysis conducted on the parameters 

of relation 1. According to table 2, the relationship of any 

parameter with itself is unit. This means that there is a direct 

and complete relationship between any parameter and itself. 

In the process of investigating the correlation of parameters 

with Q, if the correlation is positive, this means that there is 

a direct relationship; otherwise the relationship is reverse. 

Moreover, the closer the positive values to 1 and the 

negative values to -1, the stronger is the relationship of the 

parameter with Q. According to table 2, considering the 

values of RQD, Jn, Jr and Ja parameters, they have the 

highest impact factor on Q. Therefore, the effect of three 

parameters is first evaluated and then the effect of all four 

parameters will be evaluated.  

 

Table. 1: The range of measured parameters from reputable references [39-44]. 

Train data Test data 

Data 

Type 
Minimum Maximum Average 

Standard 

Deviation 
Minimum Maximum Average 

Standard 

Deviation 

Q 0.008 25 9.84 6.75 0.006 12.75 5.26 4.79 

RQD 10 100 79.45 23.49 10 100 65.18 33.11 

Jn 3 20 6.66 3.22 2.5 20 9.70 5.15 

Jr 1 3.1 2.39 0.72 1 4 1.91 0.844 

Ja 0.75 8 2.26 1.10 1 13 3.16 3.03 

Jw 0.5 1 0.95 0.11 0.5 1 0.821 0.194 

SRF 1 10 2.15 0.87 1 5 2.01 1.25 

 

Table. 2: The results of Pearson correlation analysis conducted on the parameters of Equation 1. 

SRF Jw Ja Jr Jn RQD Q  

-0.238 0.360 -0.531 0.567 -0.64 0.692 1 Q 

-0.402 0.329 -0.560 0.360 -0.679 1 0.692 RQD 

0.283 -0.254 0.588 -0.471 1 -0.679 -0.64 Jn 

-0.149 0.185 -0.402 1 -0.471 0.396 0.567 Jr 

0.381 -0.301 1 -0.402 0.588 -0.560 -0.531 Ja 

-0.230 1 -0.301 0.185 -0.254 0.329 0.360 Jw 

1 -0.230 0.381 -0.149 0.283 -0.402 -0.238 SRF 

This paper aims to determine Q-value using the most 

influential parameters. To this end, three different models 

are considered (table 3). Model 1 includes RQD, Jn and Jr 

parameters, model 2 includes RQD, Jn and Ja parameters 

and model 3 includes all four parameters i.e. RQD, Jn, Jr 

and Ja. 

 

Table. 3: Three different models are considered in GEP. 

Model components Model name 

Q = f (RQD, Jn, Jr) Model 1 

Q = f (RQD, Jn, Ja) Model 2 

Q = f (RQD, Jn, Jr, Ja) Model 3 

 

The coefficients of determination (R2), Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), Mean 

Squared Error (MSE), Scatter Index (SI) and BIAS were 

used to assess the accuracy of obtained models. These 

functions show the variance of predicted values with actual 

ones as follows: 

R2 = [∑
(ym − y̅m)(yp − y̅p)

√∑ (ym − y̅m)
2∑ (yp − y̅p)

2n
i=1

n
i=1

]2
n

i=1

 (2) 

RMSE = √
∑ (Yp−Ym)

2n
i=1

n
 (3) 

MAE =
1

n
∑|(Yp−Ym)

n

i=1

 (4) 

MSE =
∑ (Yp−Ym)

2n
i=1

n
 (5) 

SI =
RMSE

y̅m
 (6) 

BIAS =
1

n
∑|(Yp−Ym)

n

i=1

 (7) 

where ym, yp are observed and measured values of Q and 

n, y̅m, y̅p are number of data, mean observed values and 

mean measured values, respectively. 

This section explains GEP modeling used to estimate the 

quality of rock mass. GEP was trained by 140 experimental 
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data. To assess model performance, its results were re-

examined by 19 new data. GEP modeling consists of five 

essential stages. The first stage determines the fitness 

function used to calculate chromosome cost. This study 

used try and error method to obtain suitable fitness 

function. Table 4 shows the results. According to this table, 

the fitness function of MAE shows the best performance in 

model 1 while that of RMSE is better in models 2 and 3. 

The second stage is to determine the mathematical 

functions that chromosomes are allowed to use. There is 

no mathematical rule in the process of selecting the mix of 

a mathematical function. This study uses four basic 

mathematical functions i.e. {×.+.-./} as well as other 

complex functions. The third stage involves the 

determination of chromosome architecture including the 

length of chromosome head and the number of genes. This 

study used trial and error technique to determine both. GEP 

model was built for different head length and different 

combinations of chromosome number. The results show 

that  GEP with 3 genes and the head length of 7 best models 

the Q-value in models 1 and 2, while GEP with 3 genes 

and the head length of 8 yields the best results in model 3. 

The increase of both parameters has no considerable effect 

on the models performance. The 4th stage is to select a 

proper linking function. After trial and error, it was 

revealed that multiplication linking function yields the best 

results. 

Table 5 shows trial and error results were used to select 

the best linking function. In the last stage, the genetic 

operators which are used by GEP in reproduction process 

are determined. The genetic operators are the product of 

the diversity of generation evolution. This study 

determined mutation rate using trial and error technique 

and found other genetic operators to be in accordance with 

the initial values set for GEP. 

 

Table. 4: Results of different fitness functions in estimate the rock quality 

Model 1 

Fitness Function Test data Train data 

RMSE MSE MAE R2 RMSE MSE MAE R2 

3.20 10.28 2.10 0.575 3.27 10.73 1.64 0.774 Relative with SR 

4.91 24.14 3.09 0.327 2.94 8.66 1.92 0.808 MSE 

2.97 8.83 2.09 0.603 3.15 9.95 1.58 0.785 MAE 

3.40 11.58 2.56 0.573 3.02 9.13 1.90 0.798 RMSE 

Model 2 

Fitness Function Test data Train data 

RMSE MSE MAE R2 RMSE MSE MAE R2 

2.89 8.39 1.93 0.834 3.04 9.27 2.07 0.826 Relative with SR 

2.40 5.78 1.79 0.878 2.68 7.20 2.16 0.842 MSE 

3.05 9.31 2.11 0.870 2.91 8.5 1.94 0.838 MAE 

2.31 5.37 1.74 0.917 2.55 6.54 2.09 0.856 RMSE 

Model 3 

Fitness Function Test data Train data 

RMSE MSE MAE R2 RMSE MSE MAE R2 

2.03 4.12 1.43 0.834 2.25 5.07 1.07 0.91 Relative with SR 

1.78 3.19 1.37 0.878 1.67 2.80 0.983 0.938 MSE 

2.44 5.95 1.80 0.795 1.69 2.88 0.695 0.939 MAE 

1.42 2.03 1.03 0.930 1.76 3.12 1.13 0.931 RMSE 

 

Table. 5: Try and error results used to select the best linking function. 

Model 3 Model 2 Model 1 

Fitness Function Test data Train data Test data Train data Test data Train data 

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 

2.46 0.841 1.77 0.93 3.26 0.834 2.68 0.842 3.12 0.594 3.07 0.794 Addition 

167.1 0.004 1.78 0.93 2.93 0.840 2.73 0.834 3.15 0.622 3.25 0.771 Subtraction 

1.42 0.93 1.76 0.93 2.31 0.917 2.55 0.856 2.97 0.603 3.15 0.785 Multiplication 

1.68 0.909 1.81 0.92 3.15 0.855 5.57 0.855 3.32 0.552 3.14 0.786 Division 

 

Table 6 shows the values of the final parameters of genetic 

operators and other specifications. 

6. Programs and results 

Considering above explanation of Q prediction and 

adopting statistical indices, the aim is to obtain the best 

model for predicting Q-value. Table 7 shows the results of 

the best models obtained for training data. According to 

this table, all models show acceptable performance 

considering their input parameters. Fig. 3 shows predicted 

and observed Q values of training data. Table 8 shows the 

results of the best models obtained for different parameters 

and test data. According to this table, all models yield 

acceptable results considering their parameters. The best 

results for different models for test data are shown in Fig. 

4. 
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Table. 6: The values of the final parameters of genetic operators 

and other specifications. 

Detail Parameter 

30000 
Number of 

generations 

30 
Number of 

chromosomes 

3 Number of genes 

0.045 mutation rate 

0.1 Inversion rate 

0.3 
One-point 

coupling rate 

0.3 
Two-point 

coupling rate 

0.1 
Gene Coupling 

Rate 

0.1 
Gene 

transposition rate 

×, ÷, +, -, ln, sqrt, exp, Inv, x2, x3, x4, 

x5, cube root, quartic root, quintic root 
Functions used 

Multiplication Link function 

MAE, RMSE Fitness function 

 

Table. 7: The results of the best models obtained for training 

data. 

BIAS SI MAE RMSE R2 Models 

1.58 0.32 1.58 3.15 0.785 Model 1 
2.09 0.25 2.09 2.55 0.856 Model 2 
1.13 0.17 1.13 1.76 0.931 Model 3 

This section provides different equations obtained for 

different models for Q-value prediction. Equation 8 shows 

formula derived for model 1 and Equations 9 and 10 show 

formulas obtained for model 2 and model 3. 

 

Table. 8: The results of the best models obtained for test data. 

BIAS SI MAE RMSE R2 Models 

2.09 0.56 2.09 2.97 0.603 Model 1 
1.74 0.43 1.74 2.31 0.917 Model 2 
1.03 0.26 1.03 1.42 0.930 Model 3 
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(B) 

 

 
(C) 

Fig. 3: Measured against predicted value of Q for train data A) Model 1, B) Model 2 and C) Model 3 (Table 3) 
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 (B) 

 (C) 

Fig. 4: Measured against predicted value of Q for test data A) Model 1, B) Model 2 and C) Model 3 (Table 3) 
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Considering the available parameters, all models have 

acceptable results. Among the models, model 2 is 

introduced as the elite relation because, in addition to 

having fewer parameters, it yields more acceptable results. 

For training and test data, R2 and RMSE obtained from 

model 2 are 0.856, 2.55 and 0.917, 2.31, respectively. In 

other words, Q-value can be acceptably obtained via RQD, 

Jn and Ja parameters. Fig. 5 shows expression tree of 

model 2. According to this figure, ×, +, -, 3Rt, Inv, X2, X3, 

X4, X5, Ln and Sqrt functions were used in this model. 

Table 9 shows the value of parameters and constants used 

in expression tree. 

 

7. Conclusion 

This study used GEP technique to predict Q by 140 

variable experimental data. Pearson correlation analysis 

was used to obtain the effect of parameters. Three models 

were used to predict Q-value. The best state of each model 

was obtained through the step by step GEP method. 

Furthermore, 19 new test data which were not included in 

initial data were used to assess the models. The results 

show that all three models show acceptable capability in 

predicting Q-value. Finally, model 2 was selected as the 

better model for test data because it has fewer parameters 

and shows better performance with the R2 and RMSE of 

0.917 and 2.31, respectively. The results of this study 

revealed that considering the fact that the determination of 

all parameters of Q is a difficult, time-consuming and 

costly process where all parameters are not available, the 

value of Q can be determined and acceptable results can be 

obtained through only three parameters. 

 

Table. 9: The value of parameters and constants used in 

expression tree. 

G2 
d2 d1 d0 

C1 
3.984375 Ja Jn RQD 

 

 
Fig. 5: Expression tree of model 2 in GEP 
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