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Abstract: 
 

In this paper, the dynamic response of a concrete gravity dam along with reservoir domain is 

investigated by frequency analysis and Latin hypercube sampling (LHS) statistical methods 

using finite element model. In this analysis, the frequency value is assigned to the model as an 

input variable. Then, the effects of frequency parameter are studied on maximum horizontal 

displacement of the dam crest, maximum tensile stress in the heel, maximum compressive 

stress in the toe and hydrodynamic pressure on the heel of the dam. The ANSYS software, 

according to finite element method (FEM), is applied for modeling and analysis. In order to 

represent the effect of the dynamic loading frequency, which is an important parameter in the 

analysis of the structures, the maximum response values are presented as sensitivity and 

probability curves. According to the sensitivity diagram of the hydrodynamic pressure 

response vs. the input frequency, it can be concluded that in the frequency of loading near the 

natural frequency of reservoir, the most critical condition occurs for seismic display, which 

should be highly considered in designing concrete dams.  

1. Introduction 

In order to calculate dam responses to critical forces 

accurately, it is crucial to consider the effects of the 

interaction between dam and reservoir so as to achieve a 

safe design. Most engineers design structures with complex 

public utility packages for the analysis of structures. They 

often have no access to the source codes of programs and 

are less aware of the structural algorithm details in these 

software applications. Therefore, the main challenge for 

researchers to optimize structures is to develop appropriate 

methods for such software. Another major challenge is the 

high computational cost of analyzing several complex 

structures, such as concrete dams. One of the latest 

methods for optimization and parametric evaluation of 

structure behavior is the LHS statistical method and 

probabilistic analysis. 
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Hence, this method has been applied to address effects of 

the dam-reservoir interaction on frequency analysis. 

Accordingly, the most critical condition is selected for the 

analysis and applied to the design and analysis of concrete 

dams in order to achieve safety and cost-effective results in 

the project. Modeling of interaction effects has a long 

history in seismic analysis of dams. The first study in this 

field was presented by Westergaard (1933) [18]. He 

considered the effects of interaction as a two-dimensional 

model of dam-reservoir, which was affected by the 

vibration caused by the horizontal motion of the earth. He 

assumed that the dam is rigid and has a semi-limited 

reservoir with a constant depth. Westergaard found that the 

force generated by the interaction is proportional to the 

acceleration is caused by the seismic motion of the earth 

and could be approximated by a parabolic mass distribution 

on the height of the dam. 

In most studies, given the rigid nature of the dam, the 

forces caused by the interaction during seismic motion of 

the earth are considered as an external force on the dam 
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and the dam response is neglected. Chopra (1968) [3] 

studied the impact of the dam flexibility on the interaction 

forces by modeling a dam as a system including the mass, 

damper and spring. He extracted the parameters of this 

system through considering the first vibrational mode of a 

triangular dam and showed that the natural frequencies of 

the dam and reservoir coupled system were different from 

the uncoupled system. In further studies, Hall and Chopra 

(1982) [9] investigated the hydrodynamic effects of the 

reservoir on the seismic performance of a concrete gravity 

dam. They used one-dimensional approximation to 

propagate waves released from the reservoir. They showed 

that the approximation of finite elements could be 

successful in seismic analysis of the dam and reservoir 

system in the mode that where the dam is flexible and 

water is compressible. Chwang and Housner (1978) [6] 

determined the distribution of hydrodynamic pressure in 

dams with the inclined upstream based on the momentum 

equilibrium. Fenves and Chopra (1985) [7] investigated the 

interaction between reservoir water and its foundation 

using the energy dissipation and its effective behavior on 

the sediment layer of the reservoir bottom. In their method, 

it is assumed that the compressive waves hitting the bottom 

of the reservoir are dissipated before reaching the lower 

layers of the rock and the sediment layers’ properties are 

only to evaluate the reflection from the boundaries. In their 

model, the thickness of the layer is not precisely 

determined and the effect of the proximity to the lower 

bedrock on the reflection coefficient for the bottom of the 

reservoir is neglected. Therefore, their simple 

approximation indicates a further decrease in the dam 

response during the absorption of the reservoir bottom. 

Saini et al. (1978) [13] and Chopra - Chakrabarti (1981) [5] 

studied the dam-reservoir interaction problem in the 

frequency domain using the finite element model. Finite 

element analyses in time-domain were performed by 

Sharan (1985 and 1986) [14, 15 and 16] and Tsai et al. 

(1992) [17]. For the reservoir with irregular geometry, 

numerical methods such as finite element method must be 

used, because an analytical solution cannot achieve results 

for the arbitrary boundary and geometry of the system. 

Jablonski and Humar (1990) [10] applied the boundary 

element method in frequency domain for seismic analysis 

of concrete dams. Alembagheri and Seyedkazemi (2014) 

[1] conducted a probabilistic study in which the seismic 

behavior of the concrete gravity dam is addressed with 

regard to concrete tensile behavior parameter as the 

sensitivity parameter. The results of their research showed 

that accurate examination of tensile behavior and final 

failure of concrete in concrete gravity dams requires a 

proper definition of nonlinear models of materials. Using 

Monte Carlo probabilistic method, Pasbani Khiavi (2015) 

[11] investigated the reservoir bed characteristics effect on 

reducing the pressure induced in the reservoir. Results 

confirmed a high dependence of responses to the reservoir 

bottom absorption. Additionally, Pasbani Khiavi (2017) 

[12] investigated the influence of concrete stiffness on the 

seismic responses of concrete gravity dams by the Monte 

Carlo simulation. According to the results, the optimized 

value of the concrete Young Modulus to access the 

confident response of the structure, which was 

economically important, was achieved.  

This study attempts to introduce the Monte Carlo method 

as an effective tool for investigation and safe design in the 

uncertainty space by the FE-ANSYS simulations. Results 

of this simulation show the influence of the earthquake 

frequency on the performance of concrete gravity dams 

under seismic loading. In probabilistic analysis, loading 

frequency is chosen as an input parameter. Then the 

maximum displacement of dam body along river, induced 

dynamic pressure at dam-reservoir interface in bottom, 

tensile principle stress at heel and compressive principle 

stress at toe of dam were selected as the output critical 

responses of the model and presented in this paper. 

 

2. Monte Carlo simulation characteristics 

There are several methods such as simulation methods to 

solve structural reliability problems. Simulation is defined 

as the numerical simulation of some phenomena and 

observation of the events that have taken place. The 

concept of simulation is relatively straightforward, but its 

process may be very challenging. 

As the information and results related to the N test are 

available in a bag, if the results of an n-member sample are 

required, instead of doing n additional tests, n out of N test 

results can be selected randomly. This sampling method is 

introduced as a special technique. 

The Monte Carlo method is a special technique to generate 

numerical results without performing a physical test. The 

results of previous experiments can be used to generate 

probabilistic distributions of important parameters in the 

problems. This information distribution can then be used to 

generate data samples. The Monte Carlo method is 

applicable to all types of distribution and also to check the 

accuracy of the results of other methods. The error 

associated with this type of technique is completely 

controlled by the number of simulations. It is confirmed 

that once the number of samples tends to reach infinity, the 

results converge to an exact value. Uncertainty in the 

analysis decreases by increasing the number of samples. 

One of the main criticisms against Monte Carlo method is 

the high computational time. However, variance reduction 

methods may make this method more efficient. In some 

cases, the analysis is very complex and the time required 

for a single analysis phase may be too long. Therefore, it 
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might be impossible to perform hundreds or thousands of 

simulations in terms of time. The Latin Hypercube 

Sampling Method is a technique for reducing the number 

of simulations required to achieve acceptable results. In 

this method, a range of possible values of the random input 

variables is partitioned in layers and a value from each 

layer is randomly selected as the sample value. Sample 

values for each random variable are combined in such a 

way that each value is considered only and only once. In 

this method, all possible values of random variables are 

brought into simulation. Consider the boundary condition Y 

with the following K random variables: 

𝑌 = 𝑓(𝑋1 ⋯ 𝑋𝑘) (1) 

The basic stages of the Latin Hypercube Sampling Method 

are: 

- Each 𝑋𝑖 is partitioned at certain intervals (N 

intervals). This partitioning should be such that 

the probability of occurrence of any value of 𝑋𝑖 in 

this interval is 1/N. 

- For each variableXi and its N interval, a value is 

randomly selected as a sample value. In practical 

applications, if the number or size of intervals is 

large, the central point of each interval will be 

chosen instead of random sampling.  

- Subsequent to the above steps, N sample values 

are obtained for each of K random variables. 

Generally, there are NK possible combinations of 

these values.  

- To obtain the first combination, a sample value is 

selected randomly for each input random variable 

K. In order to obtain the second combination, a 

sample value N-1 is selected randomly for each 

input random variable. This selection process 

proceeds to the point that combinations of the 

values of the input variables are generated. 

- Equation (1) is evaluated for each of the above-

generated N combinations of input variables. As a 

result, the N function is obtained as Yi = (i =

1,2, … , N) 

This process creates simulation data and it is necessary 

to determine how data is used to estimate the statistical 

parameters for y. The most commonly used formulas 

are as follows: 

𝑌 = 𝑌̃ =
1

𝑁
∑ 𝑦𝑖

𝑁

𝑖=1

 (2) 

𝑌 =
1

𝑁
∑(𝑦𝑖)𝑚

𝑁

𝑖=1

 (3) 

𝐹𝑦(𝑦) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑦𝑖 ≤ 𝑦

𝑁
 (4) 

 

 

3. The governing conditions of the system 

Considering the rules and conditions governing the system 

from the hydrodynamic point of view, the selected model is 

considered in accordance with the following conditions: 

- Considering the conditions governing the behavior 

of the concrete gravity dam and the geometric 

shapes of the reservoir, a two-dimensional plane 

stress model is used for the dam elements. 

- The behavior of the dam is linear. 

- Given the governing conditions of the problem, 

the fluid is non-rotational, inviscid and with linear 

condensation and its displacement is insignificant.  

- The effects of gravity waves on the free surface 

are neglected and the surface pressure is zero. 

- The Newmark method is used to solve dynamical 

equations. 

 

3.1 Modeling the dam 

The dam behavior is presented as the motion equation. 

However, it includes the interaction between the fluid and 

the structure, and the applied load due to the fluid 

hydrodynamic pressure on the structure. The fluid contact 

point must be added to the structures’ equations. 

𝑀𝑢̈ +  𝐶𝑢̇ +  𝐾𝑢 =  𝑀𝑢̈𝑔 +  𝐹𝑃𝑟  (5) 

Where, M, C and K represent the mass, damping and 

stiffness matrices respectively. u is the relative movement 

vector and 𝑢̈𝑔 refers to the acceleration vector. FPr denotes 

the hydrodynamic force pressure vector at the contact 

surface. 

 

3.2 Modeling the reservoir 

The equation for the dynamics of the structure should be 

based on Navier-Stokes, momentum and fluid continuity 

equations in relation to problems related to the acoustic 

interaction between the structural and fluid. As the water 

inside the tank is inviscid and incompressible with small 

displacement, the equations of continuity and momentum 

are summed up to the wave equation. Moreover, the 

pressure applied to the structure by the fluid at the contact 

point is considered to form the interaction matrix (Chopra 

and Chakrabarti 1972 [5]).  

1

𝐶2

𝜕2𝑃

𝜕𝑡2
−  𝛻2𝑃 = 0 (6) 

Where, 𝑐 =  √𝑘
𝜌0

⁄   represents the velocity of sound in the 

fluid environment. 𝜌0 is the average fluid density, k refers 

to the fluid bulk modulus, P refers to the acoustic pressure, 

and t indicates the time. 
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3.3 Boundary conditions 

The target system includes dam- reservoir. Four boundary 

conditions, including the truncated boundary of the 

reservoir, boundary of the reservoir bottom, free surface 

boundary condition and the boundary condition of the 

interaction at the dam and reservoir contact point are 

defined as follows: 

- At the truncated boundary of the reservoir, the 

Sammerfeld dissipation boundary condition is 

used: 

1P P

x c t

 
 

 
 (7) 

- At the surface of the reservoir, the surface 

pressure is assumed insignificant. Thus:  

𝑃 = 0 (8) 

At the contact points between the reservoirs, the dam and 

the foundation, the interaction is applied as follows: 

𝜌𝑎⃗𝑛𝑠 = −
𝜕𝑃

𝜕𝑛
 (9) 

Where, 𝒂⃗⃗⃗𝒏𝒔 is the vector of acceleration of the dam or 

foundation at the common boundary with the reservoir and 

n is a unit vector perpendicular to the dam or foundation 

and inside of the fluid (Ghaemian and Ghobarah 1998 [8]).  

After inserting equations and boundary conditions, the 

model of the dam and reservoir system are analyzed using 

ANSYS software based on FEM (ANSYS User Manual 

2007 [2]). In order to apply the effects of interaction, it is 

necessary to add the pressure load applied by the fluid onto 

the structure in interface boundary. Matrices of the 

reservoir components are also extracted by discretizing the 

wave equation. In the extraction of the matrices, velocities 

and accelerations are expanded as first and second order 

derivatives of displacements (Zienkiewicz and Bettess 

1978 [19]).The discretized equations are solved using the 

ANSYS software and the results are extracted for the 

system. 

 

3.4 Analysis 

As a case study, a two-dimensional concrete gravity dam is 

selected with a height of 120 meters in accordance with 

Ghaemian and Gobarah (1998) [8]. The geometric 

properties along with the reservoir are given in Fig. 1, in 

which all dimensions are in meters. The Young modulus, 

density and Poisson coefficient of the concrete in the 

structure are 3.43GPa, 2400 kg/m3 and 0.20 respectively. 

The velocity of compressive waves in water is 1438.66 m/s 

and its density is 1000 kg/m3. For finite element model, the 

reservoir length is considered three times greater than the 

height of the dam. For the far-end, the Sommerfeld 

boundary condition is used and the time step is selected as t 

= 0.02 seconds as the input frequency. The PLANE 183 is 

used to discretize the dam model and Fluid 29 element is 

used for water, which is a proper element for displaying the 

fluid compression property (ANSYS User Manual 2007 

[2]). In this paper, the ANSYS standard version is used for 

modeling and analysis. It should be noted that the standard 

version that this software possesses, could apply to various 

boundary conditions and the effects of interaction between 

the dam, reservoir and foundation. To apply the interaction 

effect, the FSI command contained in this software has 

been used. The finite element discretization model is 

shown in Fig. 1. 

 
Fig. 1: dam model geometry and finite element discretization 

𝑎(𝑡) = 𝐴 ∗ 𝑠𝑖𝑛(𝜔. 𝑡) (10) 

Where, 𝑎(𝑡) is the applied acceleration, A is the maximum 

acceleration, ω is the angular frequency and t is the time 

for dynamic analysis. To obtain appropriate answers in 

probabilistic analysis and achieve convergence in the LHS 

method, the analysis specifications are chosen as Table 1. 

 

Table 1: Specifications of the probabilistic function used in the 

LHS method 

Type of 

statistical 

distribution 

Number of 

samples 

Number of 

repetitions 

Coefficient of 

dispersion 

Gaussian 40 3 0.25 

 

Regarding the mentioned cases, selecting the loading 

frequency is analyzed as an input variable in the LHS 

method and the results of probabilistic and sensitivity 

analyses are presented. 

 

4. Results of analysis 

After analyzing the selected model and given all of the 

mentioned conditions, the results of the analysis are 

presented in this section. In order to study the frequency 

effect on the concrete gravity dam, the responses of 

dynamic pressure on the reservoir bed, displacement of the 

dam crest, maximum value of tensile stress in the heel and 

compressive stress in the toe are studied. Then the 

probabilistic diagrams of four important and influential 

responses in the design of the dams are discussed and the 

probability of occurrence of each of the responses is 
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presented in the form of a probabilistic graph in Figs. 2 to 

5.  

 

 
Fig. 2: The probabilistic distribution of the hydrodynamic 

pressure at the dam and reservoir interface in the bed 

 

 
Fig. 3: The probabilistic distribution of dam crest displacement  

 

 
Fig. 4: The probabilistic distribution of tensile principal stress in 

the heel 

 

 
Fig. 5: The probabilistic distribution of compressive principal 

stress in the toe 

 

Given the probabilistic diagrams displayed in the frequency 

range, the following results can be deduced: 

- In all frequency values, the hydrodynamic 

pressure exceeds 200 KPa;  

- The probability of dam crest displacement 

exceeding 5 cm is deterministic for all frequency 

values; 

- The probability of 1.5 MPa tensile stress at the 

heel is about 50%; 

- The probability of 1.25Mpa compressive stress at 

the toe is about 50%. 

For precise presentation of the effect of the input frequency 

on dynamic analysis of the concrete gravity dam, the 

sensitivity diagrams of the structure vs. the input frequency 

are presented. Figs. 6 to 9 show the process of these 

changes. 

 

 
Fig. 6: Hydrodynamic pressure sensitivity at the dam and 

reservoir interface in the bed vs. the input frequency of the 

earthquake 

 

Accordingly, the highest pressure occurs within the natural 

frequency range of the reservoir (2n-1)πc/2H, n=1,2,…), 

which should be considered in the analysis and design of 

concrete dams [3].  

 

 
Fig. 7: Dam crest displacement sensitivity vs. the input frequency 

of the earthquake 
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Fig. 8: Sensitivity of tensile principal stress in the heel vs. the 

input frequency of the earthquake 

 

 

 
Fig. 9: Sensitivity of compressive principal stress in the toe vs. 

the input frequency of the earthquake 

 

Accordingly, by increasing the input frequency in the force 

equation, the values of structural responses fluctuating in 

the hydrodynamic pressure decreases. This is very sensitive 

to the input frequency. For a better understanding of the 

effect of the input frequency in the sensitivity diagrams, a 

different frequency of structural responses is selected and 

shown in Table 2. 

 

Table 2: Numerical values of maximum structural responses at 

different frequencies 

Response 

𝑤 

=  15  (
1

𝑠𝑒𝑐
) 

𝑤 

=  20 (
1

𝑠𝑒𝑐
) 

𝑤 

=  25 (
1

𝑠𝑒𝑐
) 

Hydrodynamic 

pressure  
1.05 MPa 0.92 MPa 0.49 MPa 

Dam crest 

displacement  
23 cm 13 cm 8.5 cm 

Tensile 

principal stress  
3.68 MPa 2.15 MPa 1.38 MPa 

Compressive 

principal stress 
3.05 MPa 1.50 MPa 1.27 MPa 

 

 

 

 

5. Conclusion 

In this research, the effect of earthquake frequency 

parameter on dynamic response of the concrete gravity dam 

is studied by LHS method using the finite element model. 

In the selected method, the Gaussian function has been 

used as a probabilistic function for probabilistic analysis. 

The frequency in the equation of acceleration of the motion 

of the system is considered as the input variable in the 

analysis. Considering all the conditions governing the 

problem and the interaction between the dam and the 

reservoir with ANSYS software, the concrete gravity dam 

was modeled two-dimensionally. The results show the 

interdependence between the earthquake frequency and 

natural frequency of reservoir. They indicate that critical 

conditions occur when the values of these frequencies get 

closer to each other. The obtained results illustrate that the 

highest pressure occurs in the near to (2n-1)πc/2H 

frequency, which is the natural frequency of the reservoir. 

Also it is obvious from results that in all frequency values, 

the hydrodynamic pressure exceeds 200 KPa and dam crest 

displacement exceeds 5 cm. The probability of 1.5 MPa 

tensile stress at the heel and 1.25Mpa compressive stress at 

the toe is about 50%. 
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