
Numerical Methods in Civil Engineering, Vol. 3, No. 3, March. 2019 

 

 

                       Numerical Methods in Civil Engineering 

 

 
 

Approximation of undrained bearing capacity of strip foundations on 

heterogeneous marine clay 
 

 

Reza Jamshidi Chenari*, Ardavan Izadi**, Amin Eslami***, Elmira Khaksar Najafi****  
 

 

ARTICLE INFO 

Article history: 

Received:  

November 2018. 

Revised: 

February 2019. 

Accepted: 

March 2019. 

 

 

Keywords: 

Bearing Capacity 

Limit Equilibrium 

Limit Analysis 

Stress Characteristics 

Heterogeneous Clay 

 

 

 

Abstract: 

The problem of bearing capacity of foundation under rigorous circumstances has always been 

of a great importance in geotechnical engineering. Various simple and also more sophisticated 

methods have been developed to improve the bearing capacity calculations. In this paper, the 

performance of three different approximate methods including the limit equilibrium analysis, 

upper and lower bound of the limit analysis, and the characteristic method of the slip line 

solution is evaluated and compared in dealing with marine soil deposits with the heterogeneous 

soil strength profile under the plane strain condition. The undrained bearing capacity of strip 

footing rested on a stratum with a linear variation of undrained shear strength was estimated 

using various methods. It was found that for all methods adopted in the bearing capacity 

estimation, the undrained bearing capacity increases with the strength density. As a result, the 

failure mechanism becomes shallower and narrower as the undrained shear strength increases 

with depth. Comparing the results obtained by the applied methods, the maximum bearing 

capacity is rendered by the limit equilibrium (assuming Terzaghi failure mechanism), resulting 

as an unsafe solution. On the contrary, the minimum bearing capacity is yielded by the stress 

characteristic method, as the most conservative and applicable solution.

1. Introduction 

The calculation procedure of bearing capacity problem is 

recognized as for association of three different contributors 

named as the “cohesion” (c), surcharge” (q), and the “unit 

weight of soil” (γ), in the classical equation of bearing 

capacity [1]. However, validation of this equation has been 

a controversial issue for years such that a great number of 

studies were carried out ranging from fundamental 

questioning of the assumptions made in derivation of the 

equation to investigations on affecting factors such as 

footing shape and its depth [2-5]. In addition, the 

conventional limit equilibrium solutions reported by 

Terzaghi [1], Hansen [2] and Meyerhof [3,4] in derivation 

of the classical bearing capacity equations, different 

approximate analytical methods were also developed and 

used to attain more precise solutions. 
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The upper and lower bound theorem of limit analysis [6-19] 

and characteristic method [20-30] are the most well-known 

approximate methods among many. 

Theories and methods of bearing capacity calculation were 

initially developed for simple soil profiles and geometrical 

conditions which are more appropriate for homogenous 

media. However, a large number of studies have recently 

been focused on the real soil conditions, considering the 

effects of heterogeneity and anisotropy. The effect of soil 

heterogeneity is clearly manifested in the bearing capacity, 

as well as the failure mechanism. Hence, more accurate 

failure mechanisms and more rigorous methods of analyses 

are required in order to capture the effects of the 

heterogeneity. In this study, the performance of different 

approximate methods known as (1) the limit equilibrium 

with general shear failure mechanism, (2) the conventional 

upper-bound method comprising of the two different failure 

mechanisms i.e., Prandtl and the revised failure mechanism, 

optimized by the “Genetic Algorithm”, (3) the lower-bound 

with stress fan, (4) the upper and lower bounds of limit 

analysis in conjunction with the finite element method, and 

(5) the characteristic method in combination with the finite 
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difference method, are evaluated under the plane strain 

condition. A detailed comparison that has been made in this 

study, makes the engineers able to use either the average 

bearing capacity coefficient or the bounds of solution, 

proposed by the various methods of analysis.  

2. Variation of the Undrained Shear Strength 

In the natural soil deposits, especially for the normally 

consolidated and lightly over-consolidated clays, the void 

ratio decreases with depth. Consequently, the stiffness and 

soil strength properties mutually would increase with depth 

[31]. Furthermore, the natural geological processes such as 

sedimentation, progressively change the deposited soil 

properties. This phenomenon was firstly analysed and 

reported by Gibson and Morgenstern in 1962 [32]. Gibson 

Soil was defined as a linear elastic material in which its 

stiffness and consequently, its shear strength parameters can 

increase linearly with depth. The results presented by 

different in-situ tests show a linear variation in the undrained 

cohesion of soil with depth, according to the increase of 

effective overburden stress with depth. According to this 

trend, many studies have been carried out with regard to clay 

inhomogeneity [19,33-38]. 

Davis and Booker [39] observed three different types of 

non-homogenous clay profiles: (1) Recent marine deposits 

without surface strength but with linear variation of shear 

strength with depth, (2) Normally consolidated deposit 

which are aged or weathered and have some surface strength 

(c0) (as shown by Figure 1), and (3) the normally 

consolidated deposit with constant shear strength up to the 

transformation depth and thereafter with linear variation of 

the undrained shear strength parameter. A range of values as 

of 0.6 – 3.0 kPa/m has been reported for the rate of strength 

variation (λ) based on the experimental study of Davis and 

Booker [39]. Despite the wide variety of soil strength 

profiles, most of the existing solutions for the bearing 

capacity of footings are reported for the homogeneous clay 

deposits. 

 
Fig. 1: Linear variation of undrained shear strength with depth. 

3. Methodology and Analyses 

3.1 The Limit Equilibrium Method 

The limit equilibrium method can be considered as one of 

the most traditional and commonly used methods to 

approximate the solutions of the bearing capacity problems. 

This method is based on an iterative procedure for 

determination of the bearing capacity with regard to an 

arbitrary collapse mechanism, which may consist of any 

combination of straight lines or curves, arranged to give a 

failure mechanism. It would be imperative to calculate the 

equilibrium of the components by equating the resultant 

forces and moments acting on the failure surface to 

determine the bearing capacity of the foundation. It is also 

worth noting that any compatible mechanism should be 

examined in order to find the critical mechanism for which 

the loading is in a limit equilibrium state. Obviously, the 

accuracy of the collapse load as determined by the limit 

equilibrium approach is strongly dependent on the geometry 

of the assumed failure surface [40,41].  

In this study, the bearing capacity calculations associated 

with the limit equilibrium analysis are established based on 

the assumption of a general shear failure mechanism, as 

shown in Figure 2. Such mechanism is certainly compatible 

with the relative movement between the adjacent blocks that 

does not have to occur within separation and/or volume 

changes. This failure mechanism was initially used by 

Terzaghi [1] with the wedge angle (θ) equal to the soil 

internal friction angle, as θ = φ.  

 
Fig. 2: General shear failure mechanism of the limit equilibrium 

method. 

3.2 The Limit Analysis Method 

Exact solutions to the soil mechanics problems such as the 

bearing capacity of the foundations can be obtained when 

the equilibrium equations of stresses, compatibility 

conditions and stress-strain relations are considered, 

simultaneously. However, calculation of the actual failure 

loads is not a straightforward task to do, demanding it to 

develop methods through which the limit loads can be 

obtained in a simpler way; i.e. without considering all of the 

conditions and constraints of a complete solution. The limit 

analysis is one of the most prevalent methods that simplifies 

the solution of stability problems by ignoring some of the 

conditions of the equilibrium and compatibility.  

    The limit analysis utilizes the bounds theorem of plasticity 

to calculate the lower and upper bounds of the actual load. 

The upper and lower bound theorems are applicable for 

materials with the perfectly rigid plastic behaviour and 

associated flow rule. By satisfying the equilibrium equations 

and stress-strain conditions simultaneously, the lower-

bound of the limit-load can be found, whereas in the upper-

bound limit analysis, the amount work done by the external 

loads is equated to that of the internal stresses in terms of the 

energy dissipation and the upper-bound of the limit-load that 
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can be found accordingly. Obviously, the true plastic 

collapse load must fall between these two bounds, resulting 

by the exact limit-load. The limit load can be found with 

exact accuracy, provided that the upper and lower bounds 

are the same. 

3.2.1 The Upper-Bound Limit Analysis 

The calculations required for the upper-bound analysis are 

performed by equating the dissipated energy through the 

shear stresses along the slip lines of the failure mechanism 

to the external work done by a set of applied forces for any 

arbitrary mechanism of the plastic deformation. Such 

mechanism should be a kinematically admissible 

displacement field that satisfies any displacement 

constraints associated with the boundary value problem, 

compatibility, and the flow rule. Generally, the aim of the 

upper-bound limit analysis is to calculate the least upper-

bound solution since the natural processes are accomplished 

in such a way that the spent energy has to be at the minimum 

level. Failure mechanisms can be constructed by the 

individual slip surfaces including the circular slip surfaces 

or a combination of different types of surfaces. Since the 

accuracy of the plastic collapse load as determined by the 

upper-bound limit analysis does strongly depend on the 

failure mechanism, different approaches of Prandtl 

mechanism, revised failure mechanism and the upper-bound 

limit analysis merged with the finite element method were 

employed in this study in order to generate the approximate 

solutions of the bearing capacity factors for a non-

homogenous soil. 

Figures 3 and 4 illustrate the Prandtl mechanism [42] with 

the corresponding displacement field and the revised failure 

mechanism which has the capability of being put into the 

practice in the calculation of the bearing capacity factors, 

considering the soil anisotropy and non-homogeneity in both 

drained and undrained conditions. Geometry of the problem 

is defined by unknown angles. 

 
Fig. 3: Prandtl failure mechanism and the corresponding 

displacement field [42]. 

The other scheme of the upper-bound limit analysis is the 

finite element upper-bound approach. The finite element 

limit analysis is the general form of an upper-bound solution 

in which no specific failure mechanism is assumed. This 

leads to an enhancement of the accuracy of the results 

compared to the conventional upper-bound solution, which 

merely employs some explicit slip surfaces. The constraint 

equations and the objective function can be defined by 

applying the compatibility of strains, boundary conditions, 

and displacement discontinuities. The constraint equations 

and objective function are defined as a linear function of 

unknown nodal displacements. Moreover, the Mohr-

Coulomb’s failure criterion was linearized by an exterior 

polygon with P sides as depicted in Figure 5. By assembling 

all equalities and constraints inequalities and the objective 

function, a discrete formulation of the upper-bound theory 

leads to a constrained optimization problem. Since all of the 

constraint equations and objective functions are linear, the 

problem is then known as the linear programming in the 

mathematical terminology. The formulation used in this 

study follows that of Sloan, firstly proposed in 1989 [9]. 

 

 
Fig. 4: Revised Prandtl failure mechanism. 

 

Fig. 5: Circumscribed linearization of the Mohr-Coulomb 

criterion [9].  

 

3.2.2 The Lower-Bound Approach 

The lower-bound theorem of the limit analysis states that the 

plastic collapse will not take place if any state of stress can 

be found that satisfies the equilibrium equations initially, 

and in the next, meets the traction boundary conditions and 

eventually, nowhere exceeds the yield function. Generally, 

in the lower-bound analysis, a stress field must be created 

which satisfies both equilibrium and yield condition, also 
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referred to as a "statically admissible" stress field. A lower-

bound load is also known as the safe load since it cannot lead 

the structure to plastically collapse.  

The state of equilibrium can be changed either sharply or 

smoothly by assuming a limited number of stress 

discontinuities or taking a fan of discontinuity, 

correspondingly. The change of total stress across a stress 

discontinuity can be easily found by drawing the Mohr 

circles of two adjacent elements in the vicinity of 

discontinuity, which is simply related to undrained cohesion 

and rotation of the major principal stress’s direction. There 

are many stress discontinuities and equally a great number 

of Mohr circles within the fan. Figure 6 shows the stress fan 

used in this study to calculate the lower-bound solution of 

bearing capacity of foundations on heterogeneous soil.  

 
Fig. 6: Fan of stress field for lower bound limit analysis. 

The lower-bound finite element method is the general form 

of a lower-bound approach in which no assumption is made 

for the stress field so as to enhance the accuracy of the results 

compared to the conventional lower bound solution. Just like 

the upper-bound finite element analysis, the yield function 

should be linearized by a polygon prior to using linear 

programming. In contrast to the upper-bound method, this 

polygon is interior to the Mohr-Coulomb criterion in the 

lower-bound approach, as depicted in Figure 7. The 

constraint equations and the objective function can be 

defined by applying the stress equilibrium, boundary and 

yield conditions. A detailed description of this method has 

been described by Sloan (1988) [8].  

 
Fig. 7: Linearized Mohr-Coulomb function for the lower-bound 

solution [8]. 

 

3.3 The Characteristic Method 

This theory is widely used for isotropic materials in which 

their behaviour is independent from the mean pressure. The 

numerical solution of these characteristic equations, 

developed by Sokolovskiĭ [20], is nowadays widely popular 

with researchers and geotechnical engineers dealing with 

plasticity problems, in which solving equilibrium and yield 

equations are demanded to estimate the ultimate load on 

foundations and retaining walls. The fundamental of stress 

characteristics method is given in details in the literature 

[20,21]. In this paper, the governing equations of the plastic 

stress field are completed and extended for the described 

heterogeneous soil in the plane strain condition and they are 

solved using the finite difference method (FDM). A 

combination of the equilibrium equation with the failure 

criterion leads to the two partial differential equations along 

with two further equations, defining the spatial variations of 

the orientation of the major principal stress, and the mean 

normal stress. By application of the finite difference method, 

these equations can be solved by establishing numerical 

integration along with the characteristic directions.  

4. Results and Discussion 

4.1 The Limit Equilibrium Method 

The wedge angle (θ) was taken as (π/4 + /2) in this study 

to reach a more accurate solution. Figure 2 shows the general 

shear failure mechanism assumed for the limit equilibrium 

method by taking into account the linear variation of 

undrained shear strength with depth. Assuming c ≠ 0 and φ 

= q = γ = 0, the forces acting on the wedge due to cohesion 

are the soil passive force (Ppc), the cohesion force acting on 

the length of (𝑏𝑐̅̅ ̅), Rankine passive force due to the cohesion 

(Pp1 for the effect of surface cohesion and Pp2 for the linear 

variation term), and finally the cohesive force per unit area 

along the arc 𝑐𝑓̂. Taking moment about point b, the resultant 

passive force (Ppc) can be simply determined in terms of 

surface cohesion (c0), undrained shear strength density (𝜆), 

the wedge angle (θ) and foundation width (B). The ultimate 

load can then be found by considering stability of the rigid 

wedge directly under the foundation.  

In order to find the ultimate load capacity, the value of 𝜃 

for which the equation gives the minimum output should be 

determined. However, it can be inferred that the variation of 

undrained shear strength would result in different optimum 

angles in accordance with different amounts of λ.  

Variation of the bearing capacity factors with different 

values of λB/c0 obtained by the general shear failure 

mechanism are presented and compared with those obtained 

by Terzaghi solutions and the other methods.  

4.2 The Upper Bound Limit Analysis 

The exact solution of the bearing capacity factors of Nc for 

homogenous soils can be found by the Prandtl method 

proposed in 1920 [42]. Hence, it would be rational to start 

with this mechanism for investigation of the effects of 

increasing shear strength with depth. Equation (1) gives the 
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bearing capacity of the shallow foundation rested on non-

homogeneous soil based on the Prandtl failure mechanism, 

as a function of mechanism angles (α, β), the width of 

foundation (B) and the rate at which the soil strength 

increases with depth (λ).  
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(1) 

Where 𝜃𝑓=(90 + 𝛼 − 𝛽). Figure 8 illustrates the variation 

of the optimum wedge angle beneath the foundation (β). It 

is worth mentioning that the angle α remains constant at 45° 

for different values of λB/c0. By increasing the rate of 

heterogeneity, the failure mechanism becomes shallower as 

the optimum wedge angle is decreased. In other words, 

assuming a constant values of the angle α, the farthest point 

of failure mechanism should become closer to the 

foundation to generate a narrower mechanism.  

 
Fig. 8: Variation of the active wedge angle (β) with λB/c0 for the 

Prandtl failure mechanism. 

For the revised failure mechanism, the ultimate bearing 

capacity of the foundation can be found by equating the 

work done by external forces to that of established by 

internal stresses in terms of energy dissipated along the slip 

surface, as a function of (θ, αi, βi). Equation (2) gives the 

internal energy at the discontinuity with variable shear 

strength upon which the bearing capacity factor (Nc) can be 

found.  

Genetic Algorithm (GA) was used in this study to find the 

least upper bound solution. Figure 9 represents some of the 

definitions of this optimization approach with regard to such 

particular problem. Obviously, by increasing the number of 

populations, iterations, and blocks, a more precsise solution 

can be found. 
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Fig. 9: Genetic algorithm definition for bearing capacity problem. 

Figure 10 shows the finite element mesh discretization 

used in this study, for which the bearing capacity factors are 

calculated and presented in the following section for the sake 

of comparison. It is worth mentioning that, the displacement 

discontinuities were defined to occur at shared edges of 

adjacent elements, and one of these discontinues was 

magnified for illustration. By increasing the number of 

nodes, the analysis gives lower values to make the mesh 

finer. The number of linearization polygon sides (P) was 

assumed as P=12. Comparing the results of the finite 

element upper bound analysis for homogenous soils with 

those obtained by the exact solution of Prandtl failure 

mechanism, a discrepancy of 1.5% is observed. This 

discrepancy arises due to the plastic behavior of triangular 

elements, which is in contrast with the rigid behavior of 

failure mechanisms used in the conventional methods. 

Figure 11 shows the displacement field for the mesh 

discretization, found to be similar to that of the Prandtl 

mechanism and Sloan finite element displacement field. 

Table 1 is presented to compare the bearing capacity factor 

(Nc) obtained by the upper bound limit analysis with those 

obtained by other methods as reported in the literature.  
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Fig. 10: Mesh discretization of the finite element upper-bound. 

 
Fig. 11: Displacement fields of the mesh discretization.  

Table 1. Comparison of Nc-values for non-homogenous soil. 

Upper 
bound 

Finite 

eleme
nt 

Revised 

failure 
mechanis

m 

Redd

y and 
Rao 

[46] 

Livneh 
and 

Greenste

in  
[45] 

Reddy 
and 

Sriniva

san 
[44] 

Peck 

et al. 

[43] 

𝜆B/c

0 

5.22 5.15 5.14 5.14 5.52 5.14 0 

6.94 6.94 6.89 7.20 7.56 7.71 1 

8.76 8.68 8.45 9.26 9.31 10.28 2 

10.28 10.15 9.96 11.31 10.94 12.85 3 

11.94 11.76 11.44 13.37 12.49 15.42 4 

13.48 13.33 12.92 15.43 13.99 17.99 5 

4.3 The Lower-Bound Limit Analysis 

Assuming a fan of stress and drawing the Mohr circles of fan 

discontinuities, the solution of bearing capacity of non-

homogenous clay can be found using Equations (3) and (4).  
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Figure 12 shows the stress field of the lower bound finite 

element method with 20 stress discontinuities, which is 
similar to the revised failure mechanism. Note that the 

angles between each pair of discontinuities are equal in 

contrast to the upper-bound solution. In fact, the stress fan 

of the lower-bound solution, velocity field of upper-bound 

and the revised failure mechanism all together simulate the 

Prandtl mechanism which represents the exact solution of 

the bearing capacity factors. 

 
Fig. 12: Stress fan of the lower bound solution by the finite 

element method. 

4.4 The Characteristic method 

Curve-fitting to the characteristics analysis, Bransby (2001) 

proposed an approximate solution as Equation (5) for the 

bearing capacity factor (Nc)[47].  Figure 13 demonstrates the 

stress characteristics of the foundation’s bearing capacity in 

non-homogenous soil condition.  

0.662

0

(2 ) 1.646( )c

B
N

c


     (5) 

 

Fig. 13: Characteristics lines of bearing capacity problem for the 

non-homogenous soils. 

4.5 Comparison of Different Approaches  

Figure 14 compares the results of the current study 

calculated from different approaches including the limit 

equilibrium, limit analysis, and stress characteristics method 

with the results of a recent study by Ukritchon et al. [19]. 

They reported the value of bearing capacity factor (Nc) as a 

function of foundation roughness and heterogeneity of 

cohesion [19]. For this aim, the bearing capacity coefficient 

was compared for rough soil-foundation interface condition. 

Note that, the discrepancies between the results of the 

current study and those of Ukritchon et al. [19] are due to the 

discrepancies in optimization schemes. The lower bound 

finite element formulation of the current study lies in 

linearization of the yield surface while Ukritchon, et al. [19] 

employed the second-order cone programming scheme. The 

reported value of Nc is the ratio of ultimate bearing capacity 

calculated from only contribution of cohesion to the surface 

cohesion of soil, i.e. Nc = qu/c0, and Nc = Nc0. 

Tani and Craig (1995) conducted a series of Centrifuge 

model tests to validate the proposed bearing capacity 

calculation of circular foundation on heterogeneous marine 

clay. The circular model foundation had a radius of 304 mm 

and thickness of 2 mm, located at depth of 30 mm. The model 

was rigidly connected to the strong-box of the Centrifuge 

apparatus to avoid any sliding or tilting. In the experimental 
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test of Tani and Craig (1995), the vertical load was 

consequently increased with a constant rate up to the failure 

load, resulted in a considerable settlement [35]. Table 2 

demonstrates a comparison of the results of numerical and 

experimental investigations of Tani and Craig (1995) with 

those obtained in this study. As can be seen, the bearing 

capacity factors of the current study are in good agreement 

with findings of Tani and Craig (1995). 

 
Fig. 14: Comparison of bearing capacity factor Nc of non-

homogeneous soil with the results of Ukritchon et al. [19]. 

Table 2. Comparison between the results of the experimental and 

numerical bearing capacity factor of Nc0. 

Nc0 
𝜆B/c0 

2.13 4.07 5.38 

Tani and Craig (1995) 

Theoretical 9.45 11.93 13.51 

Experimental 8.12 10.16 12.77 

Current study 

LE1- General shear failure mechanism 8.09 10.78 12.45 

UP2- Prandtl failure mechanism 9.29 12.48 14.21 

UP- Revised failure mechanism 8.87 11.86 13.38 

UP- Finite element method 8.96 12.04 13.62 

LB3- Stress fan 7.87 10.36 12.47 

LB- Finite element method 7.74 10.15 12.31 

Stress characteristics + FDM4 7.94 9.84 12.07 

1- Limit equilibrium      2- Upper bound     3- Lower bound     4-Finite difference method 

5. Conclusion 

In this paper, different approximate methods including the 

limit equilibrium, limit analysis, and characteristic method, 

merged with the numerical techniques such as FEM and 

FDM were investigated to determine the ultimate bearing 

capacity of the purely cohesive nonhomogeneous soils in the 

plane strain condition. An effort was made to cover the 

problem by detailed investigations, evaluation, and 

comparison of the different methods. It can be useful to 

candidate the most appropriate method based on the 

accuracy required for the specific project. Accordingly, the 

following results were obtained in this study: 

 Most of the approximate methods are iterative 

techniques; consequently, various possible failure 

mechanisms must be taken into account in the 

calculation of the collapse load so that the appropriate 

accuracy can be assured.  

 Consideration of the shear strength variability can 

work reasonably well in simulating the real situation 

with naturally deposited clay. This leads to 

improvement of bearing capacity estimation because of 

the change in the failure zone pattern due to the shear 

strength increment with depth.  

 Comparing the results obtained by different methods, 

the maximum bearing capacity was estimated by a 

considerable difference through the limit equilibrium 

approach, resulting in the most non-conservative 

design. 

 In contrast, the characteristic method presented the 

most conservative estimations of bearing capacity in 

comparison to other approximate methods investigated 

in this study. 

 The results of the Prandtl mechanism, revised failure 

mechanism, and finite element limit analysis are in 

good consistency with each other, suggesting the 

employment of the rather simpler mechanism of 

Prandtl in similar conditions as it demands a fewer 

computation effort. 

 An explicit bracket of an exact solution can be 

achieved by the results of finite element upper and 

lower bound solutions. Therefore, it would be 

acceptable to estimate the bearing capacity using these 

two bounds and considering their mean value as the 

final solution. 

 Putting into practice the finite element technique in the 

bound methods, the accuracy of the results can be 

enhanced compared to the conventional upper and 

lower bound solutions.  
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