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Abstract: 
 

Although traditional signal-based structural health monitoring algorithms have been 

successfully employed for small structures, their application for large and complex bridges 

has been challenging due to non-stationary signal characteristics with a high level of noise. In 

this paper, a promising damage detection algorithm is proposed by incorporation of adaptive 

signal processing and Artificial Neural Network (ANN). First, three adaptive signal 

processing techniques including Empirical Mode Decomposition (EMD), Local Mean 

Decomposition (LMD) and Hilbert Vibration Decomposition (HVD) are compared. The 

efficacy of these methods is examined for several numerically simulated signals to find a 

reliable signal processing tool. Then, three signal features are compared to find the most 

sensitive feature to damage. In the next step, an ANN ensemble is utilized as a classifier. 

Traditional statistical features and energy indices are used as the network input and output to 

make real-time detection of damage possible. The strength of this approach lies with training 

the network only based on healthy state of the structure. Having a trained ANN, online 

processing can be made to find a possible damage. Results show that the proposed algorithm 

has a good capacity as an online output-only damage detection method. 

D

D 

1. Introduction 

Structural health monitoring has always been a primary 

concern to ensure serviceability and safety of vital 

infrastructures like bridges. In the past few decades, signal-

based damage detection methods have become a hot area, 

especially for large and complex structures [1]. In this 

context, a majority of the research efforts have been 

devoted to traditional signal processing techniques such as 

Fourier and wavelet transforms [2]. However, these 

methods use a pre-defined shape function which reduces 

their instantaneous properties and yield low frequency 

resolution [3].  
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Since changes due to damage in complex structures is not 

very large, using signal processing procedures with high 

frequency resolution can help improve the ability of the 

damage detection methods to differentiate healthy and 

damaged states. Recently, adaptive signal processing 

methods have attracted increasing attention since they can 

capture nonlinear and nonstationary signals (real world 

signals) [4]. 

Zhang et al. [5] compared Fourier and Hilbert–Huang 

transform (HHT) [6] based on dynamic response of Trinity 

River Relief Bridge. They claimed that frequency 

downshift is an indication of damage extent. Liu et al. [7] 

could detect and locate damage in an actual benchmark 

data. They compared empirical mode decomposition 

(EMD) and wavelet analysis, and concluded that EMD has 

a better denoising capability than wavelet. By using a 

combination of EMD and wavelet analysis, Li et al. [8] 

could identify the location and severity of damage. Dong et 

al. [9] proposed a damage index by utilizing EMD and 

vector autoregressive moving average (VARMA) model.  
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Fig. 1: Instantaneous Frequency of SDOF System a) EMD b) LMD c) HVD 

They used two real benchmark structures to verify their 

damage detection method in real conditions. Liu et al. [10] 

established a HHT managing system to monitor aging 

process in Taiwan bridges. They analyzed ambient 

vibration of bridges to investigate changes in structural 

properties due to environmental conditions. Roveri and 

Carcaterra [11] proposed a HHT-based damage detection 

technique for bridges under traveling load. They conducted 

theoretical and numerical studies to identify the capability 

of their method. Kuwar et al. [12] used wireless sensors to 

study damage occurrence in a single span bridge under 

passing vehicles. They used marginal Hilbert spectrum to 

identify three pre-defined damage cases. Hsu et al. [13] 

proposed two damage indices based on HHT including the 

ratio of bandwidth (RB) and the ratio of effective stiffness 

(RES). They tested the algorithm on MDOF structures with 

various frequencies. Ramezani and Bahar [14] used EMD 

to find mode shapes of a structure. Their method was an 

output only procedure and was verified with two case 

studies. One an analytical model and the other the UCLA 

factor building. Wang and Chan [15] summarized existing 

methods for condition assessment of bridges. They 

conducted a review on vibration-based methods with the 

focus on statistical methods and signal processing 

techniques. A comprehensive review on application of 

HHT in structural health monitoring was carried out by 

Chen et al. [16]. 

Although HHT is successfully implemented in several 

damage detection algorithms, it suffers from several 

shortcomings [17]. Several adaptive signal processing 

methods are proposed to solve the HHT problems. Among 

these methods, Local Mean Decomposition (LMD) [18] 

and Hilbert Vibration Decomposition (HVD) [19] are not 

utilized for bridge health monitoring. Also, HHT is 

computer-intensive [20] and is not applicable for online 

monitoring. On this basis, the present paper has focused on 

presenting a promising methodology for online health 

monitoring of bridges subjected to traffic loading. To this 

end, the paper is organized into two parts. Several 

instantaneous signal processing techniques are compared in 

the first part to find a reliable signal processing tool. 

Among these procedures, EMD is more conventional. 

LMD and HVD are more recent and are claimed to 

outperform EMD in some cases [21,22]. The second part 

presents an online damage detection approach for the 

Yonghe bridge as a case study large structure. By 

application of HHT on sensor acceleration outputs, three 

signal features are extracted and compared. Energy index 

of the extracted IMFs is defined as a damage index. 

Finally, a neural network ensemble is employed to classify 

damage only based on the statistical parameters of sensor 

outputs. Using an ensemble of independent networks helps 

to separate input spaces and reduces the generalization 

errors. Moreover, neural network ensemble has faster 

learning ability and needs less computation efforts 

compared to conventional neural networks used for 

structural health monitoring. 
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Fig. 2: Instantaneous Frequency of a SDOF System with Stiffness Reduction a) EMD b) LMD c) HVD 

2. Signal processing procedures 

2.1. Hilbert transform 

Hilbert transform of a signal, x(t), is a linear operator 

which refers to the Cauchy principal value (Huang et al., 

1998 [6]) 

( )1
[ ( )] ( )

x t
H x t y t PV d

t


 





 


 
(1) 

Where, PV is Cauchy principle value of integral. More 

details on how to calculate PV is provided by Henrici 

(1988) [23]. 

By extension of the signal into complex plane, analytical 

signal can be defined as: 

( )( ) ( ) ( ) ( ) i tz t x t iy t a t e     
(2) 

Thus, 
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Where a(t) is the instantaneous amplitude and ( )t  is the 

instantaneous phase. Instantaneous frequency is the time 

derivative of the phase function. 
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2.2. Empirical Mode Decomposition (EMD) 

Hilbert-Huang transform (HHT) was proposed by Huang et 

al. (1998) [6], based on a combination of empirical mode 

decomposition (EMD) and Hilbert transform, for analyzing 

non-linear and non-stationary signals. The essence of EMD 

is to employ a sifting process to decompose a multi-

component signal into several mono-component functions 

(IMFs) with variable amplitude and frequency along the 

time to gain a well-behaved Hilbert transform. Each IMF 

represents a single oscillation (mono-component). But, 

unlike the traditional signal processing techniques, IMFs 

are more general and have variable amplitude and 

frequency along the time. The decomposition process is as 

follows: 

1. Find local maxima of the signal. Use a spline fitting for 

the maximum points, eu(t), to construct an upper envelope. 

2. Repeat step (1) for minimum points to find el(t). Then, 

compute the mean of both envelopes, m1(t). 

1

( ) ( )
( )

2
u le t e t

m t



 

(5) 

3. Subtract the mean function, m1(t), from the original 

signal, x(t), to find the first component, h1(t). 

1 1( ) ( ) ( )h t x t m t 
 

(6) 

4. Repeat steps (1) to (3) by assuming the first component, 

h1(t), as the original signal, x(t). Again, repeat the sifting 

process k times until the basic conditions are met. 
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Fig. 3: Vibration Components of a MDOF System a) EMD b) LMD c) HVD 

 

11 1( 1)( ) ( ) ( )k k kh t h t m t   (7) 

Consider h1k(t) as the first true IMF. 

1 ( )kc h t
 

(8) 

5. Huang et al. suggested control of a stopping criterion at 

each iteration.  
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6. Now, subtract the first IMF, c1, from the signal and 

consider r1 as a new signal. Repeat steps (1) to (6) to obtain 

other IMFs. 

1 1( )r x t c 
 

(10) 

7. The original signal can be reconstructed by superposition 

of IMFs and the final residue. 

1
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2.3. Local Mean Decomposition (LMD)  

Local mean decomposition (LMD) is an iterative 

demodulation technique that is recently developed for the 

analysis of time-varying signals. Inspired by EMD, it 

separates a frequency modulated signal from an amplitude 

modulated envelope signal. The process is briefly described 

as follows (Smith, 2005 [18]): 

1. Calculate the local mean, mij(t), and local magnitude, 

aij(t), from the successive exterma, nij(kl), kl=k1,k2, …,kM,  

1
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(13) 

Where kl is the order of product function (PF), M is the 

number of extrema, the subscript i denotes the number of 

PF and the subscript j denotes the number of iterations 

needed in a process of PF 

2. Use a moving average filter to smooth interpolated local 

mean and amplitude functions. 

3. By definition of and

, check whether 11( )s t is a 

normalized frequency-modulated signal. If 11( )s t is close to 

1, go to step (4), otherwise repeat steps (1) and (2) to reach 

a purely flat FM signal. 

4. Instantaneous amplitude, 1( )a t , is obtained by 

multiplication of all 1 ( )ia t  

1 1( ) ( )ia t a t  (14) 
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Fig. 4: Instantaneous Frequencies of MDOF System a) EMD b) LMD c) HVD. 

 

5. The instantaneous phase, 1( )t , and the instantaneous 

frequency, 1( )f t , are calculated by: 

 
11 1( ) arccos ( )rt s t 

 
(15) 
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6. By the multiplication of envelope function, 1( )a t , and the 

final frequency demodulated signal,
11 ( )rs t the first PF is 

obtained by: 

11 1 1( ) ( ) ( )rPF t a t s t  (17) 

7. By subtracting, 1( )PF t , from the original signal , ( )x t , 

smoothed data is obtained which is treated as a new signal.  

1 1( ) ( ) ( )u t x t PF t 
 

(18) 

8. Steps (1) to (4) are repeated until 1( ) ( ) ( )i iu t u t PF t 

becomes a monotonic function. The original signal can be 

reconstructed by: 

1

( ) ( ) ( )
p

pi
i

x t PF t u t

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(19) 

 

2.4. Hilbert Vibration Decomposition (HVD) 

HVD method is an iterative time-varying vibration 

decomposition technique that is developed for non-

stationary wideband vibrations. Unlike the EMD, HVD is 

directly based on Hilbert transform. Therefore, it does not 

require any additional signal processing. The main idea of 

the procedure is described below (Feldman, 2006 [19]): 

Assume a simple two-component signal in its analytic form 

1 2
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(20) 

The instantaneous frequencies and amplitudes of the signal 

are 
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(21) 

The amplitude, ( )a t , is composed of a slow varying (sum 

of squared amplitudes of both components) and rapidly 

varying (oscillating) part. Similarly, the instantaneous 

frequency, ( )t , consists of a slowly varying ( 1 ) part and 

a rapidly varying part with asymmetrical oscillation.. If the 

derivative of a1 and a2 is insignificant, assuming a1>a2 we 

get 

    2
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(22) 

Based on this interesting characteristic, the asymmetrical 

oscillation can be eliminated using a low-pass filter on the 

components to extract the largest frequency component.  



Numerical Methods in Civil Engineering, Vol. 4, No. 1, September. 2019 

 

 

Fig. 5: Two Views of the Yonghe Bridge  

 

 

Fig. 6: Sensor Locations of the Health Monitoring System and Location of Substructures 

 

  

  

Fig. 7: Acceleration record of sensor 7. (a) Jan, 2008, 5:30 am to 5:45 am; (b) Jan, 2008 12 pm to 12:15 pm; (c) July, 2008, 5:30 am to 

5:45 am; (d) July, 2008 12 pm to 12:15 pm 

 

The above property can be extended for multi component 

signals. Therefore, low-pass filtering is still valid for 

extraction of largest frequency component. In the next step, 

HVD uses the well-known synchronous detection 

technique to find the envelope of the largest energy 

component. Synchronous detection is a tool that can extract 

amplitude details about a frequency component when the 

frequency is known a priori. In summary, the procedure 

can be summarized as follows: 

1. Calculate the analytic form, ( )z t of the signal, ( )x t by 

Hilbert transform. 

2. Extract the instantaneous frequency using the analytic 

signal. 

3. Eliminate lower vibration components by using a high-

pass filter. 

4. Calculate the larger amplitude component by 

synchronous demodulation of the component in step (3). 

5. Subtract signal of step (4) from the original signal and 

repeat steps (1) to (4) until no more extractions are 

possible. 
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Fig. 8: EMD Results for Healthy State 

 

  

 

Fig. 9: Instantaneous Functions a) Frequency b) Amplitude c) Energy 

 

3. Comparison of the triple signal processing 

methods 

Since vibration signals of large and complex structures are 

complicated and are affected by environmental conditions 

(noise, temperature, and humidity), signal processing 

method plays a central role to appropriately extract 

meaningful signal features. On this basis, a comparison is 

carried out aiming to investigate the sufficiency of the 

aforementioned signal processing methods. These 

approaches are applied to nonstationary signals produced 

by several numerical simulations. They are including two-

SDOF and one-MDOF systems with time-varying 

parameters. 

 

3.1. Slow varying SDOF system  

First, a free-vibrating SDOF system of Eq. (23) is selected. 

Eq. (24) shows the definition of varying mass, stiffness, 
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and damping. Initial velocity of 10 mm/s is defined as the 

initial condition. The differential equation of motion is 

solved in 0.001 s time steps using 4th order Runge-Kutta 

method. 

( ) ( ) ( ) 0m t x c t x k t x  
 (23) 

 
 
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0.1 3
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  

  
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 (24) 

Fig. 1 compares the oscillation frequency of the system 

obtained by the aforementioned procedures. It is obvious 

that EMD suffers from end effect problem in which 

vibration distortion occurs in endpoints. However, several 

effective tools exist to mitigate end effect problem of 

EMD. HVD slightly represents unwanted oscillations in 

crest points which is the consequence of the inability of the 

procedure to extract pure largest oscillation. In general, all 

the procedures represent excellent resolution, regardless of 

end effect problem in EMD. 

 

3.2. SDOF system with sudden stiffness reduction 

A SDOF systems is considered with two successive 

reductions in stiffness at t=7 s and t=11 s (Eq. 25). A 

harmonic force is applied to the system to model forced 

vibration of a non-stationary system. Fig. 2 compares the 

accuracy of the procedures to reveal time instances that 

stiffness reductions occur. All procedures have tracked 

sudden changes at t=7 and t=11 seconds. Again, end effect 

problem is more tangible in EMD. However, EMD has 

traced sudden frequency changes with acceptable accuracy. 

LMD shows slightly deviated oscillations. Therefore, 

frequency jumps are not clear in comparison to EMD and 

HVD. HVD exhibits a smoother frequency by taking 

advantage of a low-pass filter in sifting process which 

eliminates other oscillation amplitudes. 
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(25) 

 

3.3. MDOF systems 

A lumped mass 2DOF system is utilized to illustrate the 

decomposition ability of the procedures. According to Eq. 

(26), mass, stiffness and damping of this system for any 

degrees of freedom is assigned. { (0)} {10 0 10 0}X   

is assumed as the initial condition,  
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(26) 

Fig. 3 illustrates vibration components of the second DOF. 

It is clear that EMD and LMD have elaborately 

demodulated vibration modes. In turn, HVD represents 

similar scales residing in opposite components due to 

signal intermittency. In other words, mode mixing problem 

has resulted in incorporation of second mode of vibration 

into the first component. Therefore, no meaningful 

oscillations could be extracted. 

Fig. 4 also shows instantaneous frequencies. As expected, 

EMD and LMD show similar time-frequency 

representations. However, LMD shows slight noise-like 

oscillations in both vibration modes. Also, HVD failed to 

decompose the signal correctly as a result of mode mixing 

problem. 

In brief, both EMD and LMD represent acceptable 

demodulation capacity. EMD suffers from end effect 

problem. Instead, LMD could not clearly track sudden 

frequency changes, although it excels EMD in slow-

varying cases. HVD performed well in SDOF cases. 

However, it yielded poor results in MDOF case making it 

an unreliable method for this study. Based on the above 

results, EMD outperformed LMD since several remedies 

exist to eliminate end effects. Therefore, EMD is selected 

as a more reliable signal processing tool for the proposed 

damage detection technique. 

 

4. Structural health monitoring benchmark 

study 

Tianjin Yonghe bridge is a cable-stayed bridge with semi-

fan system constructed over the Yongding River in 

mainland China. It connects Tianjin city to Hangu. The 

bridge was put into operation at the end of 1987 (Fig. 5). 

The total length of the bridge is 510.0 m including a 260 m 

double tower main span and two 25.15 m side spans. A 

more detailed overview of the bridge can be found in Li et 

al. (2014) [24] and Kaloop (2010) [25]. The bridge 

experienced serious damages during its 20 years of 

operation. In 2005, cracks were observed at the main girder 

mid-span which were repaired during 2005-2007. 

Meanwhile, a health monitoring system was installed on 

the bridge by the Center of SMC at the Harbin Institute of 

Technology to improve bridge maintenance and to ensure 

safe operation (Li et al., 2014 [24]).  
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Fig. 10: Cumulative Summation of Absolute Phase Function and Linear Regression 

  

 

Fig. 11: Comparison of Damage Indexes for Healthy and Damaged Cases a) Frequency Index b) Amplitude Index  (c) Energy 

Index 

 

This sophisticated monitoring system is comprised of 

fourteen uniaxial accelerometers mounted on the deck as 

well as a biaxial accelerometer on the tower top, as shown 

in Fig. 6. 

On January 17, 2008 data was collected in one-hour time 

intervals and repeated for 24 hours for the healthy state of 

the bridge. However, damages were identified during 

inspections in August 2008 including major cracks at both  

side spans and detachment of auxiliary pier. Therefore, data 

recorded on July 31, 2008 were reckoned as clear damage 

state of the bridge. For instance, Fig. 7 plots acceleration 

records of sensor 7 for both healthy and damaged cases. 

 

5. Damage detection algorithm 

5.1. Damage Index Selection 

In this section the proposed damage detection technique is 

discussed in detail. First, a substructure technique is 

utilized by which the structure is divided into several 

substructures. The rationale is that for a large structure with 

many sensor outputs, it is difficult to identify all the 

structural parameters simultaneously. Reducing the size of 

the system not only prevents extensive computations, but 

also facilitates identification of local patterns. Fig. 3 

displays three substructures on the bridge deck. Sensors 3, 

7 and 11 are selected as the base sensors to monitor the 

deck and the supports condition. It is noteworthy to 

indicate that selection of the substructures has been based 

on structural mode shapes obtained from 3-D finite element 

model of the bridge (Li et al., 2014 [17]). For each 

substructure a base sensor is selected and the output of 

other sensors is not considered in the analysis (Fig. 6).  
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Fig. 12: Structure of the Neural Network Ensemble 

 

For a reliable data analysis, signal length and sampling 

frequency must be large enough to reduce bias and random 

errors (Asmussen, 1997 [26]). Hilbert transform requires at 

least 5 samples per shortest period (Huang et al., 1998 [6]). 

On the other hand, over-sampling considerably enhances 

the accuracy of the analysis (Rilling and Flandrin, 2009 

[27]; Li et al., 2010 [28]). In this study, sampling frequency 

of the sensors is 100 Hz. Hence, frequencies up to 50 Hz 

can be captured in accordance with Nyquist law. Moreover, 

Wenzel and Pichler (2005) [28] suggested a 5 min 

recording as the minimum length to find the structural 

parameters for common buildings. Also, Li et al. (2010) 

[29] estimated that 13.65 min time interval is adequate for 

PSD estimation of Yonghe bridge based on the Broch 

theorem (Broch, 2000 [30]). Accordingly, acceleration 

records are split to 15 min (900 s) time intervals. EMD is 

applied on the output records to extract the IMFs. Fig. 8 

plots IMFs for the healthy state. Next, instantaneous 

frequencies and amplitudes are extracted using Hilbert 

transform.  

Three signal features are first examined including 

frequency, amplitude and energy. For instance, Fig. 9 

presents features of sensor 7 for the healthy case. One can 

observe large fluctuations in frequency values. To 

overcome this phenomenon, cumulative summation of 

absolute phase function is defined as frequency damage 

index (Fig. 10). The amplitude and energy damage indexes 

are also defined as  

0
i

T

i
A a dt 

 
(27) 

and 

2

0

( )
i

T

i
E IMF dt 

 

(28) 

Where subscript i denotes the IMF number. 

A comparison of the aforementioned damage indexes is 

carried out in Fig. 11 for sensor 7 under healthy and 

damaged states. It is obvious that energy damage index 

performs better than the others in separating both cases. 

Thus, Energy index is employed for the following 

calculations. However, large variations exist due to 

environmental effects, specifically vehicle load vibrations. 

 

5.2. Real-time damage detection technique 

The procedure discussed above is computer-intensive and 

is not applicable for online monitoring. Besides, elaborate 

tracking of pattern changes in such a scattered data is 

complicated. Therefore, ANN is employed to diagnose the 

occurrence of damage. Since the damage is not known a-

priori, training of the network is performed only for the 

healthy state. Thereby, when data for the damaged case is 

entered as the network input, outputs would differ which is 

accounted as a measure of damage. Initially, five traditional 
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statistical features are used to characterize the time-domain 

information of the raw accelerometer data. These features 

are easily operated and need low computational time. Table 

1 lists the definition of these features. These features are 

used as the network input. 

 

 

Fig. 13: Detection of Damage Using ANN 

 

Since there is a disagreement among the accelerations of 

different sensors, using a single monolithic network can 

mix input data and destroy the damage patterns. Using an 

ensemble of independent networks helps to separate input 

spaces and reduces the generalization errors. Moreover, 

neural network ensemble has faster learning ability and 

need less computation efforts (Li et al., 2011 [31]). As a 

result, a two-stage network is utilized in this study. The 

first stage networks are designated for each sensor 

separately. They receive statistical features as input and 

send energy index of the first four IMFs as the output. 

Output of the first stage networks are set as the input for 

the second network. The final outcome of the network is 

the energy mean. First stage network has an input layer 

with five nodes, two hidden layers with four nodes and an 

output layer with four nodes, respectively. Hyperbolic 

tangent sigmoid transfer functions are assigned as 

activation functions. Training is made with back-

propagation (BP) method. As aforementioned, training is 

carried out only by the healthy state data. Gradient descent 

algorithm is used to predict the weights and the biases of 

neurons. The second network contains twelve input nodes, 

two hidden layers and one output node. Fig. 12 shows the 

architecture of the neural network ensembles. 

In general, the following steps outline the proposed real-

time damage detection procedure: 

1. Every 15 min (900 s), collect a sample of acceleration 

for each base sensor 

2. Extract traditional statistical signal features 

3. Use the trained ANN to calculate energy index 

4. Compare the obtained energy index with healthy state 

energy indices 

Fig. 13 shows the total energy index of damaged case in 

comparison with healthy state. In summary, ANN has 

proved its potential as a promising classifier to detect 

damage with an acceptable accuracy. 

Table 1. Time-domain statistical features 

root mean square 1

2
2

1

1 N

ii
x

N 

 
 
 

  

variance  
2

1

1 N

ii
x x

N 
  

skewness  
3
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1 N i

i

x x
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
  

kurtosis  
4
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1 N i

i

x x

N 


  

normalized sixth central moment  
6
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1 N i

i

x x

N 


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6. Conclusions 

In this paper, a promising real-time damage detection 

technique is proposed using a combination of time-

frequency signal processing and ensemble neural network. 

The former is the core of the solution to extract useful 

information from the data, and the latter is employed as a 

classifier. Based on the result the following conclusions 

can be drawn. 

(i) Although several up-to-date instantaneous time-

frequency techniques are proposed since the introduction of 

EMD, each have their own shortcomings. Therefore, still 

there is not a general time-frequency technique for the 

purpose of damage detection. Meanwhile, EMD is still a 

robust tool to decompose vibration signals of complex 

structures.   

(ii) Although advanced signal processing techniques can be 

solely used for damage detection purpose, they do not 

fulfill expectations as an online damage detection tool. 

Using artificial intelligence in conjunction with signal 

processing helps to establish automatic algorithms that do 

not need expert intervention. 

(iii) Environmental conditions, specifically variations of 

vehicle load, cause large dispersion in damage indices. In 

this paper, pattern recognition (e.g. ANN.) was utilized to 

track these variations. However, further research would be 

beneficial using stochastic [32-34], statistical [35,36], or 

probabilistic [37,38] approaches to handle such 

confounding fluctuations. Also, using inverse methods 

[39,40] may help to reduce the effect of environmental 

conditions and improve the accuracy of damage detection 

method. 
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